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Abstract

The discovery of ketamine as a rapid-acting antidepressant spurred significant research to 

understand its underlying mechanisms of action and to identify other novel compounds that may 

act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, 

though the challenge of conducting randomized controlled trials with SPs and the necessity of 

long-term clinical observation are important limitations. This review summarizes the similarities 

and differences between the psychoactive effects associated with both ketamine and SPs and the 

mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, 

gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular 

and neuroimaging aspects are considered. While their main mechanisms of action differ—SPs 

increase serotonergic signaling while ketamine is a glutamatergic modulator—evidence suggests 

that the downstream mechanisms of action of both ketamine and SPs include mechanistic target 

of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The 

similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert 

rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to 

the ongoing research that has been conducted with ketamine. For both therapeutics, issues with 

regulation and proper controls should be addressed before more widespread implementation.
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1.0 Introduction

Pharmacotherapies developed to treat major depressive disorder (MDD) have historically 

been unsuccessful for roughly a third of patients (Rush et al., 2006; Trivedi et al., 2006). 

Furthermore, even when successful at reducing depressive symptoms, these drugs—typically 

monoaminergic-based antidepressants—have a substantial therapeutic time lag of weeks to 

months, limited remission rates, and undesirable side effects (Drewiany et al., 2015).

In this context, the recent discovery that sub-anesthetic doses of racemic (R,S)-ketamine 

(hereafter referred to as ketamine), an N-methyl-D-aspartate receptor (NMDAR) antagonist 

and glutamatergic modulator, have rapid antidepressant effects that occur in a matter of 

hours dramatically altered the therapeutic landscape (Kishimoto et al., 2016). Ketamine 

was initially approved by the US Food and Drug Administration (FDA) in 1970 as a 

rapid-acting general anesthetic. In recent years, multiple randomized, placebo-controlled 

trials have validated its robust antidepressant effects in individuals with MDD (Alnefeesi et 

al., 2022; McIntyre et al., 2020), those with treatment-resistant depression (TRD) who had 

not previously responded to conventional therapeutics (Dai et al., 2022; Zarate et al., 2006), 

and those with treatment-resistant bipolar depression (Diazgranados et al., 2010; Zarate et 

al., 2012). These antidepressant effects were found to be sustained well beyond the half-life 

of the drug and its peak pharmacokinetic exposure in the body, suggesting that its effects 

are maintained via a timely activation of signaling cascades in the brain. One meta-analysis 

demonstrated that ketamine’s antidepressant effects peaked at 24 hours post-infusion and 

faded after 10 to 12 days (Kishimoto et al., 2016). These findings led the FDA to approve 

intranasal esketamine (Spravato)—the (S)-enantiomer of ketamine—for adults with TRD in 

2019, and for adults with MDD and acute suicidal ideation or behavior in 2020 (U.S. Food 

& Drug Administration, 2019) under a Risk Evaluation and Management Schedule (REMS). 

This agent has also been approved by the European Union for the same indications.

Despite its encouraging antidepressant profile, concerns regarding the use of ketamine as 

an antidepressant persist, particularly given its potential for abuse and the unknown effects 

of its long-term use in clinical settings (Kokane et al., 2020; Liu et al., 2016). Ketamine 

also generates a transient psychoactive state that peaks around 40 minutes post-infusion, 

including changes in perception, mood, thought, and self-awareness, which necessitate its 

administration under medical supervision (Acevedo-Diaz et al., 2019; Kraus et al., 2017; 

Sassano-Higgins et al., 2016). Nevertheless, the re-purposing of ketamine from an anesthetic 

to an antidepressant created a paradigm shift, sparking a surge in research to develop and/or 

repurpose other therapeutic compounds with rapid and robust actions and similar behavioral 

and biological effects (Kadriu et al., 2020).

The most prominent example is research into the effects of so-called “classic” psychedelics, 

including lysergic acid diethylamide-25 (LSD), psilocybin and its active metabolite psilocin, 

2,5-Dimethoxy-4-iodoamphetamine (DOI), N,N-dimethyltryptamine (DMT), 5-methoxy-
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DMT (5-MeO-DMT), and the related empathogen 3,4-methylenedioxy-methamphetamine 

(MDMA) (Carhart-Harris and Goodwin, 2017). Coined by Osmond in 1957, the 

word “psychedelic” is often used interchangeably with the terms “hallucinogen” and 

“psychotomimetic” in the literature. In this manuscript, we refer to this class of drugs as 

serotonergic psychedelics (SPs), which reflects both their primary mechanism of action 

as 5-HT2A receptor agonists and their unique effects on the ego and consciousness 

(Carhart-Harris et al., 2012; Johnson et al., 2019; Mason et al., 2020; Rucker et al., 2018). 

Depending on the agent, psychoactive states will alternatively be referred to as psychedelic, 

psychotomimetic, or dissociative (Nichols, 2016). The term psychedelic refers to diverse 

agents that alter a person’s thoughts, feelings, and awareness of their own surroundings; 

in contrast, the term psychotomimetic reflects an alteration of behavior or personality that 

mimics psychosis, and the term dissociative references a state in which a disconnection or 

lack of continuity exists between a person’s thoughts, memories, or feelings. SPs produce 

both psychedelic and psychotomimetic states, whereas ketamine appears to induce primarily 

transient psychotomimetic and dissociative states.

In the 1950s and 1960s, over 1000 clinical research papers explored the therapeutic effects 

of SPs, particularly with regard to treating addiction, but they often lacked scientific rigor, 

including failure to incorporate control groups or blinding, report adverse effects, and 

validate outcome measures (Carhart-Harris and Goodwin, 2017). In 1967, research into 

SPs was brought to an abrupt halt when they were classified as Schedule I drugs (indicating 

that they had no medical value and were highly addictive), a decision that stemmed from 

concerns regarding their non-clinical use (Rucker et al., 2018) and the potential harm 

associated with their ability to engender life-altering experiences. However, there has been 

a recent resurgence of interest in clinical and preclinical SP research, especially with 

psilocybin; indeed, recent findings suggest that just one or two doses of SPs may persistently 

mitigate the symptoms of MDD and anxiety, as well as alcohol and tobacco addiction, more 

effectively than conventional treatments (Agin-Liebes et al., 2020; Carhart-Harris et al., 

2018; Griffiths et al., 2016; Muttoni et al., 2019; Nichols et al., 2017; Ross et al., 2016). This 

work led the FDA to designate psilocybin as a “breakthrough therapy” in 2018 for TRD and 

again in 2019 for MDD.

Despite proposed parallels, much remains unknown about the convergent and divergent 

mechanisms of ketamine and SPs, particularly given the comparative dearth of properly 

controlled clinical trials and experiments investigating the therapeutic effects of SPs. While 

clinical trials of ketamine have consistently proven that it effectively targets TRD, properly 

controlled studies of SPs are still in their infancy, and many more unanswered clinical and 

mechanistic questions surround their use. Nevertheless, the rapid recent pace of new studies 

focusing on the effects of SPs requires that the literature in this area be regularly updated. 

This paper, which updates recent findings in this area (Kadriu et al., 2021), will review the 

molecular, imaging, and behavioral data believed to underlie the distinct and overlapping 

mechanisms of both therapeutics with the goal of informing future research into rapid-acting 

antidepressants. Unravelling the mechanism of antidepressant action that underlies both 

ketamine and SPs would dramatically expand our understanding of psychiatric disorders 

and have important implications for drug development. Towards this end, the manuscript 

explores the potential role of psychotomimetic or psychedelic effects in antidepressant 
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efficacy, the divergent main mechanisms of these two therapeutic compounds, their potential 

common downstream targets, and regulatory issues that must be considered for both.

2.0 The Convergent and Divergent Mechanisms of Ketamine and SPs

2.1 An overview of the major mechanisms of action of ketamine and SPs

While initially thought to primarily exert its antidepressant effects through NMDAR 

antagonism, research suggests that ketamine has several potentially relevant mechanisms 

of antidepressant action (Yang et al., 2019; Zanos et al., 2018a). Currently, two main 

NMDAR-related hypotheses exist for ketamine’s effects: the disinhibition hypothesis and 

the direct inhibition hypothesis (Miller et al., 2016). The disinhibition hypothesis states 

that, at subanesthetic doses, ketamine preferentially antagonizes NMDARs on gamma-

aminobutyric acid (GABA)-ergic interneurons. Blockade of these inhibitory interneurons 

increases firing of excitatory pyramidal neurons, which increases glutamate release and 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) transmission; 

this, in turn, activates integral synaptic signaling pathways that contribute to ketamine’s 

therapeutic effects (Gerhard et al., 2020). The direct inhibition hypothesis posits that 

ketamine’s antagonism of NMDARs on excitatory pyramidal neurons lessens tonic NMDAR 

activation by circulating glutamate, which subsequently increases protein synthesis by 

decreasing suppression of eukaryotic elongation factor 2 (eEF2) (Autry et al., 2011; 

Nosyreva et al., 2013). Interestingly, the preliminary efficacy of (R)-ketamine—which 

is a less potent NMDAR antagonist—has spurred research into NMDAR-independent 

mechanisms of ketamine. This NMDAR-independent mechanism, which is thought to be 

mediated via AMPAR activation, activates a downstream BDNF-TrkB cascade to promote 

excitatory signaling in the cortex and hippocampus (Yang et al., 2019; Zanos et al., 2018a). 

Although the mechanisms underlying ketamine’s NMDAR-independent effects on AMPAR 

transmission remain unclear, ketamine and (2R,6R)-HNK have been shown to upregulate the 

expression and phosphorylation of GluA1 independent of NMDAR antagonism (Li et al., 

2022b; Yao et al., 2018; Zanos et al., 2016). Recent research also found increased cyclic 

adenosine monophosphate (cAMP)-induced phosphorylation of cAMP response element-

binding protein (CREB) after ketamine administration, even after NMDAR knockout. 

This CREB phosphorylation increased BDNF release, which can activate the downstream 

BDNF-TrkB cascade to increase excitatory signaling (Wray et al., 2019). In addition 

to its glutamatergic mechanisms, evidence suggests that ketamine is also a monoamine 

reuptake inhibitor, a modulator of opioid receptor (mu, delta, kappa) activity, a dopamine 

receptor agonist, and a muscarinic receptor antagonist, among other mechanisms of action 

(Matveychuk et al., 2020).

Broadly, SPs interact with a variety of serotonergic receptors (5-HT1A, 5-HT1B, 5-HT1D, 5-

HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5, and 5-HT6) and, with less affinity, 

some non-serotonergic receptors (e.g., dopamine receptors, certain trace amine receptors, 

kappa opioid receptors, sigma receptors, etc) (reviewed in (McClure-Begley and Roth, 

2022; Slocum et al., 2022)). Their psychedelic activity is believed to be primarily mediated 

by 5-HT2A receptor agonism (López-Giménez and González-Maeso, 2018; Rolland et al., 

2014). The overlapping pharmacology of SPs (i.e., 5-HT2A binding) was also demonstrated 
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in a recent clinical trial that found that participants could not differentiate between the 

psychedelic experiences produced by LSD or psilocybin, except for their duration (Holze 

et al., 2022). Mechanistic and genetic rodent studies have shown that abolishing 5-HT2A 

receptor activity prevents the antidepressant-like effects of SPs on behavior and structural 

plasticity (Ly et al., 2018; Pędzich et al., 2022). On the other hand, antidepressant-like 

behavioral and electrophysiological responses to psilocybin were not blocked by the 5-

HT2A/2C receptor antagonist ketanserin, though this experiment should be repeated with an 

antagonist that is more selective for the 5-HT2A receptor, such as volinanserin (Hesselgrave 

et al., 2021). In addition, the selective 5-HT2A receptor agonist DOI had no antidepressant-

like effects in an LPS-induced mouse model of depression, but it did increase dendritic 

spine density (Qu et al., 2022). Interestingly, a non-psychedelic analog studied with the same 

LPS mouse model had antidepressant-like effects that were not associated with 5-HT2AR 

agonism (Qu et al., 2022). For a summary of hypothesized mechanisms underlying the 

antidepressant effects of ketamine and SPs, please see Table 1.

2.2 Psychoactive Effects

In the development of novel, rapid-acting antidepressant agents, one key question of 

interest is how pharmacotherapies that appear to work through diverse mechanisms 

nevertheless exert similar—and perhaps equally rapid-acting—effects. Broadly, ketamine’s 

antidepressant effects peak at 24 hours; depressive symptom reduction has been reported 

within one hour and can last upwards of two weeks (Hashimoto, 2019). Initial trials 

exploring the ability of SPs to reduce depressive symptoms found an effect within one 

day (Palhano-Fontes et al., 2019; Sanches et al., 2016), but this result has not always 

been replicated (Grob et al., 2011). However, this may be due to differences in participant 

population (e.g., individuals with recurrent depression or TRD vs. those with late-stage 

cancer) or the SP used (e.g., ayahuasca vs. psilocybin). A recent Phase 2 trial found 

reduced Montgomery-Asberg Depression Rating Scale (MADRS) scores in participants 

with TRD three weeks after an acute dose of psilocybin (Goodwin et al., 2022a). While 

not analyzed, MADRS scores were also reduced at Day 2 after psilocybin administration. 

Overall, however, most research exploring the effects of SPs on depressive symptoms has 

focused on longer time-points (Romeo et al., 2020), and further research is necessary to 

determine the extent to which SPs can be classified as a rapid-acting antidepressant.

Although they target different neurotransmitter systems, both ketamine and SPs similarly 

induce psychoactive states. These psychoactive experiences, however, appear to be mediated 

via different mechanisms: NMDAR antagonism for ketamine and 5-HTR agonism for SPs. 

It is important to note at the outset that most research conducted in SPs is classified as 

qualitative or quasi-experimental, in sharp contrast to ketamine, whose therapeutic effects 

have often been assessed via randomized controlled trials.

Initial research for ketamine focused on its underlying mechanisms of action, not the 

role of its psychoactive effects, particularly because it induces only mild and fleeting 

psychoactive effects at antidepressant doses (around 0.5 mg/kg). At these sub-anesthetic 

doses, approximately 80% of individuals with TRD report dissociative symptoms in 

response to ketamine, including “feeling strange, weird, or bizarre”, and 50% report stronger 
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psychoactive effects such as a sensation of “floating” (Acevedo-Diaz et al., 2020b); however, 

these effects are transient, peaking around 40 minutes post-infusion and dissipating shortly 

thereafter (Acevedo-Diaz et al., 2020b). Interestingly, initial reports regarding subjective 

experiences after (R)-ketamine administration have differentiated its effects from those of 

(S)-ketamine, with very few psychotomimetic effects reported in early clinical trials (Zhang 

et al., 2022).

In contrast, SPs are often administered at much higher doses than the minimum needed 

to produce a psychedelic effect (e.g., ~0.3 mg/kg for psilocybin, ~1.67 mg/kg for DMT) 

(Knudsen, 2023; Sanches et al., 2016). Although ketamine and certain SPs (such as 

psilocin) have similar half-lives (~2.5 hours), the higher doses needed for SPs to exert 

their therapeutic effects typically lead to much stronger and longer-lasting psychoactive and 

psychotomimetic effects. While the timing of these effects varies widely between SPs due to 

differences in plasma half-lives, the psychoactive effects of most SPs can last for hours—for 

example, approximately six hours for psilocybin (Passie et al., 2002) and up to 12 hours for 

LSD (Dolder et al., 2015); in contrast, some SPs have extremely strong but very transient 

effects—for example, the effects of DMT only last from five to 30 minutes (Strassman and 

Qualls, 1994).

Across cultures and contexts, “mystical-type experiences” are commonly reported after 

SP administration, including reports of bliss, connection, acceptance, transcendence of 

space and time, and sacredness (Johnson et al., 2019). For example, 4.5 years after a 

single treatment, 71–100% of patients with life-threatening cancer treated with psilocybin 

attributed reductions in depressive and anxiety symptoms to the treatment (Agin-Liebes 

et al., 2020), though these measures were self-reported, and 39% of the patients had also 

received psychotherapy in the interim period. It should also be noted that SPs are not 

always significantly more effective than traditional antidepressants such as escitalopram 

(Carhart-Harris et al., 2021), and the varied results warrant further exploration.

The degree to which psychoactive effects and therapeutic efficacy are linked for each of 

these compounds remains unclear. The association between ketamine’s efficacy and its 

psychoactive effects appears to be weak, and most data indicate that its psychotomimetic 

effects are not related to its antidepressant outcomes (Acevedo-Diaz et al., 2020a; Ballard 

and Zarate, 2020). Furthermore, one recent study found no interaction between reported 

adverse events post-ketamine and later MADRS scores (Greenwald et al., 2021). This 

lack of association between ketamine’s dissociative and antidepressant effects, as well as 

the effects of other NMDAR antagonists, suggests that some of ketamine’s antidepressant 

effects may be NMDAR-independent. In contrast, the psychoactive effects induced by 

SPs appear to be dose-dependent and to correlate with self-reported positive persistent 

effects in healthy volunteers, as assessed via a non-validated scale (the Persistent Effects 

Questionnaire) (Barrett and Griffiths, 2018; McCulloch et al., 2022). In addition, the 

“quality” of psychedelic experience after psilocybin administration, as assessed through 

the Altered States of Consciousness Questionnaire, predicted future reduction of depressive 

symptoms measured by the QIDS-SR (Self-Reported Quick Inventory of Depressive 

Symptoms) (QIDS-SR) at five weeks (Roseman et al., 2018). A recent systematic review 

across disorders that included TRD and substance use disorder found parallel results—
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namely, that the intensity of the acute psychedelic experience (measured through various 

scales) was the most significant predictor of future treatment response (Romeo et al., 2021). 

In contrast, recent literature reviews that included non-psychedelic analogs such as 6-MeO-

isoDMT have suggested that the psychedelic experience is not necessary for antidepressant 

effects (Olson, 2020). Nevertheless, further validation is needed of both the scales used to 

assess psychedelic experience as well as the precise nature of this association in participants 

diagnosed with depression.

Another key point is that therapeutic milieu may play a confounding role in the psychoactive 

differences between ketamine and SPs. First introduced in 1965, the concepts of set 

(referring to mindset) and setting (the location in which the SPs are administered) 

(Hartogsohn, 2017) became heavily intertwined in SP research. It should be noted from 

the outset that the effects of set and setting on ketamine administration have rarely 

been studied or considered. Ketamine is usually offered in stringent clinical settings, 

though recent qualitative studies suggest that treatment environment may affect participant 

experience, particularly a strong therapeutic alliance with the prescribing clinician (Griffiths 

et al., 2021). In contrast, SPs are often administered after extensive preparation, often 

involving long discussions between the participant and practitioner of what to expect after 

administration of the SP, in a carefully orchestrated space designed to be soothing (Johnson 

et al., 2008; Schatzberg, 2020). It is important to note that the more stringent administration 

of ketamine has led to more conclusive evidence of its antidepressant effects, given that set 

and setting vary so widely in trials of the therapeutic effects of SPs (Golden et al., 2022).

Given the psychoactive effects of both ketamine and SPs, considerable research has sought 

to identify similarly effective compounds that lack these psychoactive effects. However, 

efforts to develop ketamine-like drugs that mirror its antidepressant effects but lack its 

dissociative effects have, to date, proven largely unsuccessful (Kadriu et al., 2020). With 

regard to SPs, microdosing—the act of taking sub-psychedelic doses—has generated 

significant interest. Nevertheless, the COMPASS Pathways Phase 2b trial found that a 25mg 

dose of psilocybin (considered a “macrodose”) was significantly more effective than a 1mg 

“microdose” in reducing depressive symptoms three weeks later, though the higher dose 

was also associated with more adverse events on the first day (61% vs. 38%) (Goodwin 

et al., 2022b). Other studies found that non-psychedelic levels of psilocybin/LSD lowered 

levels of self-reported depression and anxiety symptoms as assessed via the Depression, 

Anxiety, Stress Scale-21 (DASS-21), but this was in the general population and not in 

those diagnosed with depression or anxiety (Rootman et al., 2022). A placebo-controlled 

crossover trial in the general population found similar results, with reduced anxiety and 

stress symptoms in response to non-psychedelic doses of psilocybin versus placebo as 

assessed through the DASS-21 (Marschall et al., 2022); however, that study excluded those 

previously diagnosed with any psychiatric disorder.

As noted previously, research into the efficacy of SPs in TRD is still in its infancy. 

In comparison, a meta-analysis that reviewed a decade of ketamine trials found clinical 

response rates (defined as a 50% reduction in depressive scale scores) of 36.5% within 

24 hours, a percentage that rose to 47.6% over two to seven days. Remission, defined as 

the absence of depressive symptoms, was found in 18% of the TRD participants within 
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24 hours and 28.2% within two to seven days (Marcantoni et al., 2020). Although there is 

less clinical research to draw on when determining the efficacy of SPs in TRD, one small, 

open-label trial of psilocybin in conjunction with psychological support found that 67% of 

patients (8/12 participants) met criteria for remission at one week (Carhart-Harris et al., 

2016a); results were not provided for earlier timepoints. In a larger trial, the response rate 

at Week 3 was between 18–37% depending on dose (1–25 mg). Remission rates at Week 3 

ranged from 8–29%, again in a dose-dependent manner (Goodwin et al., 2022a), suggesting 

the importance of proper dosing in SP research. Although trials to determine the effects of 

SPs in TRD are growing, it is important to note that much previous research has focused 

primarily on the impact of SPs on depressive symptoms, and efficacy rates could change 

when SPs are used in a TRD population.

2.3 The Monoaminergic System

Traditional antidepressants are based on the monoaminergic hypothesis of depression, which 

suggests that a depletion of serotonin, norepinephrine, and/or dopamine underlies depressive 

symptomatology. While the depletion of these monoamines is a consistent finding in MDD 

(Delgado, 2000; Hamon and Blier, 2013), the upregulation of monoamines after treatment 

does not consistently parallel the alleviation of depressive symptoms (Hirschfeld, 2000; Liu 

et al., 2017). mGlu2/3 antagonists, whose antidepressant-like effects are similar to those of 

ketamine, appear to mediate their actions by increasing the firing of 5-HT neurons as well as 

via 5-HT release (Chaki and Fukumoto, 2019).

In addition to its glutamatergic effects, ketamine appears to indirectly modulate 

monoaminergic neurotransmission. In the prefrontal cortex (PFC) of mice, ketamine, its 

enantiomers, and/or its metabolites increased extracellular levels of serotonin, dopamine, 

and norepinephrine (Ago et al., 2019). This transient increase in monoamine levels appeared 

to be mediated through glutamatergic projections from the medial PFC (mPFC) into the 

dorsal raphe and locus coeruleus (López-Gil et al., 2019). Serotonin depletion through a 

tryptophan hydroxylase inhibitor also blocked the antidepressant-like effects of (S)-ketamine 

in an animal model (du Jardin et al., 2018). In preclinical and clinical PET studies, 5-HT1B 

receptor binding and serotonin transporter (SERT) occupancy were found to be increased 

in most, but not all, studies (Spies et al., 2018; Tiger et al., 2020; Yamanaka et al., 2014). 

However, the role of the serotonergic system in the antidepressant actions of (R)-ketamine 

are less clear; for instance, at least one study found that 5-HT depletion had no effect on 

(R)-ketamine’s behavioral antidepressant-like effects (Zhang et al., 2018).

Behaviorally, ketamine effectively targets the motivational dysfunction believed to be related 

to dopamine reward circuits (Abdallah et al., 2017b; Mkrtchian et al., 2021); clinical 

trials found that it was particularly successful in ameliorating anhedonia, a symptom 

rarely improved by traditional antidepressants (Ballard et al., 2017; Lally et al., 2014; 

Nogo et al., 2022). Briefly, anhedonia is considered a core symptom of depression and 

a predictor of worse course of illness and treatment response (McMakin et al., 2012; 

Morris et al., 2009; Uher et al., 2012). Historically, traditional antidepressants have more 

effectively treated increased negative affect than decreased positive affect (Uher et al., 

2012). Thus, while traditional antidepressants can improve symptoms such as a depressed 

Johnston et al. Page 8

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mood, which can improve depressive scale scores and classify patients as “responders” or 

“remitters”, anhedonia often remains a residual issue (Landen et al., 2005; McCabe et al., 

2010; Nierenberg et al., 1999; Price et al., 2009), a distinction that underscores ketamine’s 

unique effects on anhedonic symptoms. With regard to dopaminergic pathways in particular, 

preclinical studies found that the Drd1 antagonist SCH39166 blocked the behavioral effects 

of repeated ketamine administration (Hare et al., 2019).

More recently, ketamine was found to restore multiple behaviors dampened by stress 

in mice, an effect blocked by inhibiting dopaminergic signaling (Wu et al., 2021a; Wu 

et al., 2021b). Activation of Drd1 after ketamine administration also increased cortical 

spinogenesis in parallel timing to ketamine’s behavioral effects (Wu et al., 2021a). High-

dose ketamine was also found to dose-dependently increase Drd1 expression in the PFC 

and hippocampus in a mouse model of schizophrenia by inhibiting related microRNAs (Li 

et al., 2022a). Lastly, repeated administration of ketamine increased the firing activity of 

dopaminergic and norepinephrinergic—but not serotonergic—neurons (Iro et al., 2021). 

Interestingly, the actions of (R)-ketamine were not blocked by the Drd1 antagonist 

SCH-23390, suggesting that (R)-ketamine may have dopaminergic-independent effects 

(Chang et al., 2020). Collectively, these results suggest that monoaminergic signaling 

contributes to ketamine’s antidepressant effects, though it is probably not the main 

mechanism underlying its rapid-acting impact, especially in light of (R)-ketamine’s 5-HT- 

and dopaminergic-independent antidepressant-like effects.

In contrast, SPs have clear direct actions on monoaminergic neurotransmission and bind 

directly to serotonin, dopamine, and norepinephrine receptors. The pharmacology of these 

various compounds is quite complex and has recently been reviewed in great detail 

(Inserra et al., 2021). As mentioned above, the main mechanism of action of SPs is 

agonism of various 5-HT receptors. LSD, DMT, and 5-MeO-DMT may also affect the 

SERT (Kyzar and Kalueff, 2016; Rickli et al., 2015), though in vitro work reported 

no interaction between LSD and the SERT (Blough et al., 2014; Rickli et al., 2015). 

Novel research that seeks to develop non-psychedelic analogues is focusing on β-arrestin-

biased ligands, which have lower transduction efficacy for the 5-HT2A receptor, the 

primary mediator of psychedelic activity (Cao et al., 2022). Further supporting the role 

of transporters in antidepressant response to SPs, novel monoamine transporter ligands 

((2-Aminopropyl)benzo[β]thiophenes) also stimulate a behavioral head-twitch response that 

mimics psychedelic activity (Rudin et al., 2022).

The degree to which SPs mediate dopaminergic transmission is less clear. In larger 

amounts, LSD can decrease dopaminergic firing activity, which may account for the 

psychotic symptoms associated with high doses (De Gregorio et al., 2016). Nevertheless, the 

reinforcing effects of dopamine may also be associated with greater abuse liability (Berke 

and Hyman, 2000). Some research even suggests that DMT, psilocybin, and mescaline may 

convert into dopamine after ingestion, adding another layer of complexity to the impact of 

SPs on monoaminergic transmission (Fitzgerald, 2021).

Johnston et al. Page 9

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 The Glutamatergic System

Both ketamine and SPs are believed to increase neurite outgrowth, synapse formation, and 

synaptic connections by facilitating changes in neuroplasticity (Aleksandrova and Phillips, 

2021). These neuroplastic changes are driven by glutamatergic signaling (primarily in the 

PFC), with increases in AMPAR activation, a burst of glutamate release, and activation 

of the mechanistic target of rapamycin (mTOR) signaling pathway contributing to the 

antidepressant effects of both ketamine and SPs (Aleksandrova and Phillips, 2021). While 

ketamine and SPs have different primary mechanisms of action, both NMDAR antagonism 

and 5-HTR agonism activate mTOR downstream, increasing protein synthesis and excitatory 

activity. Another potential overlapping downstream target is the dephosphorylation of 

eukaryotic elongation factor 2 (eEF2), which can directly upregulate protein synthesis that 

contributes to synaptogenesis. This increase in dendritic outgrowth and synaptogenesis from 

both ketamine and SPs could lay the foundation for their longer-lasting antidepressant 

effects by reversing both structural and functional synaptic deficits associated with stress and 

depression. For a more in-depth overview of the impact of ketamine and SPs on indicators of 

neuroplasticity, see (Aleksandrova and Phillips, 2021; Kadriu et al., 2021).

As an anesthetic, ketamine functions primarily as a non-competitive NMDAR antagonist 

through an open channel block mechanism (MacDonald et al., 1987). Recent cryo-electron 

microscope studies of human NMDAR structures found that esketamine appears to bind 

between the channel gate and the selectivity filter and to move between two locations 

in the binding pocket (Zhang et al., 2021c). As noted above, the two main mechanistic 

hypotheses of ketamine (disinhibition and direct inhibition) both center on ketamine’s 

effects on the glutamatergic system. The disinhibition hypothesis postulates that ketamine 

acts by favorably binding to NMDARs that express the GluN1/GluN2C, which are 

preferentially expressed on GABAergic interneurons, therefore blocking the inhibitory 

activity on excitatory pyramidal neurons in the cortex. Updated research supports this theory, 

demonstrating that ketamine’s antidepressant effects stem from its ability to preferentially 

bind to NMDARs on GABAergic interneurons, an effect that is blocked by NMDAR-

GluN2B knockdown on Gad1-expressing neurons (Pothula et al., 2021).

The premise of the direct inhibition hypothesis is that ketamine inhibits NMDARs located 

on post-synaptic terminals, altering cellular signaling pathways that influence protein 

expression (Miller et al., 2016). Interestingly, nitrous oxide (a non-competitive NMDAR 

inhibitor) was recently shown to have electrophysiological antidepressant effects similar 

to those of ketamine in rodents (Izumi et al., 2022). NMDAR antagonism has also been 

associated with ketamine’s dissociative effects (Lodge and Mercier, 2015; Moghaddam et 

al., 1997).

Research into the effects of SPs on NMDARs is more mixed. Changes in NMDAR function 

are known to impact 5-HT2AR expression, which could contribute to the action of SPs. 

In a mouse model of schizophrenia, NMDAR blockade increased 5-HT2A excitability 

in the cortex, an effect potentially mediated through the NMDAR-subunit Grin1 and the 

Gαq protein pathway (Nakao et al., 2022). In a chronic stress animal model, psilocybin 

greatly increased AMPA/NMDA ratios in hippocampal slices compared to those treated with 

vehicle or ketanserin (an anti-hypertensive agent used to study the serotonergic system), an 
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effect that was significantly correlated with anhedonic behavior in the sucrose preference 

test (Hesselgrave et al., 2021). Ibogaine, a psychedelic alkaloid, also appears to be a 

potential NMDAR antagonist, and this mechanism plays a primary role in its use as a 

treatment for substance use disorders (Underwood et al., 2021). Another study also found 

increased NR2A levels after psilocybin administration, though that study also noted that 

psilocybin was not associated with behavioral antidepressant-like effects (Wotjas et al., 

2022). In contrast, repeated administration of LSD did not potentiate synaptic response to 

NMDAR agonists or increase NMDA currents (De Gregorio et al., 2018).

Despite evidence that both ketamine and SPs may work through NMDARs, the low 

concentrations needed for ketamine to exert antidepressant effects has cast doubt on how 

necessary NMDAR inhibition is in this regard (Zanos et al., 2016). It is likely that ketamine 

inhibits only a fraction (less than half at physiological conditions) of NMDARs, even at peak 

drug concentrations (Dravid et al., 2007; Zhao et al., 2012), and therapeutic concentrations 

of the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) did not block NMDAR 

function (Lumsden et al., 2019). In addition, other NMDAR antagonists have not been able 

to fully mimic ketamine’s antidepressant effects; as one example, MK-801 (a structural 

analog that has been heavily researched) had non-sustainable antidepressant effects in 

rodents (Autry et al., 2011; Piva et al., 2021; Yang et al., 2016; Zanos et al., 2016). 

NMDAR antagonists such as memantine, lanicemine, and many others have had little 

clinical success despite early preclinical evidence (Kadriu et al., 2020; Pochwat et al., 

2019). Nevertheless, NMDAR antagonists may still be clinically useful. For instance, a 

recent meta-analysis found that memantine, despite failing in clinical trials, effectively 

treated depressive symptoms in those with mood disorders (Hsu et al., 2022). Rapastinel also 

showed promise in Phase 2 clinical trials for use in TRD, although Phase 3 clinical trials 

were negative, potentially due to problems with study design (Kato and Duman, 2020). In 

addition, a recent proof-of-concept study found that the novel intravenous NR2B antagonist 

MIJ821 had antidepressant effects in individuals with TRD and caused few psychotomimetic 

side effects (Ghaemi et al., 2021). Finally, dextromethorphan in combination with bupropion 

was recently FDA-approved to treat MDD (Majeed et al., 2021).

More recently, attention has turned to the AMPAR-mediated mechanisms that may underlie 

the actions of both ketamine and SPs. The role of AMPAR transmission in the effects 

of rapid-acting antidepressants has been extensively described (Abdallah et al., 2016; Alt 

et al., 2006; Kadriu et al., 2019; Zanos and Gould, 2018; Zanos et al., 2018b). Briefly, 

inhibition of GABA signaling disinhibits glutamate release from excitatory pyramidal 

neurons. The increased glutamate binds to post-synaptic AMPARs, which increase brain-

derived neurotrophic factor (BDNF) release through a rise in Ca2+ influx. BDNF then binds 

to tropomyosin-related kinase B (TrkB) which, through downstream signaling molecules, 

activates the mTOR complex 1 (mTORC1). This transient activation upregulates proteins 

related to increased excitatory transmission, such as post-synaptic density-95, Synapsin I, 

and increased membrane insertion of GluA1.

Many preclinical studies support this mechanism of action for ketamine (Li et al., 2010; 

Zanos et al., 2016; Zhou et al., 2014). There has also been a drive to classify the actions 

of ketamine’s enantiomers and metabolites, particularly (R)-ketamine and (2R,6R)-HNK 

Johnston et al. Page 11

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Hess et al., 2022). Notably, the actions of (R)-ketamine, which induced longer-lasting 

antidepressant effects in a chronic stress model, appeared to depend on AMPA and 

TrkB activation. (S)-ketamine, in turn, activated mTOR independently of TrkB activation 

(Rafało-Ulińska and Pałucha-Poniewiera, 2022). The inactivation of eukaryotic initiation 

factor 4E-binding proteins (4E-BPs) through mTOR is essential for the antidepressant-

like effects of both ketamine and (2R,6R)-HNK (Aguilar-Valles et al., 2021). Recent 

research into the role of mTORC1 on ketamine’s effects have produced somewhat 

unexpected results. Specifically, rapamycin (which inhibits the actions of mTOR) prolonged 

ketamine’s antidepressant effects in participants with TRD (Abdallah et al., 2020). A 

recent clinical trial similarly found that pre-treatment with rapamycin prolonged ketamine’s 

antidepressant, but not anti-suicidal, effects (Averill et al., 2022). This may be due, in 

part, to rapamycin’s anti-inflammatory effects in the periphery, which could contribute to 

ketamine’s antidepressant effects (Attur et al., 2000; Chen et al., 2013). Preclinical studies 

also found that (R)-ketamine had mTOR-independent antidepressant-like effects in a chronic 

stress model, where administration of (R)-ketamine, but not (S)-ketamine, significantly 

attenuated phosphorylation of extracellular signal-regulated kinase (ERK) (Yang et al., 

2018b). Further research also identified the ERK-NRBP1-CREB-BDNF signaling pathway 

in microglia as important to (R)-ketamine’s sustained effects (Yao et al., 2022).

Evidence similarly suggests that the therapeutic effects of SPs are mediated through 

mTORC1 activation (Aleksandrova and Phillips, 2021; Kadriu et al., 2021; Vollenweider 

and Preller, 2020; Vollenweider and Smallridge, 2022). For instance, sustained AMPAR and 

mTOR activation was found to be necessary for SP-induced neuronal growth in cortical 

cultures (Ly et al., 2020). Proteomic analyses in human brain organoids also found that 

LSD increased mTOR activation (Ornelas et al., 2022), further supporting the importance of 

mTOR in neural plasticity in humans. Finally, a metabolomics study also found increased 

mTOR-related signaling after ayahuasca consumption (Madrid-Gambin et al., 2022). In 

contrast, elevated plasma levels of BDNF, which are generally associated with increased 

mTOR-related signaling, were not observed in healthy volunteers following administration 

of LSD or psilocybin (Holze et al., 2022). Nevertheless, there is a paucity of clinical 

research regarding how necessary mTORC1 is to the therapeutic effects of SPs, and no 

registered clinical trials are presently investigating this important question.

Finally, while ionotropic glutamatergic transmission is clearly essential for the 

antidepressant effects of both ketamine and SPs, metabotropic glutamate receptors 

(mGluRs) may also play an important role (Chaki, 2021; Musazzi, 2021). mGluR levels 

have consistently been linked to stress vulnerability (Peterlik et al., 2016), and mGluR2/3 

antagonism has been an area of particular interest in drug discovery. mGluR2/3 antagonists 

were found to exert similar antidepressant-like effects to ketamine, potentially through 

their interactions with the serotonergic system (Chaki and Fukumoto, 2019), and have 

shown early promise as rapid-acting antidepressants (Pilc et al., 2022). Interestingly, 

(2R,6R)-HNK was found to exert mGlu2R-dependent antidepressant effects (Zanos et 

al., 2019). Another recent study found that while ketamine did not alter mRNA or the 

protein expression of ionotropic glutamate receptors, both chronic stress and ketamine 

administration altered mGluR2 expression (Elhussiny et al., 2021). Co-administration of 

ketamine and an mGluR2/3 antagonist also sustained antidepressant response in animal 
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models (Pałucha-Poniewiera et al., 2021; Rafało-Ulińska et al., 2022). In contrast, few 

studies have examined the effects of SPs on mGluRs. mGluR2/3 agonists inhibited the 

effects of DOI in mice, as it appears that mGluR2s and 5-HT2ARs form a G-protein coupled 

receptor complex particularly important for the head-twitch response (Benvenga et al., 2018; 

Delille et al., 2012; Gewirtz et al., 2002; Kłodzinska et al., 2002). However, these findings 

are preliminary, and more research is needed to determine whether mGluRs play a role in the 

antidepressant response associated with SPs.

2.5 The GABAergic system

A large body of evidence links depression with GABAergic signaling deficiencies (Duman 

et al., 2019), and the disinhibition hypothesis of ketamine’s mechanism of action relatedly 

posits that GABAergic neurotransmission dysfunction is involved in the pathophysiology 

of depression (Zanos and Gould, 2018). Overall, MDD is associated with GABAergic 

deficits that coincide with homeostatic-like reductions in glutamatergic neurotransmission 

and can be rescued by rapid-acting antidepressants (Ren et al., 2016). A similar mechanism 

may underlie, at least to some extent, the mechanism of action of SPs. Indeed, excitatory 

pyramidal cells are regulated by GABAergic interneurons that express serotonin receptors 

(Nichols, 2016). Cortical GABAergic interneurons are abundant, but only 13–46% of them 

express the 5-HT2AR compared to 86–100% of excitatory cells in layers II-IV of the human 

and monkey cortex (De Almeida and Mengod, 2007).

Considerable research has examined how ketamine may influence GABAergic signaling. 

Studies suggest that ketamine upregulates GABAA receptor activity in the cortex and 

hippocampus (Wang et al., 2017), increases turnover of hippocampal GABA (Silberbauer et 

al., 2020), and increases GABA release in the mPFC (Pham et al., 2020). Other compounds 

that upregulate GABAA receptor activity by preferentially binding to the delta subunit 

also have antidepressant properties, including the progesterone metabolite allopregnanolone 

(brexanolone) (Lüscher and Möhler, 2019), which was FDA-approved to treat postpartum 

depression in 2019 (Pinna et al., 2022). Negative GABAA receptor allosteric modulators also 

exert antidepressant effects by strengthening excitatory synapses without ketamine’s adverse 

effects (Fischell et al., 2015). Muscimol and high doses of benzodiazepines, both of which 

increase GABAA receptor transmission, were found to dampen ketamine’s antidepressant 

effects (Andrashko et al., 2020; Fuchikami et al., 2015), a finding paralleled by results 

showing that increased activation of GABAA receptors decreased antidepressant response to 

ketamine (Pham et al., 2020). Regardless of the implicated mechanisms, ketamine rapidly 

alleviates deficits in synaptic GABAergic markers as well as the frequency of inhibitory 

post-synaptic currents in the mPFC induced by stress, perhaps by transiently releasing large 

amounts of glutamate and/or directly facilitating the plasticity of GABAergic interneurons 

(Ghosal et al., 2020).

With regard to SPs, psilocybin has been found to raise both GABA and glutamate levels 

in the mPFC and to inhibit glutamate release in the hippocampus by acting on serotonin 

receptors located on GABAergic interneurons (Carhart-Harris and Nutt, 2017; Mason et 

al., 2020). Stress-induced alterations in GABAergic circuitry in the ventral tegmental area, 

a dopaminergic region strongly associated with reward and addiction, were normalized by 
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5-HT2AR agonists (Kimmey et al., 2019), suggesting that SPs would have similar actions. 

However, the therapeutic effects of SPs are more likely to be related to their direct action 

on excitatory pyramidal neurons than on their ability to mediate GABAergic interneurons. In 

support of this notion, the pharmaco-electroencephalogram response to LSD was found to be 

similar between GABAA receptor δ subunit knockout mice and wildtype controls (Grotell et 

al., 2021).

Given that the balance between inhibitory and excitatory neurotransmission needs to be 

appropriately maintained to prevent psychiatric disturbances, additional research is needed 

to elucidate how GABAergic signaling contributes to the rapid and sustained antidepressant 

effects of ketamine and—even more so—to that of SPs. For instance, it would be interesting 

to evaluate whether ketamine and SPs recover levels of the enzyme glutamate decarboxylase 

(GAD) in cortical and limbic brain centers, like the hippocampus, which is sensitive to 

excitotoxicity (Gruenbaum et al., 2022). GAD converts glutamate into GABA in a single 

step, quickly distinguishing excitatory from inhibitory signals, and low GAD levels are 

associated with chronic stress and depression (Miyata et al., 2021). GABAB receptors 

are another pharmacological target of interest; generally, GABAB receptor agonists are 

pro-depressive whereas antagonists are anti-depressive (Jacobson et al., 2018). It is unknown 

whether SPs work via GABAB receptors, but administration of the GABAB receptor agonist 

baclofen prevented the antidepressant-like effects of ketamine in a mouse model, further 

suggesting that GABAB receptor inhibition may have beneficial effects (Rosa et al., 2016).

2.6 Opioid System

There has been a resurgence of interest regarding the role of the opioid system in MDD 

(Perez-Caballero et al., 2020), in part due to observations that ketamine’s antidepressant 

effects may require the activation of certain opioid receptors (Williams et al., 2019; 

Williams et al., 2018). The opioid system is highly dysregulated in depression; for instance, 

a reduction in mu-opioid receptor availability was associated with treatment-resistance 

and with the improper processing of social cues (Peciña et al., 2019). The efficacy of 

low-dose buprenorphine, an opioid partial agonist, further implicates the opioid system in 

antidepressant treatment (Peciña et al., 2019). Self-medication with opioid agonists has also 

been repeatedly observed in individuals with depression, and associations are frequently 

found between depressive symptoms and opioid misuse (Rogers et al., 2021).

Recent research suggests that ketamine interacts significantly with the mu-opioid receptor 

and has weak affinity for the kappa-opioid receptor (Bonaventura et al., 2021). This 

affinity to opioid receptors is only a five- to 20-fold difference less than ketamine and 

its enantiomers’ affinity for the NMDAR. Some preclinical research found that opioid 

antagonists abolish ketamine’s rapid-acting antidepressant effects, though an opiate agonist 

alone is not sufficient to induce a parallel antidepressant effect (Klein et al., 2020; Zhang 

et al., 2021a). However, other preclinical studies found that naltrexone had no effect on 

ketamine’s antidepressant-like effects in a chronic social defeat stress model (Zhang and 

Hashimoto, 2019). Despite ketamine’s weak affinity for kappa-opioid receptors, blockade 

of these with a high-affinity and selective short-acting kappa-opioid receptor antagonist 

(LY2444296) abolished the antidepressant effects of both ketamine and its metabolite 
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(2R,6R)-HNK (Wulf et al., 2022). In addition, administration of an opioid antagonist 

(naltrexone) blocked ketamine’s antidepressant effects in participants with TRD (Williams et 

al., 2019; Williams et al., 2018). A current clinical trial is building on this work to correlate 

naltrexone’s blockade of antidepressant effects with neuroimaging data (NCT04977674), 

and other clinical trials are investigating adjunctive ketamine use in combination with 

buprenorphine or methadone for the treatment of opioid use disorder and comorbid 

depression (NCT04177706, NCT05051449).

Very little is known about the link between SPs and the opioid system. The plant alkaloid 

ibogaine has strong psychedelic properties and affinity for kappa-opioid receptors (Wasko 

et al., 2018). SP binding to mu-opioid and kappa-opioid receptors has also been found to 

correlate positively with subjective “therapeutic component scores”, though it is important to 

note that mu-opioid receptor binding also correlated positively with self-reported measures 

of dependence (Zamberlan et al., 2018). SPs may also inadvertently modulate the addiction 

circuitry related to opioid use disorders, with preliminary research showing early success 

(reviewed in (Lee et al., 2022)). As an example, a single dose of ibogaine was effective 

against opioid dependence 12 months later (Noller et al., 2018). Nevertheless, significantly 

more research on the effects of SPs on the opioid system is needed to corroborate these 

findings.

2.7 Inflammation

Evidence suggests that stress-induced pro-inflammatory states in the central nervous system 

may contribute to the pathology of TRD (Yang et al., 2018a). Greater inflammatory 

responses have typically been associated with a more severe course of illness, higher 

chance of recurrence, and worse treatment outcomes (Suneson et al., 2021), though 

not always (Kofod et al., 2022). These inflammatory findings have been paralleled in 

preclinical research, which found that administration of the endotoxin lipopolysaccaharide 

(LPS) triggers “depressive-like” behaviors in rodents (Zhao et al., 2020). Peripheral blood 

mononuclear cells from individuals with MDD stimulated with LPS ex vivo had greater 

reactivity than cells of healthy volunteers, a response that also correlated with greater 

amygdala activation (Boukezzi et al., 2022).

Inflammatory markers such as tumor necrosis factor alpha (TNF-α), C-reactive protein 

(CRP), interleukin 1β (IL-1β), interleukin 6 (IL-6), and interleukin 8 (IL-8) have 

consistently been found to be upregulated in both animal models of depression and 

individuals diagnosed with MDD (Haapakoski et al., 2015; Köhler et al., 2017; Kubera 

et al., 2011; Wang and Miller, 2018). CRP appears to play a particularly important role, as 

it has been able to predict subsequent depressive symptoms (Valkanova et al., 2013) and 

distinguish TRD participants from treatment-responsive, unmedicated participants as well 

as healthy volunteers (Chamberlain et al., 2019). A positron emission tomography (PET) 

imaging study also reported increased binding of translocator protein 18kDa (TSPO), a 

biomarker of inflammation, in the PFC and anterior cingulate cortex of individuals currently 

experiencing a major depressive episode (Meyer et al., 2020).

Two potential mediators of these inflammatory responses are the hypothalamic-pituitary-

adrenal (HPA) axis and the kynurenine pathway. Overactivation of the HPA axis is 
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characteristic of depression and chronic stress (Stetler and Miller, 2011), and hypersecretion 

of corticotropin-releasing hormone (CRH) can cause hypercortisolism and decreased 

reward-system responsivity of the dopaminergic system (Gold and Chrousos, 2002). 

Indicators of HPA axis hyperactivity are also strongly associated with somatic symptoms, 

which are reported more often in TRD than MDD (Iob et al., 2020).

The kynurenine pathway, a major modulator of glutamatergic and serotonergic signaling, 

is also heavily impacted by inflammation (Kowalczyk et al., 2019). Tryptophan-2,3-

dioxygenase (TDO) is the kynurenine pathway’s main enzyme and catabolizes tryptophan, 

the precursor for serotonin synthesis. TDO is induced in pro-inflammatory states (Chen and 

Guillemin, 2009), leading to a tryptophan depletion that can cause depressive symptoms 

in vulnerable persons (Wichers et al., 2005). The products of the kynurenine pathway 

are also biologically active, with kynurenic acid (KA) acting as a neuroprotective agent 

(Foster et al., 1984) and quinolinic acid (QA) as an endogenous neurotoxin (Lugo-Huitrón 

et al., 2013). Altered ratios of KA and QA have repeatedly been found in participants with 

depression (Allen et al., 2018; Doolin et al., 2018; Moaddel et al., 2018; Zhou et al., 2018). 

Considerable research has examined the role of the kynurenine pathway in depression and 

inflammation; we refer the interested to reader to (Kowalczyk et al., 2019) for a more 

in-depth discussion.

Ketamine appears to have mixed results on markers of inflammation (see (Johnston et 

al., submitted) for a recent review). In a mouse model of ulcerative colitis, (R)-ketamine, 

but not (S)-ketamine, decreased blood IL-6 levels, an anti-inflammatory effect blocked by 

administration of a TrkB antagonist, suggesting that ketamine might have anti-inflammatory 

effects (Fujita et al., 2021). Preclinically, (R)-ketamine also significantly attenuated levels 

of splenomegaly, central and peripheral measures of pro-inflammatory cytokines, and 

cognitive impairment in mice administered LPS (Zhang et al., 2021b). Interestingly, 

Wistar rats subjected to maternal deprivation had increased levels of pro-inflammatory 

cytokines that were reversed in a sex-dependent manner by ketamine or ketamine in 

combination with either/both electroconvulsive stimulation (ECS) and the selective serotonin 

reuptake inhibitor (SSRI) escitalopram (Abelaira et al., 2022). However, certain measures 

of inflammation did not respond to ketamine, including catalase activity and carbonyl levels 

in the PFC and hippocampus of female rats (Abelaira et al., 2022). Clinical studies have 

echoed these sex-dependent preclinical results, finding that lower baseline levels of IL-8 

predicted treatment response to ketamine in females but not males with depression (Kruse et 

al., 2021).

Ketamine also affects both the HPA axis and kynurenine pathway. In an animal model 

of depression, ketamine restored hippocampal glucocorticoid receptor expression, thus 

helping to restore the HPA axis’s negative feedback loop (Wang et al., 2019). Ketamine 

also reduced levels of corticosterone and adrenocorticotropic hormone (ACTH) after LPS 

injection (Besnier et al., 2017). Clinically, it seems that ketamine promotes an early burst of 

cortisol in healthy volunteers (Hergovich et al., 2001; Khalili-Mahani et al., 2015), though 

exploration of this phenomenon in individuals with TRD is needed. Ketamine may also 

mediate the effects of QA, the pro-inflammatory byproduct of the kynurenine pathway that 

binds to NMDARs via NMDAR blockade (Miller, 2013; Walker et al., 2013). Ketamine 
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restored the decreased KYN:tryptophan ratio both clinically (Moaddel et al., 2018) and in 

a chronic unpredictable mild stress model (Wang et al., 2015). Increased KA levels after 

ketamine administration also correlated with MADRS score reductions at Days 1, 13, and 26 

post-ketamine (Zhou et al., 2018).

Some studies suggest that ketamine acts on the reactivity of the immune system to aversive 

stimuli such as stressors. For example, ketamine demonstrated prophylactic effects against 

chronic stressors, preventing stress-induced behavioral changes (Brachman et al., 2016) as 

well as resilience against LPS- or TNF-α-induced depressive-like behaviors associated with 

the NLRP3 inflammasome pathway (Camargo et al., 2021). A recent proof-of-concept study 

found that a pre-stress ketamine infusion in healthy volunteers significantly decreased levels 

of salivary cortisol and alpha amylase (Costi et al., 2022). It should be noted that chronic, 

high-frequency ketamine use may increase neurogenic and IgE inflammation to contribute to 

urological toxicity (Ng et al., 2021), but this has only been observed in ketamine abusers and 

not at antidepressant doses.

Compared to their antidepressant (or antidepressant-like) effects, research on the anti-

inflammatory effects of SPs is still in its infancy, but some information can be extrapolated 

from other disorders (see (Saeger and Olson, 2022) for a recent review of the anti-

inflammatory effects of SPs on various neurodegenerative disorders). SPs appear to produce 

strong anti-inflammatory effects by binding to 5-HT2A receptors on immune cells (Flanagan 

and Nichols, 2018), where activation was found to lessen airway inflammation in a mouse 

model of asthma (Flanagan et al., 2019a) and vascular inflammation in a high fat diet 

model (Flanagan et al., 2019b). Microglia also express receptors targeted by SPs, including 

5-HT2A, 5-HT2B, 5-HT7, and sigma-1 receptors (Jia et al., 2018; Turkin et al., 2021). Recent 

studies have also found associations between lifetime self-reported SP use and lower rates 

of heart disease, diabetes, body mass index, and hypertension (Simonsson et al., 2021a; 

Simonsson et al., 2021b; Simonsson et al., 2021c). Further research is needed to explore 

the potential mechanisms underlying these broad anti-inflammatory outcomes, including 

potential lifestyle confounders not listed in these studies, such as diet, socioeconomic status, 

and age.

With regard to the link between SPs, depression, and inflammation in particular, very 

little recent research has been published (we refer the interested reader to (Flanagan and 

Nichols, 2018; Flanagan and Nichols, 2022; Kadriu et al., 2021) for an overview of previous 

work). Briefly, the 5-HT2A receptor is expressed in many immune tissues, including the 

spleen and circulating lymphocytes. SPs appear to have strong anti-inflammatory effects 

due their action on the 5-HT2A receptor, decreasing levels of cytokines and TNF-α within 

hours of administration (Pelletier & Segel, 2009). DOI, in particular, was found to provide 

a prophylactic effect against TNF-α administration, preventing cytokine and chemokine 

upregulation (Martin & Nichols, 2013). Interestingly, activation of the 5-HT2A receptor by 

serotonin is primarily pro-inflammatory, leading Flanagan and Nichols to propose that the 

effects of SPs may be explained by functional selectivity or by the ability of the receptor to 

use different conformations to activate differing effector pathways (Flanagan and Nichols, 

2018). In recent pre-print reports, researchers found that psilocybin decreased TNF-α 
secretion (Smedfors et al., 2022) and that both psilocin and DMT decreased levels of TLR4, 
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p65, and CD80 after LPS challenge in microglial cell lines (Kozłowska et al., 2021). In 

LPS-treated macrophage cells, psilocybin treatment decreased levels of TNF-α, IL-1β, IL-6, 

and cyclooxygenase-2 (COX-2) (Nkadimeng et al., 2021). In a chronic stress mouse model 

of PTSD, both DMT and “pharmahuasca” (DMT+harmaline) decreased reactive oxygen 

species (ROS) and inflammatory gene expression (Kelley et al., 2022). DMT also decreased 

TNF-α and IL1-β levels and increased IL-10 levels in an in vivo model of ischemic brain 

injury (Nardai et al., 2020). While SPs play a large role in the serotonergic system, to the 

best of our knowledge, no research has explored their impact on the kynurenine pathway. As 

a precursor of serotonin itself, tryptophan is uniquely placed to affect the impact of SPs and 

could be an area of future interest. Preliminary research has also investigated the role of the 

HPA axis in healthy volunteers, finding increased cortisol and ACTH in plasma during the 

peak psychedelic effects of psilocybin (Hasler et al., 2004). However, long-term measures 

in participants with depression are needed to determine the role of HPA axis function in 

the effect of SPs, and further research is needed more broadly to determine the role of SPs 

in treating inflammation-associated depression. The hypothesized convergent and divergent 

mechanisms of ketamine and SPs can be viewed in Figure 1.

3.0 Imaging and pharmacodynamic biosignatures of ketamine and SPs

Developing sensitive and reliable neurophysiological and neuroimaging biomarkers 

for MDD—and TRD in particular—is critical to improving diagnosis and treatment 

selection, especially in the context of novel therapeutics such as ketamine and SPs. 

Conversely, understanding the mechanisms by which novel, rapid-acting therapeutics 

impact macroscopic brain activity (as recorded by neurophysiological techniques such as 

electroencephalography (EEG) or magnetoencephalography (MEG) or by hemodynamic 

response using functional magnetic resonance imaging (fMRI)) can help develop the 

next generation of rapid-acting antidepressants that lack dissociative or psychotomimetic 

effects, improving treatment tolerability and effectiveness. Dysregulated neuroplasticity 

in vulnerable brain regions, including the PFC and hippocampus, is implicated in the 

pathophysiology of MDD (Liu et al., 2017; Price and Duman, 2020), and facilitation of 

adaptive neuroplasticity might be a convergent mechanism for the antidepressant efficacy 

of both ketamine and SPs (Aleksandrova and Phillips, 2021). This section reviews the 

evidence for convergent neuroplasticity mechanisms from MEG and EEG studies of long-

term potentiation (LTP) and gamma power, as well as fMRI studies examining resting-state 

connectivity.

Neurophysiologically, synaptic efficacy has been examined using tasks that measure 

LTP, such as amplitude changes of sensory evoked potentials to visual, auditory, and 

somatosensory stimulation. In a double-blind, placebo-controlled trial, ketamine enhanced 

visual sensory evoked potentials three to four hours post-ketamine administration compared 

to an active placebo (remifentanil) in individuals with MDD, potentially reflecting increased 

synaptic efficacy concomitant with the drug’s antidepressant effects (though there was 

no association between the evoked potential changes and treatment response) (Sumner 

et al., 2020a). In addition to LTP, shorter-term plasticity has been measured using event-

related response EEG tasks that take advantage of deviance detection in the context of 

repeated visual or auditory stimuli, for example using a mismatch negativity (MMN) task. 
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In a second double-blind, placebo-controlled trial, ketamine significantly increased the 

MMN event-related response three to four hours after infusion in individuals with MDD 

(Sumner et al., 2020b), though this increase was not associated with treatment response and 

contradicts a host of studies suggesting that ketamine attenuates MMN response during drug 

administration in healthy volunteers (Rosburg and Kreitschmann-Andermahr, 2016; Rosch 

et al., 2019; Schmidt et al., 2012). Ketamine has also been found to alter the amplitude and 

latency of a number of additional ERP components in healthy volunteers during the MMN 

task (for a review, see (Schwertner et al., 2018)).

In contrast to ketamine, few studies have been conducted to assess the effects of SPs on 

the MMN response, and existing studies indicate mixed findings in healthy volunteers. For 

example, while a few studies found that psilocybin did not acutely attenuate the auditory or 

visual MMN response in healthy volunteers (Schmidt et al., 2012; Schmidt et al., 2013; 

Umbricht et al., 2003), at least one study reported that psilocybin reduced the MMN 

response to tactile oddball stimuli (Duerler et al., 2021). In contrast to psilocybin, DMT was 

found to blunt the auditory MMN response in healthy volunteers (Heekeren et al., 2008), 

and LSD was found to blunt several event-related potential responses to oddball neutral 

and angry faces in healthy volunteers (Murray et al., 2022). Further research is needed to 

elucidate the effects of SPs on MMN response, particularly in individuals with MDD, in 

order to clarify whether SPs upregulate short- and long-term plasticity mechanisms that 

mirror ketamine’s proposed mechanisms of action.

Another emerging area of neurophysiological interest is gamma rhythms, particularly 

gamma power, as a biomarker or endophenotype for MDD. Findings suggest that gamma 

can distinguish individuals with MDD from healthy volunteers, as well as distinguish 

subtypes of depression (e.g., bipolar disorder from unipolar depression) (Fitzgerald and 

Watson, 2018). Gamma rhythms have been found to correlate with action potential 

generation (Watson et al., 2018), emerge from the coordinated interaction of glutamatergic 

excitation and GABAergic inhibition (Buzsáki and Wang, 2012), and robustly increase 

following ketamine administration (Gilbert and Zarate, 2020). In randomized, double-blind, 

crossover trials in individuals with TRD, ketamine significantly increased gamma (30–

50 Hz) power immediately and at two hours post-infusion compared to active placebo 

(midazolam) (de la Salle et al., 2022), and at six to nine hours following ketamine 

administration compared to saline placebo (Nugent et al., 2019a; Nugent et al., 2019b); 

gamma power changes were consistently associated with antidepressant response (de la 

Salle et al., 2022; Nugent et al., 2019a; Nugent et al., 2019b).

To date, few studies have investigated the effects of SPs on oscillatory power, particularly 

gamma. In animal work, psilocybin increased local field potential power in the anterior 

cingulate cortex (ACC) in low (35–55 Hz) and high (65–120 Hz) gamma (at trend levels) 

while decreasing power in the lower frequency bands including delta, theta, and alpha 

(Golden and Chadderton, 2022). In healthy volunteers, LSD significantly reduced gamma 

power during resting-state recordings (Murray et al., 2022) while also reducing power in the 

lower frequency bands including theta, alpha, and beta (Carhart-Harris et al., 2016b; Murray 

et al., 2022). As with LTP changes, more work is needed to determine whether SPs have 
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shared downstream mechanisms with ketamine that increase cortical excitability and gamma 

power.

Resting-state functional connectivity changes measured with fMRI are another method 

to examine changes in synaptic plasticity following ketamine and SP administration. In 

particular, systems-level dysregulation in the default mode network (DMN), including 

regions such as the ACC, posterior cingulate cortex (PCC), and mPFC is implicated in 

MDD (Marchetti et al., 2012; Sheline et al., 2010), with findings suggesting reduced 

connectivity in MDD participants relative to healthy volunteers within these regions 

(Abdallah et al., 2017a; Kraus et al., 2020). In an open-label study of individuals with 

TRD, ketamine increased global brain connectivity in the PFC at one day post-infusion 

(Abdallah et al., 2017a). Another randomized, double-blind, crossover trial found that 

ketamine increased DMN and insula connectivity in individuals with TRD at two days post-

infusion, normalizing connectivity between these regions to levels seen in healthy volunteers 

at baseline (Evans et al., 2018). A separate randomized, double-blind, crossover study 

found that ketamine increased PFC and striatal connectivity in individuals with TRD at two 

days post-infusion, normalizing connectivity levels to those seen in healthy volunteers; in 

addition, this increase was associated with sustained improvements in anhedonia—defined 

as loss of interest or pleasure—in those with TRD (Mkrtchian et al., 2021). Interestingly, an 

open-label study of repeated ketamine dosing in individuals with MDD found that ketamine 

also modulated connectivity between limbic regions and other resting-state network nodes 

of the salience and central executive networks at one day after the first and fourth ketamine 

infusions (Vasavada et al., 2021).

Studies of resting-state functional connectivity in SPs also indicate that these drugs increase 

network connectivity in regions of the DMN and modulate connectivity between the 

DMN and other regions implicated in the pathophysiology of depression. For example, 

increased functional connectivity within the DMN was observed one day following open-

label psilocybin administration in individuals with TRD, accompanied by decreased cerebral 

blood flow in the temporal cortex, including the amygdala (Carhart-Harris et al., 2017). In 

addition, increased ACC and PCC connectivity was found post-psilocybin administration, 

though this did not correlate with change in depression scores; in that study, increased 

ventromedial PFC and bilateral inferior lateral parietal cortex connectivity and decreased 

parahippocampal and PFC connectivity predicted treatment response at five weeks (Carhart-

Harris et al., 2017). A double-blind, randomized, placebo-controlled trial of psilocybin 

found reduced brain network modularity at three weeks following drug administration in 

individuals with MDD, indicating greater brain network integration that was associated with 

treatment response (Daws et al., 2022). Finally, an open-label study of ayahuasca also found 

increased ACC and PCC connectivity, as well as increased ACC and right mesial temporal 

lobe limbic structure connectivity, one day after ayahuasca ingestion in healthy volunteers 

(Sampedro et al., 2017).

4.0 Limitations, Considerations, and Regulatory Issues

Regulatory issues are associated with the use of both ketamine and SPs for the treatment of 

MDD. However, given that ketamine has been approved at high doses for anesthetic use with 
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few associated harms for nearly 60 years (Peltoniemi et al., 2016), such issues are an order 

of magnitude larger for SPs.

As noted above, in light of concerns about ketamine’s abuse potential, FDA approval 

for ketamine only extends to the specific use of intranasal esketamine under a REMS 

monitoring agreement (U.S. Food & Drug Administration, 2019). However, despite the 

precautions around ketamine/esketamine’s potential abuse liability and misuse outside of 

clinical supervision (Liu et al., 2016), it remains unclear whether the subanesthetic doses 

of ketamine used to exert antidepressant effects are enough to spur abuse (Simmler et al., 

2022). In high—not antidepressant—doses, ketamine has been associated with disruptions 

in learning and memory as well as urinary dysfunction (Liu et al., 2016; Schifano et al., 

2021), and can also mimic and induce symptoms of psychosis, particularly in those at 

high risk for psychosis or individuals diagnosed with schizophrenia (Lahti et al., 1995). 

A recent meta-analysis found that even antidepressant-dose ketamine was associated with 

psychosis-like symptoms in healthy volunteers and participants with schizophrenia (Beck 

et al., 2020), suggesting that it is not an ideal candidate for use in some neuropsychiatric 

disorders.

Although SPs have been used for centuries, particularly in traditional medicine practices, 

concerns about their therapeutic use persist, as evidenced by their classification as Schedule 

I substances. In one survey of individuals who had ever used SPs, 13% endorsed at least 

one harm associated with SP use (cigarette smoking and problematic marijuana use were 

the two most frequently-reported problems), and these participants benefited less from 

the experience than those who reported no harm (Raison et al., 2022); nevertheless, it is 

important to specify that this study examined naturalistic use of SPs and may thus not reflect 

harms associated with SP administration in a clinical setting. SP dose can also impact their 

adverse event profile; specifically, high doses associated with antidepressant effects appear 

to cause more adverse events than low doses (Goodwin et al., 2022a). Other survey-based 

studies found that psychedelic experiences were associated with long-term improvements in 

mental well-being in the general population, even following a single lifetime use (Mans et 

al., 2021). Adverse effects linked to therapeutic SP use include psychological distress and 

prolonged psychosis, both of which can carry significant risks for participants (Carbonaro 

et al., 2016; Martinotti et al., 2018); nevertheless, in clinical settings, these effects often 

resolve after drug effects have dissipated (Johnson et al., 2019; Johnson et al., 2008) and are 

thought to fall within acceptable limits (Reiff et al., 2020). Given the serotonergic mediation 

of neural plasticity, the higher serotonin levels associated with SP use can also bring about 

mixed effects (e.g., improved recovery capacity but increased vulnerability to depression) 

(Branchi, 2011).

Administration of SPs may also contribute to serotonin toxicity. While an increase in 

serotonin is characteristic of psychedelic action, SPs alone pose a low risk for serotonin 

toxicity. However, combining SPs with therapeutics such as monoamine oxidase inhibitors 

(MAOIs) may increase risk, particularly for ayahuasca, the brew containing the MAO-A 

isozyme inhibitor harmine, which prolongs the effects of DMT (Malcolm and Thomas, 

2022). Symptoms of serotonin toxicity include fluctuating vital signs, agitation, muscle 

rigidity, and seizure activity. Use of certain SPs has also been linked to neurological and 
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cognitive impairments through cytotoxicity and oxidative stress (Malcolm and Thomas, 

2022).

Participant inclusion issues may also bias the results of SP research, given that a high 

proportion of research participants have previously used SPs (36–56% compared to 11.5% 

in the US general population) (McClure-Begley and Roth, 2022), though use of SPs as 

self-medication may play a role in this higher proportion. Researchers also found that 

mystical-type experiences were more likely in those who were ranked higher in the 

undefined personality traits of “openness” and “acceptance” (Aday et al., 2021), which 

suggests that including individuals who have previously used SPs and have positive 

expectations surrounding their use may confound study results. Another key point is that 

most trials of SPs are still open-label, long-term follow-up, or retrospective analyses 

(Berkovitch et al., 2021; Carhart-Harris et al., 2018). Placebo-controlled studies are 

necessary, though many challenges are associated with conducting a proper randomized, 

controlled clinical trial for SPs; these include resolving the role of psychoactive effects 

in the mechanism of action behind the antidepressant effects of SPs and the need for 

a comparator psychedelic compound that works through different mechanisms (Aday et 

al., 2022; Muthukumaraswamy, 2021). For instance, in early ketamine randomized clinical 

trials, midazolam (McGirr et al., 2015), a benzodiazepine that produces similar side effects 

to ketamine, provided adequate blinding. However, it should be noted that while ketamine 

produces psychotomimetic effects such as dissociation, these are mild compared to those of 

SPs and can thus be more easily controlled for with an appropriate placebo. In this context, 

an interesting future solution could be the use of SP microdosing (defined as doses that have 

no psychedelic effects), which could be placebo-controlled. Early microdose randomized 

clinical trials have begun for psilocybin (NCT05227742).

5.0 Future Research Directions

Rapid-acting antidepressants have led to a paradigm shift in neuropsychiatry and 

reinvigorated the search for novel pharmacological approaches to disorders such as 

MDD. However, research into how rapid-acting antidepressants mechanistically affect 

the underlying psychopathology of neuropsychiatric disorders is in its earliest stages. 

Novel innovations and approaches, such as PsychLight—a biosensor capable of detecting 

psychedelic potential in novel compounds by measuring endogenous 5-HT activity in 

awake mice—should help shed light on the underlying mechanisms of SPs and other 

potential rapid-acting antidepressants (Cameron et al., 2021; Dong et al., 2021). In addition, 

identifying compounds that have SP- and ketamine-like attributes (i.e., upregulation of 

neurotrophic signaling) but lack hallucinogenic properties may be an effective strategy for 

developing therapies that allow widespread clinical use. Non-psychedelic analogues, such 

as tabernanthalog (Cameron et al., 2021), could also help mitigate some of the negative 

psychoactive effects associated with SP and ketamine administration. In addition, the further 

development of (R)-ketamine as an antidepressant has shown promise, both in terms of 

its potentially reduced side effect profile and preclinical and early clinical therapeutic 

efficacy versus (S)-ketamine (Wei et al., 2022; Zhang et al., 2022); nevertheless, it should be 

noted that the evidence for (R)-ketamine, though promising, is relatively limited compared 

to (S)-ketamine, and additional clinical work is needed to fully ascertain (R)-ketamine’s 

Johnston et al. Page 22

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT05227742


precise therapeutic profile. Most recently, results from a Phase 2a double-blind, randomized, 

placebo-controlled, multicenter clinical trial of (R)-ketamine (PCN-101) (NCT05414422) 

for TRD found that this agent failed to meet its primary endpoint, showing no significant 

change from baseline MADRS scores at 24 hours, despite an overall positive safety profile 

(Atai Life Sciences, 2022).

Further research is also still needed to clarify whether SPs can truly be classified as rapid-

acting antidepressants, given that most research in this area has focused on the impact 

of acute SP administration on longer time courses (Romeo et al., 2020). In addition, 

the ability of SPs to ameliorate symptoms in TRD patients needs further investigation; 

though several studies showed initial promise (Carhart-Harris et al., 2016a; Goodwin et al., 

2022a), others found no difference between response rates to SPs and monoaminergic-based 

antidepressants (Carhart-Harris et al., 2021). With the recent surge in interest in SPs, future 

studies should also be able to examine the varying impacts of different SPs.

Another area for future research is sex differences. Although prevalence rates of MDD 

are two- to three-fold higher in females than males, few studies have addressed potential 

sex differences with regard to ketamine, and almost none have done so for SPs. Notably, 

no apparent sex differences have emerged in clinical studies of ketamine for depression 

(Freeman et al., 2019) though both clinical and preclinical studies suggest that there may 

be some mechanistic differences (reviewed in (Ponton et al., 2022)). One systematic review 

found no apparent sex differences in clinical studies of SPs for depression (Aday et al., 

2021), though preliminary preclinical work suggests that there may be sex differences in 

amygdala reactivity (Effinger et al., 2022) and prepulse inhibition of startle reactions after 

SP administration (Vohra et al., 2022). In addition, lack of inclusion of certain racial and 

ethnic minorities in research regarding both ketamine and SPs limits conclusions that can be 

made about therapeutic benefits. For example, recent research found that while psilocybin 

use conferred lower reports of distress amongst white participants, there were significantly 

lower associations for participants from different racial and ethnic minorities (Grant and 

Nock, 2022).

Both ketamine and SPs are being investigated for disorders other than depression, and we 

expect that future work in this area will expand. Specifically, randomized clinical trials 

found that ketamine and its enantiomers can be successfully used to target alcohol and other 

substance use disorders (Worrell and Gould, 2021), anxiety spectrum disorders (such as 

PTSD and social anxiety disorder) (Whittaker et al., 2021), and suicidal ideation (Wilkinson 

et al., 2018), among others. In contrast to the more robust evidence available for ketamine, 

most of the findings for SPs are anecdotal. These promising preliminary results nevertheless 

suggest that SPs may be useful in treating disorders characterized by maladaptive cognitive 

distortions, like OCD and anorexia nervosa (Foldi et al., 2020; Moreno et al., 2006; Spriggs 

et al., 2021). Given that SPs also preliminarily appear to mitigate tobacco, alcohol, cannabis, 

stimulant, and opioid use (Davis et al., 2018; Garcia-Romeu et al., 2019; Johnson et al., 

2014; Jones and Nock, 2022; Noller et al., 2018), the anti-addictive potential of SPs also 

warrants additional investigation.
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Despite the disparity in the number of rigorous studies conducted, comparing the 

mechanistic differences between ketamine and SPs can provide valuable insight into 

the mechanism of action underlying rapid-acting antidepressants. The most promising 

convergent mechanism between ketamine and SPs is activation of the mTORC1 pathway 

and the resultant changes in neuroplasticity. In addition, agonism of the mu-opioid and 

kappa-opioid receptors may contribute to some of the similarities observed between 

ketamine and SPs. Differences between the psychedelic and psychotomimetic effects of 

these compounds, as well as the success of some preliminary non-psychedelic analogues, 

suggests that the therapeutic experience itself does not fully mediate antidepressant effects. 

Disparities also exist with regard to how these compounds affect the monoaminergic system, 

and the evidence is quite mixed regarding how both ketamine and SPs mediate this system, 

leading to doubts that the monoaminergic system is necessary for rapid-acting antidepressant 

effects.

Elucidating the mechanisms responsible for the antidepressant effects of both ketamine and 

SPs is necessary for developing effective treatment approaches, including mechanistically 

novel pharmacotherapeutics. As the evidence reviewed above makes clear, significantly 

more research has been conducted with regard to the mechanisms of action that underlie 

ketamine’s antidepressant effects compared to SPs. Nevertheless, we expect that further 

research into SPs will be forthcoming.
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Highlights

• Ketamine and psychedelics have different initial mechanisms of action

• Parallel downstream mechanisms may account for therapeutic similarities

• Monoamines, opioid and sigma receptors, and inflammation are all promising 

targets

• More research on psychedelics is needed compared to ketamine

• Consideration of regulatory issues is crucial to implementation
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Figure 1. Hypothesized convergent and divergent mechanisms of ketamine and serotonergic 
psychedelics (SPs).
Ketamine increases glutamate release into the synapse through preferential blockade of 

NMDARs on GABAergic interneurons (disinhibition hypothesis) or other methods. This 

glutamate “surge” leads to downstream signaling that transiently activates mTORC1, 

increasing synaptic protein translation of PSD-95, AMPARs, and others. SPs trigger this 

glutamate surge through downstream GPCR pathways after 5-HT receptor activation, 

which leads to parallel mTORC1 activation and subsequent increases in synaptic 

protein translation. Other proposed mechanisms of antidepressant effects include 

binding to mu-opioid receptors and normalizing GABAergic activity through either 

mGluR2/3 (ketamine/(2R,6R)-HNK) or post-synaptic 5-HT2A receptors (SPs). Figure is 

approximate for illustrative purposes. Abbreviations: 5-HT: 5-hydroxytryptamine; AMPAR: 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; GPCR: G protein-coupled 

receptors; HNK: hydroxynorketamine; mGluR: metabotropic glutamate receptor; mTORC1: 

mechanistic target of rapamycin complex 1; PSD-95: postsynaptic density protein 95.

Johnston et al. Page 45

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnston et al. Page 46

Ta
b

le
 1

.

H
yp

ot
he

si
ze

d 
m

ec
ha

ni
sm

s 
un

de
rl

yi
ng

 th
e 

an
tid

ep
re

ss
an

t a
ct

io
ns

 o
f 

ke
ta

m
in

e 
an

d 
ps

yc
he

de
lic

s.

M
ec

ha
ni

sm
A

re
a 

of
 E

ff
ec

t
K

et
am

in
e

P
sy

ch
ed

el
ic

s

Se
ro

to
ne

rg
ic

 
Si

gn
al

in
g

E
xp

re
ss

io
n

K
et

am
in

e 
in

cr
ea

se
d 

ex
tr

ac
el

lu
la

r 
le

ve
ls

 o
f 

5-
H

T
 in

 th
e 

PF
C

 (
A

go
 e

t a
l.,

 2
01

9;
 L

óp
ez

-
G

il 
et

 a
l.,

 2
01

9)

5-
H

T
 d

ep
le

tio
n 

bl
oc

ke
d 

th
e 

ef
fe

ct
s 

of
 (

S)
-k

et
am

in
e 

(d
u 

Ja
rd

in
 e

t a
l.,

 2
01

8)

5-
H

T
 d

ep
le

tio
n 

di
d 

no
t b

lo
ck

 th
e 

ef
fe

ct
s 

of
 (

R
)-

ke
ta

m
in

e 
(Z

ha
ng

 e
t a

l.,
 2

01
8)

5-
H

T
 R

ec
ep

to
rs

K
et

am
in

e 
in

cr
ea

se
d 

5-
H

T
1B

 r
ec

ep
to

r 
bi

nd
in

g 
(S

pi
es

 e
t a

l.,
 2

01
8;

 T
ig

er
 e

t a
l.,

 2
02

0;
 

Y
am

an
ak

a 
et

 a
l.,

 2
01

4)
N

on
-h

al
lu

ci
no

ge
ni

c 
an

al
og

ue
s 

of
 p

sy
ch

ed
el

ic
s 

(C
ao

 e
t a

l.,
 

20
22

) 
an

d 
no

ve
l m

on
oa

m
in

e 
tr

an
sp

or
te

r 
lig

an
ds

 (
R

ud
in

 e
t a

l.,
 

20
22

) 
ex

er
te

d 
an

tid
ep

re
ss

an
t e

ff
ec

ts
 v

ia
 5

-H
T

 r
ec

ep
to

rs

A
nt

id
ep

re
ss

an
t a

nd
 a

nt
id

ep
re

ss
an

t-
lik

e 
ef

fe
ct

s 
w

er
e 

re
po

rt
ed

ly
 p

ri
m

ar
ily

 m
ed

ia
te

d 
th

ro
ug

h 
5-

H
T

2A
 r

ec
ep

to
r 

ac
tiv

at
io

n 
(C

ao
 e

t a
l.,

 2
02

2;
 L

óp
ez

-G
im

én
ez

 a
nd

 G
on

zá
le

z-
M

ae
so

, 2
01

8;
 L

y 
et

 a
l.,

 2
01

8;
 P

ęd
zi

ch
 e

t a
l.,

 2
02

2;
 R

ol
la

nd
 e

t 
al

., 
20

14
)

B
eh

av
io

ra
l r

es
po

ns
e 

to
 p

si
lo

cy
bi

n 
w

as
 n

ot
 b

lo
ck

ed
 b

y 
ke

ta
ns

er
in

 (
a 

5-
H

T
2A

/2
C

 r
ec

ep
to

r 
an

ta
go

ni
st

)

D
O

I 
(a

 s
el

ec
tiv

e 
5-

H
T

2A
 r

ec
ep

to
r 

an
ta

go
ni

st
) 

di
d 

no
t h

av
e 

an
tid

ep
re

ss
an

t-
lik

e 
ef

fe
ct

s

SE
R

T
 b

in
di

ng
K

et
am

in
e 

in
cr

ea
se

d 
SE

R
T

 b
in

di
ng

 (
(S

pi
es

 e
t a

l.,
 2

01
8;

 T
ig

er
 e

t a
l.,

 2
02

0;
 Y

am
an

ak
a 

et
 

al
., 

20
14

)
In

cr
ea

se
d 

oc
cu

pa
nc

y 
w

ith
 L

SD
 a

nd
 5

-M
eO

-D
M

T
 

ad
m

in
is

tr
at

io
n 

(K
yz

ar
 a

nd
 K

al
ue

ff
, 2

01
6;

 R
ic

kl
i e

t a
l.,

 2
01

5)
, 

bu
t n

o 
in

te
ra

ct
io

ns
 w

ith
 L

SD
 (

B
lo

ug
h 

et
 a

l.,
 2

01
4;

 R
ic

kl
i e

t 
al

., 
20

15
)

D
op

am
in

er
gi

c 
Si

gn
al

in
g

E
xp

re
ss

io
n

C
he

m
og

en
et

ic
 in

hi
bi

tio
n 

of
 d

op
am

in
e 

si
gn

al
in

g 
bl

oc
ke

d 
ke

ta
m

in
e’

s 
an

tid
ep

re
ss

an
t-

lik
e 

ef
fe

ct
s 

(W
u 

et
 a

l.,
 2

02
1a

; W
u 

et
 a

l.,
 2

02
1b

)
D

M
T,

 p
si

lo
cy

bi
n,

 a
nd

 m
es

ca
lin

e 
m

ay
 c

on
ve

rt
 to

 d
op

am
in

e 
af

te
r 

in
ge

st
io

n 
(F

itz
ge

ra
ld

, 2
02

1)

D
op

am
in

er
gi

c 
R

ec
ep

to
rs

D
rd

1 
ac

tiv
at

io
n 

m
ed

ia
te

d 
th

e 
an

tid
ep

re
ss

an
t-

lik
e 

be
ha

vi
or

al
 e

ff
ec

ts
 o

f 
ke

ta
m

in
e 

an
d 

in
cr

ea
se

d 
co

rt
ic

al
 s

pi
no

ge
ne

si
s 

(H
ar

e 
et

 a
l.,

 2
01

9;
 W

u 
et

 a
l.,

 2
02

1a
).

 D
rd

1 
ex

pr
es

si
on

 
al

so
 in

cr
ea

se
d 

af
te

r 
ke

ta
m

in
e 

ad
m

in
is

tr
at

io
n 

(L
i e

t a
l.,

 2
02

2a
)

(R
)-

ke
ta

m
in

e 
ha

d 
D

rd
1-

ac
tiv

at
io

n 
in

de
pe

nd
en

t e
ff

ec
ts

 (
C

ha
ng

 e
t a

l.,
 2

02
0)

Fi
ri

ng
 a

ct
iv

ity
K

et
am

in
e 

in
cr

ea
se

d 
th

e 
fi

ri
ng

 a
ct

iv
ity

 o
f 

do
pa

m
in

er
gi

c 
ne

ur
on

s 
(I

ro
 e

t a
l.,

 2
02

1)
In

 h
ig

h 
do

se
s,

 L
SD

 in
cr

ea
se

d 
do

pa
m

in
er

gi
c 

fi
ri

ng
 a

ct
iv

ity
 

(D
e 

G
re

go
ri

o 
et

 a
l.,

 2
01

6)

G
lu

ta
m

at
er

gi
c 

Si
gn

al
in

g
G

lu
ta

m
at

e 
su

rg
e

G
lu

ta
m

at
e 

“s
ur

ge
” 

(r
ev

ie
w

ed
 in

 (
K

ad
ri

u 
et

 a
l.,

 2
02

1)
)

G
lu

ta
m

at
e 

“s
ur

ge
” 

(r
ev

ie
w

ed
 in

 (
K

ad
ri

u 
et

 a
l.,

 2
02

1)
)

N
M

D
A

R
-r

el
at

ed
 

ef
fe

ct
s

A
n 

ex
te

ns
iv

e 
lit

er
at

ur
e 

de
sc

ri
be

s 
th

e 
ro

le
 o

f 
N

M
D

A
R

 a
nt

ag
on

is
m

 in
 k

et
am

in
e’

s 
an

tid
ep

re
ss

an
t e

ff
ec

ts
, p

ar
tic

ul
ar

ly
 o

n 
G

A
B

A
-e

rg
ic

 in
te

rn
eu

ro
ns

 (
re

vi
ew

ed
 in

 (
M

ill
er

 
et

 a
l.,

 2
01

6;
 Z

an
os

 a
nd

 G
ou

ld
, 2

01
8)

)

Ps
ilo

cy
bi

n 
in

cr
ea

se
d 

A
M

PA
R

/N
M

D
A

R
 r

at
io

s 
in

 
hi

pp
oc

am
pa

l s
lic

es
 (

H
es

se
lg

ra
ve

 e
t a

l.,
 2

02
1)

(R
)-

ke
ta

m
in

e 
an

d 
(2

R
,6

R
)-

H
N

K
 a

pp
ea

re
d 

to
 h

av
e 

N
M

D
A

R
-i

nd
ep

en
de

nt
 e

ff
ec

ts
 

(D
ra

vi
d 

et
 a

l.,
 2

00
7;

 L
um

sd
en

 e
t a

l.,
 2

01
9;

 Z
ha

o 
et

 a
l.,

 2
01

2)
Ib

og
ai

ne
 m

ay
 a

nt
ag

on
iz

e 
N

M
D

A
R

s 
(U

nd
er

w
oo

d 
et

 a
l.,

 
20

21
)

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnston et al. Page 47

M
ec

ha
ni

sm
A

re
a 

of
 E

ff
ec

t
K

et
am

in
e

P
sy

ch
ed

el
ic

s

Ps
ilo

cy
bi

n 
in

cr
ea

se
d 

N
R

2A
 e

xp
re

ss
io

n 
bu

t w
as

 n
ot

 
as

so
ci

at
ed

 w
ith

 a
n 

an
tid

ep
re

ss
an

t r
es

po
ns

e 
(W

ot
ja

s 
et

 a
l.,

 
20

22
)

A
M

PA
R

-r
el

at
ed

 
ef

fe
ct

s
K

et
am

in
e 

up
re

gu
la

te
d 

m
T

O
R

C
1 

si
gn

al
in

g 
vi

a 
in

cr
ea

se
d 

A
M

PA
R

 a
ct

iv
at

io
n 

(A
gu

ila
r-

V
al

le
s 

et
 a

l.,
 2

02
1;

 L
i e

t a
l.,

 2
01

0;
 R

af
ał

o-
U

liń
sk

a 
an

d 
Pa

łu
ch

a-
Po

ni
ew

ie
ra

, 2
02

2;
 

Z
an

os
 e

t a
l.,

 2
01

6;
 Z

ho
u 

et
 a

l.,
 2

01
4)

Ps
yc

he
de

lic
s 

up
re

gu
la

te
d 

m
T

O
R

C
1 

si
gn

al
in

g 
vi

a 
in

cr
ea

se
d 

A
M

PA
R

 a
ct

iv
at

io
n 

(L
y 

et
 a

l.,
 2

02
0;

 M
ad

ri
d-

G
am

bi
n 

et
 a

l.,
 

20
22

; O
rn

el
as

 e
t a

l.,
 2

02
2;

 V
ol

le
nw

ei
de

r 
an

d 
Pr

el
le

r, 
20

20
; 

V
ol

le
nw

ei
de

r 
an

d 
Sm

al
lr

id
ge

, 2
02

2)

(2
R

,6
R

)-
H

N
K

 h
ad

 m
G

lu
R

2-
de

pe
nd

en
t a

nt
id

ep
re

ss
an

t-
lik

e 
ef

fe
ct

s 
(Z

an
os

 e
t a

l.,
 2

01
9)

(R
)-

ke
ta

m
in

e 
in

cr
ea

se
d 

E
R

K
 s

ig
na

lin
g,

 p
ar

tic
ul

ar
ly

 o
n 

m
ic

ro
gl

ia
, w

hi
ch

 m
ed

ia
te

d 
its

 
an

tid
ep

re
ss

an
t-

lik
e 

ef
fe

ct
s 

(Y
an

g 
et

 a
l.,

 2
01

8b
; Y

ao
 e

t a
l.,

 2
02

2)

m
G

lu
R

-r
el

at
ed

 e
ff

ec
ts

C
o-

ad
m

in
is

tr
at

io
n 

of
 k

et
am

in
e 

an
d 

an
 m

G
lu

R
2/

3 
an

ta
go

ni
st

 s
us

ta
in

ed
 a

nt
id

ep
re

ss
an

t-
lik

e 
re

sp
on

se
 (

Pa
łu

ch
a-

Po
ni

ew
ie

ra
 e

t a
l.,

 2
02

1;
 R

af
ał

o-
U

liń
sk

a 
et

 a
l.,

 2
02

2)
m

G
lu

R
2/

3 
ag

on
is

ts
 in

hi
bi

te
d 

th
e 

ef
fe

ct
s 

of
 D

O
I 

in
 m

ic
e 

(B
en

ve
ng

a 
et

 a
l.,

 2
01

8)

G
A

B
A

er
gi

c 
si

gn
al

in
g

E
xp

re
ss

io
n

K
et

am
in

e 
in

cr
ea

se
d 

hi
pp

oc
am

pa
l G

A
B

A
 tu

rn
ov

er
 (

Si
lb

er
ba

ue
r 

et
 a

l.,
 2

02
0)

 a
nd

 
G

A
B

A
 r

el
ea

se
 (

Ph
am

 e
t a

l.,
 2

02
0)

Ps
yc

he
de

lic
s 

in
cr

ea
se

d 
G

A
B

A
 e

xp
re

ss
io

n 
in

 th
e 

m
PF

C
 

(C
ar

ha
rt

-H
ar

ri
s 

an
d 

N
ut

t, 
20

17
; M

as
on

 e
t a

l.,
 2

02
0)

R
ec

ep
to

rs
G

A
B

A
A

 r
ec

ep
to

r 
ac

tiv
ity

 w
as

 u
pr

eg
ul

at
ed

 b
y 

ke
ta

m
in

e 
(W

an
g 

et
 a

l.,
 2

01
7)

L
SD

 d
id

 n
ot

 a
ff

ec
t E

E
G

 r
es

po
ns

e 
in

 G
A

B
A

A
 r

ec
ep

to
r 

de
lta

 
su

bu
ni

t k
no

ck
ou

t m
ic

e 
(G

ro
te

ll 
et

 a
l.,

 2
02

1)

B
en

zo
di

az
ep

in
es

 (
w

hi
ch

 a
ls

o 
in

cr
ea

se
 G

A
B

A
A

 r
ec

ep
to

r 
ac

tiv
ity

) 
de

cr
ea

se
d 

ke
ta

m
in

e’
s 

an
tid

ep
re

ss
an

t e
ff

ec
ts

 (
A

nd
ra

sh
ko

 e
t a

l.,
 2

02
0;

 F
uc

hi
ka

m
i e

t a
l.,

 2
01

5)

Si
gn

al
in

g
K

et
am

in
e 

re
sc

ue
d 

de
fi

ci
ts

 in
 s

yn
ap

tic
 G

A
B

A
-e

rg
ic

 m
ar

ke
rs

 a
nd

 th
e 

fr
eq

ue
nc

y 
of

 
in

hi
bi

to
ry

 p
os

t-
sy

na
pt

ic
 c

ur
re

nt
s 

in
 th

e 
m

PF
C

 (
G

ho
sa

l e
t a

l.,
 2

02
0)

St
re

ss
-i

nd
uc

ed
 a

lte
ra

tio
ns

 in
 G

A
B

A
-e

rg
ic

 c
ir

cu
itr

y 
w

er
e 

re
ve

rs
ed

 b
y 

5-
H

T
2a

R
 a

go
ni

st
s 

in
 th

e 
V

TA
 (

K
im

m
ey

 e
t a

l.,
 

20
19

)

O
pi

oi
d 

sy
st

em
R

ec
ep

to
rs

K
et

am
in

e 
ha

d 
a 

st
ro

ng
 a

ff
in

ity
 f

or
 th

e 
m

u-
op

io
id

 r
ec

ep
to

r 
an

d 
w

ea
k 

af
fi

ni
ty

 f
or

 th
e 

ka
pp

a 
op

io
id

 r
ec

ep
to

r 
(B

on
av

en
tu

ra
 e

t a
l.,

 2
02

1)
Ps

yc
he

de
lic

 b
in

di
ng

 to
 m

u-
 a

nd
 k

ap
pa

-o
pi

oi
d 

re
ce

pt
or

s 
co

rr
el

at
ed

 w
ith

 “
th

er
ap

eu
tic

 c
om

po
ne

nt
 s

co
re

s”
 (

Z
am

be
rl

an
 

et
 a

l.,
 2

01
8)

O
pi

oi
d 

re
ce

pt
or

 a
nt

ag
on

is
ts

 a
bo

lis
he

d 
ke

ta
m

in
e’

s 
(a

nd
 it

s 
m

et
ab

ol
ite

s’
) 

ra
pi

d-
ac

tin
g 

an
tid

ep
re

ss
an

t e
ff

ec
ts

 in
 c

lin
ic

al
 a

nd
 p

re
cl

in
ic

al
 m

od
el

s 
(K

le
in

 e
t a

l.,
 2

02
0;

 W
ill

ia
m

s 
et

 a
l.,

 2
01

9;
 W

ill
ia

m
s 

et
 a

l.,
 2

01
8;

 W
ul

f 
et

 a
l.,

 2
02

2;
 Z

ha
ng

 e
t a

l.,
 2

02
1a

)

M
u-

op
io

id
 r

ec
ep

to
r 

bi
nd

in
g 

af
te

r 
ps

yc
he

de
lic

 a
dm

in
is

tr
at

io
n 

co
rr

el
at

ed
 w

ith
 s

el
f-

re
po

rt
 d

ep
en

de
nc

e 
m

ea
su

re
s 

(Z
am

be
rl

an
 

et
 a

l.,
 2

01
8)

In
fl

am
m

at
io

n
C

yt
ok

in
es

(R
)-

, b
ut

 n
ot

 (
S)

-k
et

am
in

e 
re

du
ce

d 
bl

oo
d 

IL
-6

 le
ve

ls
 in

 a
 m

od
el

 o
f 

ul
ce

ra
tiv

e 
co

lit
is

 
(F

uj
ita

 e
t a

l.,
 2

02
1)

Ps
ilo

cy
bi

n,
 L

SD
, a

nd
 D

O
I 

re
du

ce
d 

le
ve

ls
 o

f 
cy

to
ki

ne
s 

an
d 

T
N

F-
α

 (
K

oz
ło

w
sk

a 
et

 a
l.,

 2
02

1;
 N

ar
da

i e
t a

l.,
 2

02
0;

 
N

ka
di

m
en

g 
et

 a
l.,

 2
02

1;
 S

m
ed

fo
rs

 e
t a

l.,
 2

02
2;

 Y
u 

et
 a

l.,
 

20
08

)

(R
)-

ke
ta

m
in

e 
re

du
ce

d 
ce

nt
ra

l a
nd

 p
er

ip
he

ra
l l

ev
el

s 
of

 p
ro

-i
nf

la
m

m
at

or
y 

cy
to

ki
ne

s 
in

 
m

ic
e 

ad
m

in
is

te
re

d 
L

PS
 (

Z
ha

ng
 e

t a
l.,

 2
02

1b
)

K
et

am
in

e 
de

cr
ea

se
d 

le
ve

ls
 o

f 
pr

o-
in

fl
am

m
at

or
y 

cy
to

ki
ne

s 
in

 a
 s

ex
-d

ep
en

de
nt

 m
an

ne
r 

af
te

r 
m

at
er

na
l d

ep
ri

va
tio

n 
(A

be
la

ir
a 

et
 a

l.,
 2

02
2)

B
as

el
in

e 
IL

-8
 le

ve
ls

 p
re

di
ct

ed
 tr

ea
tm

en
t r

es
po

ns
e 

to
 k

et
am

in
e 

in
 f

em
al

es
 b

ut
 n

ot
 

m
al

es
 (

K
ru

se
 e

t a
l.,

 2
02

1)

K
et

am
in

e 
ha

d 
pr

op
hy

la
ct

ic
 e

ff
ec

ts
 a

ga
in

st
 u

pr
eg

ul
at

io
n 

of
 in

fl
am

m
at

or
y 

m
ar

ke
rs

 a
ft

er
 

st
re

ss
 e

xp
os

ur
e 

(B
ra

ch
m

an
 e

t a
l.,

 2
01

6;
 C

am
ar

go
 e

t a
l.,

 2
02

1;
 C

os
ti 

et
 a

l.,
 2

02
2)

D
O

I 
ha

d 
pr

op
hy

la
ct

ic
 e

ff
ec

ts
 a

ga
in

st
 T

N
F-

al
ph

a 
ad

m
in

is
tr

at
io

n,
 p

re
ve

nt
in

g 
th

e 
up

re
gu

la
tio

n 
of

 p
ro

-
in

fl
am

m
at

or
y 

cy
to

ki
ne

s 
(N

au
 e

t a
l.,

 2
01

3)

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnston et al. Page 48

M
ec

ha
ni

sm
A

re
a 

of
 E

ff
ec

t
K

et
am

in
e

P
sy

ch
ed

el
ic

s

H
PA

-a
xi

s 
si

gn
al

in
g

K
et

am
in

e 
re

st
or

ed
 g

lu
co

co
rt

ic
oi

d 
re

ce
pt

or
 e

xp
re

ss
io

n 
in

 th
e 

hi
pp

oc
am

pu
s 

(W
an

g 
et

 
al

., 
20

19
)

Sh
or

t-
te

rm
 in

cr
ea

se
s 

in
 c

or
tis

ol
 a

nd
 A

C
T

H
 w

er
e 

ob
se

rv
ed

 
du

ri
ng

 th
e 

pe
ak

 h
al

lu
ci

no
ge

ni
c 

ef
fe

ct
s 

of
 p

si
lo

cy
bi

n 
(H

as
le

r 
et

 a
l.,

 2
00

4)

C
or

tic
os

te
ro

ne
 a

nd
 A

C
T

H
 le

ve
ls

 w
er

e 
re

du
ce

d 
by

 k
et

am
in

e 
af

te
r 

L
PS

 in
je

ct
io

n 
(B

es
ni

er
 e

t a
l.,

 2
01

7)

K
yn

ur
en

ic
 s

ig
na

lin
g

K
et

am
in

e 
re

st
or

ed
 th

e 
K

Y
N

:tr
yp

to
ph

an
 r

at
io

 (
M

oa
dd

el
 e

t a
l.,

 2
01

8;
 W

an
g 

et
 a

l.,
 2

01
5)

In
cr

ea
se

d 
ky

nu
re

ni
c 

ac
id

 p
os

t-
ke

ta
m

in
e 

co
rr

el
at

ed
 w

ith
 tr

ea
tm

en
t r

es
po

ns
e 

(Z
ho

u 
et

 
al

., 
20

18
)

5-
H

T
: 5

-h
yd

ro
xy

tr
yp

ta
m

in
e;

 5
-M

eo
-D

M
T

: 5
-m

et
ho

xy
-N

,N
-d

im
et

hy
ltr

yp
ta

m
in

e;
 A

C
T

H
: a

dr
en

oc
or

tic
ot

ro
pi

c 
ho

rm
on

e;
 A

M
PA

R
: α

-a
m

in
o-

3-
hy

dr
ox

y-
5-

m
et

hy
l-

4-
is

ox
az

ol
ep

ro
pi

on
ic

 a
ci

d 
re

ce
pt

or
; D

O
I:

 
2,

5-
D

im
et

ho
xy

-4
-i

od
oa

m
ph

et
am

in
e;

 D
rd

1:
 d

op
am

in
e 

re
ce

pt
or

 D
1;

 E
R

K
: e

xt
ra

ce
llu

la
r 

si
gn

al
-r

el
at

ed
 k

in
as

e;
 G

A
B

A
: g

am
m

a 
am

in
ob

ut
yr

ic
 a

ci
d;

 H
N

K
: h

yd
ro

xy
no

rk
et

am
in

e;
 I

L
: i

nt
er

le
uk

in
; K

Y
N

: 
ky

nu
re

ni
ne

; L
PS

: l
ip

op
ol

ys
ac

ch
ar

id
e;

 L
SD

: l
ys

er
gi

c 
ac

id
 d

ie
th

yl
am

id
e;

 m
G

lu
R

: m
et

ab
ot

ro
pi

c 
gl

ut
am

at
e 

re
ce

pt
or

; m
PF

C
: m

ed
ia

l p
re

fr
on

ta
l c

or
te

x;
 m

T
O

R
C

1:
 m

ec
ha

ni
st

ic
 ta

rg
et

 o
f 

ra
pa

m
yc

in
 c

om
pl

ex
 1

; 
N

M
D

A
R

: N
-m

et
hy

l-
D

-a
sp

ar
ta

te
 r

ec
ep

to
r;

 P
FC

: p
re

fr
on

ta
l c

or
te

x;
 S

E
R

T
: s

er
ot

on
in

 tr
an

sp
or

te
r;

 T
N

F-
α

: t
um

or
 n

ec
ro

si
s 

fa
ct

or
 a

lp
ha

; V
TA

: v
en

tr
al

 te
gm

en
ta

l a
re

a

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.


	Abstract
	Introduction
	The Convergent and Divergent Mechanisms of Ketamine and SPs
	An overview of the major mechanisms of action of ketamine and SPs
	Psychoactive Effects
	The Monoaminergic System
	The Glutamatergic System
	The GABAergic system
	Opioid System
	Inflammation

	Imaging and pharmacodynamic biosignatures of ketamine and SPs
	Limitations, Considerations, and Regulatory Issues
	Future Research Directions
	References
	Figure 1.
	Table 1.

