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Abstract

Purpose SARS-COV-2 pandemic led to antibiotic overprescription and unprecedented stress on healthcare systems world-
wide. Knowing the comparative incident risk of bloodstream infection due to multidrug-resistant pathogens in COVID
ordinary wards and intensive care-units may give insights into the impact of COVID-19 on antimicrobial resistance.
Methods Single-center observational data extracted from a computerized dataset were used to identify all patients who
underwent blood cultures from January 1, 2018 to May 15, 2021. Pathogen-specific incidence rates were compared accord-
ing to the time of admission, patient’s COVID status and ward type.

Results Among 14,884 patients for whom at least one blood culture was obtained, a total of 2534 were diagnosed with
HA-BSI. Compared to both pre-pandemic and COVID-negative wards, HA-BSI due to S. aureus and Acinetobacter spp.
(respectively 0.3 [95% CI10.21-0.32] and 0.11 [0.08-0.16] new infections per 100 patient-days) showed significantly higher
incidence rates, peaking in the COVID-ICU setting. Conversely, E. coli incident risk was 48% lower in COVID-positive
vs COVID-negative settings (IRR 0.53 [0.34-0.77]). Among COVID + patients, 48% (n=38/79) of S. aureus isolates were
resistant to methicillin and 40% (n=10/25) of K. pneumoniae isolates were resistant to carbapenems.

Conclusions The data presented here indicate that the spectrum of pathogens causing BSI in ordinary wards and intensive
care units varied during the pandemic, with the greatest shift experienced by COVID-ICUs. Antimicrobial resistance of
selected high-priority bacteria was high in COVID positive settings.
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Purpose

Antibiotic resistance (AMR) has emerged, worldwide,
as one of the greatest threats facing public health in the
twenty-first century. It occurs when organisms become less
sensitive to the action of a given antimicrobial and, glob-
ally, it caused at least 1.27 million deaths and it was linked
to almost 5 million deaths only in 2019 [1].

On the basis of a multicriteria analysis that included
resistance trends, expected availability of effective drugs
and overall healthcare and community burden, the World
Health Organization (WHO) identified the following list
of high-priority resistant pathogens: carbapenem-resistant
Acinetobacter baumannii (CRAB), carbapenem-resistant
Pseudomonas aeruginosa (CRPA), carbapenem-resistant
and third generation cephalosporin-resistant Enterobac-
teriaceae (CRE and 3GCephRE), vancomycin-resistant
Enterococcus faecium (VRE) and methicillin-resistant
Staphylococcus aureus (MRSA) [2]. Those bacteria largely
overlap with the most commonly resistant pathogens iso-
lated in the European region in 2020 [3].

Fig. 1 Flow-chart of the study.
CA_BSI community-acquired
bloodstream infection, HAI_BSI
hospital-acquired bloodstream
infection

Eligible Patients hospitalized
between
January 1, 2018 - May 15, 2021

N =179102

Patients with at least one blood
culture requested

N =22795

Excluded

- 63 subjects with 0 days of
hospitalization,

- 2179 CA_BSI

Control and Prevention (CDC) as the “perfect storm” for
the spread of healthcare-associated, antibiotic-resistant
infections [6]. Preliminary analyses, reports and case series
described sporadic outbreaks of drug-resistant pathogens in
COVID-19 ICUs, especially carbapenem-resistant A. bau-
mannii (CRAB) [7], methicillin-resistant S. aureus (MRSA),
carbapenem-resistant K. pneumoniae (KPC-Kp), and vanco-
mycin-resistant Enterococcus spp. (VRE) [8]. Nevertheless,
despite the concerns, clear evidence is still lacking about the
exact incidence of drug-resistant infections in COVID set-
tings, both in general wards and intensive-care units (ICUs).
Furthermore, available studies exploring the issue of drug-
resistant nosocomial infections during the COVID period
are often missing a control group, focus mainly on COVID-
ICUs and do not provide information on incidence rates.
Little is known about the incidence of resistant infections
in non-ICU COVID setting. In addition, while outbreaks
resolve after the surge, the medium and long-term impact of
COVID-related healthcare disruption on AMR is unknown.

The present study aims to describe the longitudinal
trends in the incidence of hospital-acquired bloodstream

- 213 HAI_BSI with contaminant
- 5456 hospitalized between Jan
1, 2018 and Dec 15, 2018
(to balance study periods)

In this scenario, the pandemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2) dis-
rupted healthcare systems and practices all over the world.
Challenges experienced by hospitals include staffing short-
ages, unprecedentedly high hospitalization rates and supply
constraints that may have led, in turn, to changes in infec-
tion control practices [4] and antibiotic overuse [5]. This
combination has been described by the Centre for Disease
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PRE-COVID
N =7382
Final Population
N =14884
COVID
N =7502
COVID - COVID +
N=6299 N=1203

infections (BSI) due to high-priority pathogens during and
before the advent of the COVID-19 pandemic.
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Methods
Setting and study design

We conducted this real-life, retrospective cohort study at the
University Hospital “Policlinico Agostino Gemelli” IRCCS,
Rome, Italy. We extracted clinical and microbiological data
from a computerized dataset by developing a standardized,
ontology-based Data Mart hosted by Gemelli Generator
infrastructure [9].

The construction of the Data Mart was based on the ontol-
ogy defined by an interdisciplinary team composed of infec-
tious disease specialists and microbiologists, who identified
an extensive list of variables to be considered for the study.
Study Data Mart was developed using the SAS Institute soft-
ware analysis tool and the SAS® Vyia® environment.

All patients hospitalized during the study period for
whom at least one blood culture was performed were eligible
to be included in the Data Mart. Only the first BSI episode
for each patient was considered. The presence of BSI was
defined as the growth of a clinically important pathogen in
at least one blood culture or, in the case of typical blood
culture contaminants, as the growth of the same microor-
ganism in multiple samples belonging to the same blood
culture set. Blood cultures yielding more than one pathogen
were defined as polymicrobial. Microorganisms growing
only from the central venous catheter (CVC) samples—and
not in paired peripheral access samples—were considered
contaminants and thus excluded from the study. Also, all
positive blood cultures that were requested within the first
48 h from admission were defined as community-acquired
BSIs and excluded from the study. For each positive blood
culture, data about the ward type (i.e., general wards or ICU)
where the sample was obtained were extracted. BSI were
then labelled as ICU-related if cultures were performed after
at least 48 h from ICU admission.

All enrolled patients were divided into two historical
cohorts: patients hospitalized during SARS-CoV2 pandemic
period (i.e. from March 01, 2020 till May 15, 2021) and
patients admitted prior to the pandemic (i.e. from December
16, 2018 to February 29, 2020). To analyse populations as
much homogeneous as possible, we selected equal periods,
i.e. 14.5 months. Patients admitted during the pandemic
were further stratified on the basis of their COVID status,
and patients who resulted positive for at least one polymer-
ase chain reaction (PCR) COVID-19 nasopharyngeal swab
test were diagnosed with SARS-CoV2 infection and were
included in the COVID positive cohort.

The flow chart of the study is depicted in Fig. 1.

@ Springer

Statistical analysis

All variables included in the study were first analysed by
descriptive statistic techniques. Data were expressed as
absolute and percentage frequencies. Between-group differ-
ences were tested either by the Chi-square test or Fisher’s
exact test, as appropriate. Differences among patients’ sub-
groups (i.e., pre-COVID, COVID positive and COVID nega-
tive), both overall and pairwise, were assessed by the Fisher
exact test (with Freeman-Halton’s extension, when appro-
priate) or by the Chi-square test. Incidence rates (IR) were
computed on the overall population and layered by ward
types, i.e., ordinary wards (OW) or intensive care unit (ICU),
stratified for study period subgroup (namely pre-pandemic,
COVID positive and COVID-negative cohorts). The overall
incidence of hospital-acquired bloodstream infections (HAI-
BSI) and of each specie was calculated by univariable Pois-
son regression and defined as the number of events per 100
patient-days of hospitalization.

We further investigated the incidence trends during the
pandemic period as compared to pre-pandemic period, as
well as differences between COVID-positive and COVID-
negative cohorts, on isolates incidence per day of hospitali-
zation. As such, incidence rate ratios (IRR) for HAI-BSIs
and specific microorganisms were evaluated by a segmented
Poisson regression to model trends over time. Incidence rate
comparisons (i.e., IRR and 95% confidence intervals) were
further represented by forest plot diagrams, whilst bar plot
diagrams describe specific microorganisms’ prevalence
across the three subgroups. A p value <0.05 has been con-
sidered as statistically significant. The analysis is compliant
with the STROBE guidelines for observational studies [10].
All analyses were conducted using R software version 4.2.1
(CRAN ®, R Core 2022) [11].

Results

From December 2018 to May 2021, 2534 patients out of
14,884 who received at least one blood culture were diag-
nosed with BSI. Among them, 357 BSIs were polymicro-
bial. Once performed a blood culture, patients included in
the COVID-positive cohort had an overall risk of develop-
ing BSI of, respectively, 0.76 (95%CI 0.65-0.89) and 1.16
(95%CI 0.97-1.39) new infections per 100 patient per day in
the COVID OW and COVID ICUs (see supplement).

As shown in Table 1, E. coli was the most frequently iso-
lated pathogen, accounting for 478/2534 episodes (18.9%),
followed by S. aureus (n=395; 15.6%), K. pneumoniae
(n=280; 11.0%), P. aeruginosa (n=159; 6.3%) and E. fae-
cium (n=119; 4.7%). Pathogen-specific resistant phenotypes
and incidence rates are reported in Figs. 2 and 3. Overall,
E. coli, Acinetobacter spp., S. aureus, E. faecium and E.
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Fig.2 Resistance patterns per study cohort and ward type. The dia-
grams show the frequencies of selected resistance phenotypes strati-
fied forward type (in brackets the total number of isolates per specie
per period). Vertical lines indicate overall and pairwise comparisons
according to the studysubgroups (dotted line: p <0.05; continuous
line: p<0.001). CRAB carbapenem-resistant A. baumannii, CR car-

faecalis frequencies differed significantly across the study
periods. Pathogen-specific frequencies in ordinary wards and
intensive care units are reported in supplementary Tables S1
and S2 (see supplement). Resistance phenotypes used for the
construction of the Data Mart are listed in Table S3.
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bapenem resistant, CRPA carbapenem-resistant P. aeruginosa; MRSA
methicillin-resistant S. aureus, MSSA methicillin-sensitive S. aureus,
Other: resistant to at least one antimicrobial class, PDR pandrug
resistant (limited to tested antimicrobials), VRE vancomycin-resistant
E. faecium; Further information is reported on Supplementary Tables
S1 and S2 (web-only)

S. aureus was the most incident pathogen causing BSI
(Fig. 3), with 0.3 new infections per 100 patients per day
(95% CI 0.21-0.32). Noteworthy, when comparing to both
pre-COVID and COVID negative cohorts, S. aureus was
significantly more incident among COVID-positive patients,
and this significance was maintained in both OWs and ICUs
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Fig. 3 Pathogen-specific incidence rates per ward type. Incidence
Rates per 100 persons-days of hospitalization, stratified for study sub-
group, i.e. pre-COVID (green, n=7382), COVID negative (orange/

(p<0.001). MRSA accounted for 40.5% (n=160) of all S.
aureus isolates, peaking in COVID-OWs, where they caused
half of the BSIs due to S. aureus. As shown in Fig. 4, another
gram-positive bacterium that demonstrated higher IR in
COVID ICUs was E. faecalis, showing a 3-times higher
incident risk when compared to both pre-COVID (IRR 2.9,
[95% CI 1.36-6.2]) and COVID negative ICUs (IRR 2.88
[95% CI 1.54-5.61]). E. faecium, on the opposite, resulted
significantly more incidents in COVID-negative OWs. Over-
all rate of the VRE phenotype was 37.8%.

Similarly, we disclosed an increase in BSIs due to
Acinetobacter spp. among COVID-positive patients,
as compared to both COVID-negative (IRR 3.88 [95%
CI 2.35-6.41]) and pre-COVID cohorts (IRR 2.92,
[1.86—4.45]), along with a significantly higher rate of the
extensively drug-resistant (XDR) phenotype (40.0% vs
11.8%, p=0.008, and vs. 7.1%; p <0.001, respectively).
As shown in Fig. 3 and in Table S4 (see supplement),
incidence rates ranged from 0.02 (95% CI 0.01-0.06) new
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yellow, n=6299) and COVID positive (red, n=1203), both overall
(upper panel) and layered as ordinary wards (left panel) and ICU
(right panel). /CU Intensive Care Unit

infections per 100 patients per day in the pre-COVID ICUs
to 0.24 (95% CI 0.16-0.35) in COVID ICUs (Fig. 4).

Conversely, the overall incidence of E. coli, the most
frequently isolated pathogen in this study, was found
to be significantly lower in COVID settings, except for
COVID-ICUs. BSI due to K. pneumoniae demonstrated a
similar incidence rate in the three cohorts, with an over-
all frequency of carbapenem-resistant strains of 29.6%
(n=283/2534, Table 1). Likewise, the overall incidence rate
of P. aeruginosa was similar in the three cohorts.

Conclusions

This real-life, observational study describes the epidemio-
logical trend of bloodstream infections in a large cohort of
patients hospitalized from 2018 to 2021, comparing inci-
dence rates among OWs and ICUs before and during the
COVID-19 pandemic. We found that, once blood cultures
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Fig.4 Forest Plot showing pairwise incidence rate comparisons in
the overall population, ordinary wards and intensive care units. Over-
all population is represented in panel A—C, ordinary wards in panel
D-F, and intensive care units in panels G-I. Pairwise comparisons
between pre-COVID and COVID-negative cohorts are reported in

are performed, patients admitted to COVID settings had
an overall higher risk of having BSI, with the greatest risk
experienced by patients admitted to COVID-ICUs.
Overall, when compared to the pre-COVID period,
COVID-positive patients had a 43% lower incident risk
of developing BSI due to E. coli, whilst the risk of infec-
tion due to S. aureus, and Acinetobacter spp. increased,
respectively, by a twofold and a threefold factor, and those

panels A, D and G, while between pre-COVID and COVID-positive
cohorts in panels B, E and H and between COVID-negative and
COVID-positive cohorts in panels C, F and 1. IRR incidence rate
ratio, 95% CI 95% confidence interval

differences were more pronounced in COVID-ICUs. This
is concerning, especially because COVID intensive care
units were the setting that demonstrated the highest preva-
lence of difficult-to-treat pathogens, with nearly one S.
aureus out of two being susceptible to methicillin and
only 3% of Acinetobacter spp. isolates being susceptible
to carbapenems.
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Our study provides consistent evidence that, among the
pathogens causing BSI in our center, COVID-19 pandemic
led to a significant shift in microbiology and AMR patterns.
In particular, it is reasonable to believe that both the irra-
tional use of personal protective equipment (inappropriate
glove hygiene and gown changes) and the unprecedented
workload experienced by healthcare workers [12], along
with limited laboratory capacity, contributed to a diffuse
loss of adherence to infection control practices [13]. Also,
disruption of proper screening and isolation of patients
colonized by resistant pathogens [5], along with increased
exposure to antimicrobials, is likely to have promoted the
selection and in-hospital diffusion of resistant phenotypes.
This assumption is consistent with the fact that all infec-
tions reported in this study were hospital-acquired and is
supported by the consideration that, in the early months
of the pandemic, empiric broad-spectrum antibiotics were
part of the recommended therapy for all critically ill COVID
patients [13, 14].

A key finding of this study is that pathogens are known
to colonize human skin and hospital environments—namely
S. aureus [16] and Acinetobacter spp. [17]—were the ones
that showed the most striking increase in relative incidence
rates among COVID patients. Indeed, S. aureus alone was
responsible for, respectively, 32.6% of all bloodstream infec-
tions diagnosed among patients admitted to COVID ordinary
wards, and for 28.6% of all BSIs registered in the COVID-
positive cohort (see Table S4, see supplement). In the ICU,
apart from an excessive workload, other factors that may
have contributed to this surge in BSI due to S. aureus might
have been the heavy use of immunomodulatory drugs and
the onset of lung dysbiosis [18, 19]. Also, in our center,
admission to the COVID ICU was primarily driven by dis-
ease progression towards ARDS and, as a result, part of the
increased incidence we documented in this setting is likely
to be due to the use of invasive mechanical ventilation, a
well-known risk factor for the incidence of bloodstream
infections [19].

Noteworthy, in the pandemic period, the crude number of
BSI due to Acinetobacter spp. was almost four times higher
in patients admitted to COVID settings (Fig. 4A). This is
consistent with the results of a metanalysis [20], and with
experiences reported from other centers [4, 21] but, to our
knowledge, this is the first study reporting incidence from
both COVID-19 ordinary wards and intensive care units. In
addition, this is the first study providing detailed data about
resistance phenotypes.

Another peculiar finding of our work is that E. coli, the
most frequently isolated bacteria, showed a reduced IRR
in the COVID-19 general population when compared to
both COVID-negative patients and patients admitted in
the pre-pandemic period. A possible explanation for this
phenomenon is that during COVID-19 hospitalization

@ Springer

peaks (i.e., March—April 2020 and November 2020-Janu-
ary 2021) elective surgery was consistently reduced, with
COVID positive patients suffering the longest delays and
often being a candidate for non-urgent procedures only after
swab negativization.

Our study has several limitations. On one hand, incidence
has not been calculated on the overall hospital population,
but only on the fraction of patients for whom at least one
blood culture was ordered, thus undermining the generaliz-
ability of the results. However, comparisons between ward
types and between historical periods, as well as the preva-
lence of resistance patterns, might be read as representative
of an epidemiological shift potentially experienced by other
centers during the ongoing pandemic. Also, the high sam-
ple size and the peculiar methodology of real-time data col-
lection, involving Data Integration, Analytics and artificial
intelligence, might have in part counterbalanced these limi-
tations [9]. On the other hand, we were not able to provide
data about clinical outcomes (including the likely source of
infection and in-hospital death) and death, since they were
not available in the Data Mart at the time the present study
was conducted.
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