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Abstract
Background and Objectives
While chronological age is one of the most influential determinants of poststroke outcomes,
little is known of the impact of neuroimaging-derived biological “brain age.”We hypothesized
that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that
advanced brain age of patients with stroke will be associated with cardiovascular risk factors and
worse functional outcomes.

Methods
We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation.
Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression
model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with
chronological age-matched peers, was estimated. Finally, we built a linear regression model of
RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of
favorable functional outcomes taking RBA as input.
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Results
We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-
FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r= 0.81). After adjustment for covariates, RBAwas
higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a
history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated
with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect
of RBA on outcome was especially pronounced in minor strokes.

Discussion
T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA,
reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.

While chronological age is one of the most influential de-
terminants of poststroke outcomes,1 little is known about
the impact of neuroimaging-derived brain age, a recently
developed biomarker of personalized brain health.2 Stroke
has devastating effects on both functional and cognitive
outcomes.3 However, the resilience of an individual to is-
chemic insults might vary depending on the status of the
underlying brain. In fact, older-appearing brains on MRI,
defined by a higher neuroimaging-predicted brain age
rather than chronological age, have been associated with
diverse diseases, risk factors, lifestyles, and cognitive
performances.4,5 By contrast, patients with younger-
appearing brains are believed to undergo a healthier ag-
ing process with better brain maintenance, featuring a
decreased pathologic age-related structural degeneration.6

While a variety of studies focused on the brain age of pa-
tients suffering from neurodegenerative or psychiatric
diseases, the aging process of the brains of patients with
stroke and its impact on stroke outcomes remain largely
undescribed.2

Although chronological time passes at the same speed for
everyone, individuals age at different paces; thus, individ-
uals can be more sensitive or, on the contrary, more re-
silient to the effects of biological aging. Quantifying the
deviation from an expected brain aging distribution could
prove relevant for assessing brain health and health prog-
noses, especially in diseases heavily influenced by age, such
as stroke. Some authors showed that the brains of stroke
survivors appeared older than those of age-matched
healthy controls, highlighting the detrimental impact of
the ischemic insult on the aging trajectory of the brain.7,8

Moreover, other authors found an association between
higher brain age and a greater risk of stroke, trapping
stroke survivors in a vicious circle.9 However, the clinical

determinants of brain age in patients with stroke are cur-
rently unknown, warranting further imaging studies in
stroke populations to identify potentially preventable risk
factors.

The resilience of a brain to an ischemic insult varies between
individuals and depends on numerous factors which overall
describe individuals’ brain health. Nevertheless, while good
brain health might help to withstand a circumscribed stroke,
this benefit could become insignificant when suffering from a
more severe stroke. The influence of brain age on functional
outcome should consequently be examined as a function of
stroke severity to better understand the extent to which brain
health plays a role in ischemic lesionmitigation. This could help
select patients before acute therapeutic interventions. Indeed,
identifying good responder patients lying at the borders of the
therapeutic indication’s spectrum is the central question of
ongoing clinical trials, namely minor strokes (NIH Stroke Scale
[NIHSS] less than 5). For instance, patients suffering from a
minor stroke on a vulnerable brain might potentially benefit
more from revascularization therapies than patients with better
brain health. Identifying new noninvasive biomarkers available
on admission, such as brain age, could help select additional
patients for acute stroke treatment.

Capturing radiologic hallmarks of aging has been a dynamic field
of neuroimaging research over the past few decades.2 Neverthe-
less, established methods to quantify this process mainly lever-
aged atrophy, disregarding other cerebral imaging manifestations
of age-related degeneration. Radiomics, an emergent method of
image quantification providing standardized quantitative variables
describing the global texture of an image, could provide a better
estimate of age-related imaging alterations.10 However, perfor-
mances of radiomics to produce brain age biomarkers are un-
known, a fortiori from acute MRI scans of patients with stroke.

Glossary
AF = atrial fibrillation; DM = diabetes mellitus; HTN = hypertension; MRI-GENIE = MRI-GENetics Interface Exploration;
MAE = mean absolute error; mRS = modified Rankin scale; NIHSS = NIH Stroke Scale; RBA = relative brain age; WMH =
white matter hyperintensity.
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In this large multicentric retrospective imaging study of patients
with ischemic stroke, we aimed to (1) assess performances of
brain T2-FLAIRMRI radiomics to predict brain age from clinical
imaging, (2) understand the clinical determinants of brain age,
and (3) study its relevance to poststroke outcome. We hy-
pothesized that patients with stroke with a higher radiomics-
predicted brain age than their chronological age would have
more cardiovascular risk factors and worse poststroke functional
outcomes, especially as observed in minor strokes.

Methods
Participants
We reviewed all neuroimaging data of patients with stroke
included in a large international multisite collaborative effort:
the MRI-GENetics Interface Exploration (MRI-GENIE)
study. Sites shared clinical, MRI imaging, and genetic data.
Both study design, data collection protocols, and populations
have been previously published.11-13

Standard Protocol Approvals, Registrations,
and Patient Consents
All participants or health care proxies provided signed in-
formed consent. The MRI-GENIE project has been approved
by the MGH Institutional Review Board (IRB, Protocol No.:
2001P001186 and Protocol #: 2003P000836) and the ethics
boards of the collaborating institutions.

Data Collection and
Neuroimaging Preprocessing
We reviewed a total of 4,163 patients across 17 different sites,
for which cardiovascular risk factor phenotypes, T2-FLAIR
imaging, and successful brain and ventricles segmentations
were available.14,15 Demographic and cardiovascular pheno-
types included age, sex, hypertension (HTN), history of
smoking, diabetes mellitus (DM), atrial fibrillation (AF), and a
history of prior stroke. Acute stroke severity was measured with
the NIHSS. Functional outcome was measured with the
modified Rankin scale (mRS) at 60–180 days after stroke.

Axial T2-FLAIR images were acquired between 2003 and
2011 within 48 hours of the hospital admission, mostly on 1.5
T MRI scanners. Mean in-plane resolution was 0.7 mm
(range: 0.3–1.0 mm), and the mean through-plane resolution
was 6.2 mm (range: 3.0–30.0 mm). Total brain, ventricle, and
white matter hyperintensities (WMH) were automatically
segmented using dedicated state-of-the-art deep-learning
frameworks; raw values were reported. Thorough control of
the quality of the segmentations was performed and is already
published.14,15 To reduce interscanner unwanted variance,
T2-FLAIR images intensities were normalized using a mean-
shift algorithm.14 We computed parenchymal masks by sub-
tracting the ventricle masks from the total brain masks. Then,
we performed a morphologic opening operation with a 3 × 3
kernel to each axial slice to prevent any segmentation noise
from perturbating radiomics extraction.

Radiomic Feature Extraction
Radiomic features were extracted using the open-source toolbox
PyRadiomics V2.2.0 from brain parenchyma on T2-FLAIR.10 In
brief, 760 features were extracted describing the shape, histo-
gram, and texture of the brains. To reduce interscanner vari-
ability, images were downsampled to a 1 × 1 × 6mmmatrix. The
list of the extraction parameters can be found in the supple-
mental materials (eMethods, links.lww.com/WNL/C494).

Chronological Age, Brain Age, and Relative
Brain Age
Radiomics-derived predictions of patients’ chronological age
were performed by an ElasticNet linear regression model in a
5-fold nested stratified cross-validation scheme (eFigure 1,
links.lww.com/WNL/C494). First, the whole data set was split
into 5 equivalent training and test samples (80/20%) to pro-
duce one single out-of-training-sample age prediction for every
patient. Then, for each of the 5 train-test splits, feature selection
was performed on the training set by an ElasticNet linear re-
gression model in a 3-fold cross-validation scheme (inner
loop). Selected features were subsequently entered into an-
other ElasticNet model that was fitted on the entire training set
where its L1 and L2 hyperparameters were optimized and then
finally tested on the unseen test set (outer loop). Radiomics-
based predicted ages are subsequently referred to as “brain age.”
Prediction performances were evaluated with Pearson corre-
lation (r) and coefficient of determination (R2). Intercenter
variability in brain age prediction performances was studied
(eAppendix 1, eFigure 2, eTable 1). To better understand
which radiomics variables were relevant for brain age pre-
diction, we recorded radiomics selected across all folds of the
nested cross-validation and their respective ElasticNet linear
regression coefficients (eAppendix 2, eTable 2). The results of
the radiomics and machine learning results were reported
according to the RQS and CLAIM statements (eAppendices 3
and 4).16,17

To evaluate the specific added value of brain age to chrono-
logical age, we calculated the residuals of predictions (brain
age—chronological age). However, these residuals are known
to be negatively correlated with chronological age because of a
regression dilution bias induced by the accumulation of ran-
dom measurement errors, which can be encountered in
radiomics analyses.18 An established solution suggested by the
authors of a study4 is to calculate relative brain age (RBA) by
regressing out any correlation with chronological age as
follows:

RBA = Predicted  Age − Expected  ðPredicted  Age  j  Chronological  AgeÞ
The expected predicted age as a function of chronological age
is obtained by fitting a linear regression model with chrono-
logical age as an input and the predicted age as a response
variable. RBA represents the appearance of an individual brain
in comparison with chronological age-matched peers within
the cohort: A higher brain age at a given chronological age will
have a positive RBA and will reflect an older-looking brain,
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whereas a younger-appearing brain on neuroimaging will have
a negative RBA.

To evaluate the added value of detailed textural brain in-
formation on top of simple volumetric information of the
brain mask, an ancillary analysis was performed: We here
predicted brain age using only those radiomics features de-
scribing the size and the shape of the parenchyma but not the
more detailed texture. This analysis was performed to pro-
duce brain age biomarkers based only on the cerebral pa-
renchymal volumetric data and to compare it with the ones
predicted from both volumetric and T2-FLAIR intensity
profile data. No prediction was done using only advanced
textural radiomics because they are inherently correlated to
shape radiomics. To further help the interpretation of the
neuroimaging underpinnings of radiomics RBA, we calcu-
lated the correlation between RBA and brain volume and
WMH burden.

Identifying Clinical Determinants of
Accelerated Aging
To quantify the impact of patients’ clinical phenotypes on
their brain, RBA were compared using a two-sided t-test for
each categorical clinical variable (sex, HTN, DM, AF, CAD,
history of smoking, history of prior stroke) and using Pearson
correlation for continuous variables (age) (level of signifi-
cance: p < 0.05). Variables for which RBA significantly dif-
fered in univariate analyses were then entered into a multiple
linear regression model of RBA.

Evaluating the Impact of Accelerated Brain
Aging on Poststroke Functional Outcome
Good functional outcome was defined as anmRS ≤ 2 at follow-
up. Comparison of patients’ RBA by dichotomized outcome
groups was performed using a two-sided t-test. To compare the
effect of RBA on functional outcome with traditional variables,
a multiple logistic regression of dichotomized functional out-
come was built. Feature selection for this model was performed
using a 5-fold cross-validated recursive feature elimination
process. Candidate predictors were age, sex, HTN, DM, AF,
CAD, history of smoking, prior stroke, brain volume, WMH
volume, NIHSS at index stroke, and RBA. The final model’s
coefficients were estimated, and odds ratios were calculated. To
further evaluate the impact of RBA beyond dichotomized
functional outcome (good vs bad), full-scale mRS distributions
(0–6) were examined by quartiles of RBA.

In ancillary analyses, we investigated the hypothesis that RBA
would only be impactful on functional outcomes inminor strokes
because severe strokes may lead to unfavorable outcomes re-
gardless of the underlying brain status. To explore this hypothesis,
we studied the effect sizes of RBA on dichotomized outcome
groups by incrementally adding patients by the rank ofNIHSS (0,
0–1, 0–2, 0–3, etc.) and estimated the effect sizes by calculating
the standardized adjusted odds ratios of multiple logistic re-
gression models built with the variables previously identified as
significantly associated with good functional outcome.

Data Availability
On reasonable request to the corresponding author and
pending approval from local IRBs, data will be made available
to replicate the results presented in this article. Radiomic fea-
tures extraction, feature selection, and machine learning anal-
yses were performed in Python 3.7.6 using the toolbox scikit-
learn and pyradiomics.10,19 Logistic regression coefficients esti-
mations were performed using statsmodels.20

Results
Population
All included patients had suffered an ischemic stroke. Pop-
ulation demographics are shown in Table 1. There were 42%
female patients, and the mean age was 62.8 (standard deviation
15.0) years. Admission NIHSS scores and follow-up mRS
scores were available for 2,234 and 1,871 patients, respectively.
Exhaustive ordinal mRS scale (0–6) data were available for 871
patients.MedianNIHSSwas 3 (interquartile range: 1–6); good
functional outcome was achieved by 72.5% of patients.

Radiomics Brain Age Predictions and RBA
The mean predicted brain age was 62.8 years with a mean ab-
solute error (MAE) of 6.9 years. Pearson correlation and co-
efficient of determination between predicted brain age and
chronological age were r = 0.81 p < 0.001 and R2 = 0.65, re-
spectively (Figure 1). Prediction performances using only
radiomics describing the shape and size of the brain parenchyma
were lower: r = 0.66 p < 0.001, R2 = 0.45, mean predicted brain

Table 1 Clinical and Radiological Characteristics of the
Study Population (n = 4,163)

Age Mean (SD) 62.8 (15.0)

Female n (%) 1,748 (42.0%)

Hypertension n (%) 2,825 (67.9%)

Diabetes mellitus n (%) 687 (16.5%)

Atrial fibrillation n (%) 595 (14.3%)

Coronary artery disease n (%) 772 (18.5%)

History of smoking n (%) 1,331 (32.0%)

Prior stroke n (%) 539 (12.9%)

WMH volume Median (IQR) 4.2 mL (1.4–11.2)

Brain volume Mean (SD) 1,467.5 mL

Brain ventricular volume Median (IQR) 31.8 (18.9–42.6)

NIHSS at baselinea Median (IQR) 3 (1–6)

Good functional
outcome at 60–180 db

n (%) 1,356 (72.5%)

a NIHSS was available for 2,234 patients.
b Dichotomized functional outcome (mRS ≤ 2 vs mRS > 2) was available for
1,871 patients.
Abbreviations: IQR = interquartile range; mRs = modified Rankin scale;
NIHSS = NIH Stroke Scale; WMH = white matter hyperintensities.
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age: 62.8 years, and MAE = 9.0 years. Additional radiographic
examples of brain age predictions are shown in eFigure 3 (links.
lww.com/WNL/C494). Relevant radiomics for brain age pre-
diction, their correlation with imaging characteristics, and the
results of the intersite prediction performances are presentedal
materials (eAppendices 2 and 4). In brief, brain age prediction
performances were lower when producing brain age in a site
where patients’ age significantly differed from the training sites.
T2-FLAIR radiomics that captured neuroimaging aspects of
atrophy, hyperintensities, and heterogeneity were predictive of
higher brain age and therefore older-appearing brain, whereas
radiomics representative of parenchymal trophicity and ho-
mogeneity were predictive of lower brain age and thus,
younger-appearing brain. Moreover, this was confirmed by
analyzing RBA with more traditional radiological hallmarks of
brain aging: patients with older-appearing brains had a higher
WMH burden and a lower brain volume.

Clinical Phenotype and Brain Aging
In univariable analysis, patients with HTN, DM, AF, CAD, a
history of smoking, and a history of prior stroke had a sig-
nificantly higher RBA. RBA did not differ between male

patients and female patients (Table 2). As expected, there
was no significant correlation between chronological age and
RBA: r = 0.03, p = 0.145.

Figure 1 Brain Age Prediction Performances and Relative Brain Age

Scatter plots of the T2-FLAIR radiomics
(A) predicted brain age and (B) relative
brain age (RBA) per chronological age.
Patientswere colored in red if theyhada
positive RBA and thus a brain that
appeared older to their age-matched
peers or in blue if they had a negative
RBA and a younger-looking brain. (C)
T2-FLAIR axial image of a patient with a
positive RBA: predicted brain age = 88,
chronological age = 46, RBA = 36.2; this
patient’s brain exhibits multiple cortical
and subcortical sequelae, moderate-to-
severe parenchymal atrophy with en-
larged ventricles and sulci, and confluent
white matter hyperintensities, which ex-
tents are unexpectedly large for a 46-
year-oldpatient. (D) T2-FLAIRaxial image
of a patient with a negative RBA: pre-
dicted brain age = 43, chronological age
= 92, RBA = −38.6; notwithstanding the
left middle cerebral artery lesion, this
patient’s brain trophicity is maintained;
the cortex and the deep gray nuclei are
sharply defined, overall describing a
healthybrain for this 92-year-oldpatient.

Table 2 Comparison of Patients’ Relative Brain Age (RBA)
by Clinical Phenotype (n = 4,163)

No Yes p Value

Female 0.02 ± 7.16 −0.02 ± 7.23 0.863

Hypertension −0.61 ± 7.45 0.29 ± 7.05 <0.001

Diabetes mellitus −0.18 ± 7.16 0.92 ± 7.03 <0.001

Atrial fibrillation −0.10 ± 7.14 0.60 ± 7.48 0.034

Coronaropathy 0.13 ± 7.29 0.58 ± 6.74 0.014

History of smoking −0.15 ± 7.07 0.33 ± 7.43 0.045

Prior stroke −0.42 ± 7.07 2.85 ± 7.33 <0.001

Two-sided t-test, alpha = 5%. RBA values are expressed by their mean ±
standard deviation. Patients with positive RBA have older-looking brains,
whereas patients with negative RBA have younger-looking brains.
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In multiple regression analyses, RBA was higher and there-
fore expressed accelerated brain aging in patients with
HTN, DM, a history of smoking, and a history of prior
stroke (Table 3).

RBA and Poststroke Functional Outcome
Patients who achieved a good functional outcome had a sig-
nificantly lower RBA (−0.44 vs 1.45, p < 0.001) and therefore
a younger-looking brain than their chronological age-matched
peers.

Among the evaluated predictors of poststroke outcome, the
automated cross-validated recursive feature elimination pro-
cess selected 4 clinical variables to enter the final logistic
regression model: age, baseline NIHSS, prior stroke, and RBA.
The results of the logistic regression of good functional out-
comes are summarized in Table 4. In brief, in multivariable
analysis, higher chronological age, higher RBA, higher baseline
NIHSS score, or the presence of a history of prior stroke was
independently associated with worse poststroke outcomes
(respective adjusted odds ratios for good outcome: 0.58, 0.76,
0.48, 0.55; all p-values < 0.001). Distributions of mRS scores by
quartile of RBA are shown in Figure 2. There was a higher

proportion of favorable mRS in the lower quartiles of RBA in
patients exhibiting younger-looking brains.

Multivariable effect sizes of RBA on the dichotomized
poststroke outcome by the rank of baseline NIHSS are
shown in Figure 3. After adjustment for covariates (age,
NIHSS, history of prior stroke), the detrimental effect size of
RBA on achieving a good functional outcome was maximal
for NIHSS = 0 (aOR = 0.61, n = 295) and decreased until
NIHSS ≤ 9 (aOR = 0.75, n = 1,642).

Discussion
By leveraging a large ischemic stroke clinical imaging cohort,
we successfully used brain MRI T2-FLAIR radiomics to
predict brain age and derived RBA, a biomarker describing
patients’ brain health relative to their peers. Older-appearing
brains were associated with cardiovascular risk factors, high-
lighting their detrimental impact on brain health. Finally, we
showed that high RBA had a negative impact on poststroke
functional outcomes. This effect was especially pronounced in
patients presenting with lower stroke severity.

Chronological age quantifies the length of time a person has
lived but is unlikely to affect stroke prognosis directly. It may
best serve as a surrogate marker for age-related cerebral pa-
renchymal alterations. In some patients, such deleterious alter-
ations accumulate more rapidly or more slowly than the
expected pace. Our results suggest that quantifying the deviation
from expected brain age in patients with stroke can be relevant
for assessing brain health and prognostication. Indeed, in our
cohort, patients who did not achieve a favorable outcome had
brains that appeared older on T2-FLAIR compared with their
chronological age-matched peers. Moreover, our results show
that RBA affected stroke outcomes independently from chro-
nological age, NIHSS, and history of prior stroke. Indeed,
patients with an older-appearing brain were more likely to de-
velop an unfavorable poststroke outcome at any given age. This
finding indicates that radiomics-derived RBA could assess the
brain health of patients with stroke and quantify the resilience
of brains in a way that chronological age cannot. In previous
analyses of randomized control trials, chronological age–defined
older patients (older than 80 years) were identified as a sub-
group that benefitted more from endovascular recanalization
than their younger counterparts, with the hypothesis that they
had less brain reserve to withstand ischemia.21,22 Future studies
could evaluate whether patients with older-appearing brains
would benefit more from recanalization23 and assess whether
brain age imaging biomarkers can help to identify new candi-
dates for reperfusion therapies. For instance, patients with an
NIHSS lower than 5 are currently not eligible for mechanical
thrombectomy and are the topic of numerous randomized
controlled trials. Our results could suggest that in this specific
stroke population, patients with an older-appearing brain are
less likely to reach a good functional poststroke outcome and
could maybe benefit more from reperfusion therapies.

Table 4 Logistic Regression of Good Functional Outcome

Variables

Unstandardized aOR Standardized aOR

p ValueaOR

95% CI for aOR

aOR

95% CI for aOR

Lower Upper Lower Upper

Age 0.96 0.95 0.97 0.58 0.51 0.65 <0.001

NIHSS 0.87 0.85 0.89 0.48 0.43 0.54 <0.001

Prior stroke 0.55 0.41 0.74 0.55 0.41 0.74 <0.001

RBA 0.96 0.95 0.98 0.76 0.68 0.86 <0.001

NIHSS = NIH Stroke Scale; RBA = relative brain age; aOR = adjusted odds
ratio.

Table 3 Multivariable Linear Regression of the Clinical
Predictors of Relative Brain Age (RBA) (n = 4,163)

RBA
coefficient

95% CI

p ValueLower Upper

Hypertension 0.5615 0.085 1.038 0.021

Diabetes mellitus 0.9098 0.318 1.502 0.003

Atrial Fibrillation 0.4911 −0.133 1.115 0.123

Coronary artery disease 0.1824 −0.387 0.752 0.530

History of Smoking 0.5367 0.07 1.003 0.024

Prior Stroke 3.2134 2.566 3.861 <0.001

Two-sided t-test, alpha = 5%. A positive coefficient implies older-looking
brains.
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Individual lifestyles, genetics, and environment can also set a
different course for brain aging.4,24 We found that high RBA
was associated with HTN, DM, and a history of smoking, in
line with the results based on large cohorts such as UK
Biobank and Whitehall II.4,5,9,24 This adds to the body
of evidence that cardiovascular health and brain health are
intertwined and stresses the importance of preventative
medicine.25 Our results also showed that a history of prior
stroke was the most influential clinical factor affecting RBA,
with an effect size 3-fold larger than other clinical variables.
The second most detrimental clinical trait for brain aging
in our sample was diabetes, which also emerged as a sig-
nificant condition accelerating brain aging in previous
work.26 Identifying potentially modifiable factors affecting
brain health yields relevance for prevention interventions.27

For instance, body mass index and daily exercise were pre-
viously identified as predictive of younger brain age and are

potentially modifiable.24,28 RBA and brain age could fur-
thermore be used as follow-up brain health biomarkers.

Translation of the brain age biomarker to clinical care remains
challenging. Indeed, most of the available neuroimaging brain age
prediction methods include spatial registration to an anatomic
template, which requires high-quality research-grade imaging.2,4,24

Moreover, T1-weighted imaging is predominantly used in these
pipelines but is uncommonly acquired during acute stroke MRI
imaging workup. Therefore, there is a need for frameworks
compatible with clinical care settings, especially in time-sensitive
diseases such as stroke, featuring T2-FLAIR, given its common
utilization in both the acute phase and during the follow-up.29

Radiomics, an emerging image quantifying technology, could
represent a potential solution because they require little compu-
tational power and can be applied to any digitalized medical im-
aging.16 Radiomicswere never assessed to predict brain age.While
in previous literature, brain age is mostly predicted by volumetric
information, radiomics description encompasses information that
goes beyond volume, characterizing the shape and the texture of
an image; consequently, radiomics can potentially capture more
information. Analyses of T2-FLAIR images using radiomics are
especially relevant in patients with stroke because this sequence
reflects both higher age and cerebral burden of diseases.30

Moreover, most published studies have trained their models on
healthy brains, which have a uniform aging distribution unlike
stroke cohorts. This aspectmight be reflected by the greater errors
of our predictions than in published literature, which ranges in
adult cohorts from around 2.5 years, for recent complex deep
learning–based methods,31 to between 4.3 and 13.5 years for
more traditional methods.2Moreover, there is a trend in brain age
prediction literature to incorporate more and more complex
and multimodal data, such as diffusion tensor imaging or func-
tional MRI and process it within high-end deep learning
frameworks.24,32,33 We deliberately chose to tackle the challenge
of leveraging clinical imaging and a lighter methodological
framework with the idea of developing models that are more
interpretable andmay have a better chance of translating brain age
biomarkers to routine clinical care.

This work has several limitations. First, our cohort included
patients from 2003 to 2011, whose management might not have
been fully representative of patients treated in modern stroke

Figure 3 Effect Sizes of the Predictors of Good Functional
Outcome by Rank of Baseline NIHSS

RBA had a detrimental impact on achieving a good functional outcome es-
pecially in patients with low NIHSS. aOR = adjusted odds ratio; NIHSS = NIH
Stroke Scale; RBA = relative brain age.

Figure 2 mRS Shift Plot per Quartile of RBA

Q1-Q4 quartiles of RBA, mRS modified Rankin Scale. Q1-Q2
represents patients with lower RBA and thus younger-look-
ing brains, whereas Q3-Q4 represents older-looking brains.
mRS = modified Rankin scale; RBA = relative brain age.
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care settings. Future work will assess the impact of brain age on
the outcome of patients treated with up-to-date reperfusion
therapies. Second, despite being drawn from a multicentric co-
hort using nested cross-validation, future validation of our pre-
liminary findings in an independent cohort will further ensure
the generalizability of the brain age biomarker in stroke care.
Third, we could not benchmark our method against other
published methods such as BrainAGE or Brain age delta2,18

because we did not have T1-weighted images; further work
could evaluate our method on reference data sets if they include
T2-FLAIR imaging. Fourth, our work leveraged segmentation
masks and therefore suffers from limitations related to seg-
mentation steps. Moreover, the impact of motion artifacts or of
early hemorrhagic transformation on RBA was not specifically
assessed. Finally, we could not explore the relationship between
T2-FLAIR radiomics-derived brain age biomarkers with more
detailed outcome metrics, such as cognitive and language out-
comes, or with other neuroimaging biomarkers of brain health,
such as brain reserve or effective reserve.34,35 Future studies
could indeed study the relationship between radiomics brain age
and cognitive reserve in patients with stroke.

To conclude, in this cohort study of 4,163 patients with is-
chemic stroke, using radiomics extracted from clinically ac-
quired T2-FLAIR images, we derived RBA, a chronological
age–independent biomarker describing individual biological
brain age. A higher RBA was linked to the presence of car-
diovascular risk factors and worse poststroke outcomes.
Therefore, this newly radiomics-derived RBA may capture
previously unidentified prognostic information.
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Planiol Fundation. A.K.B. is supported by a MGH ECOR Fund
for Medical Discovery (FMD) Clinical Research Fellowship
Award. MRE is supported by the American Academy of Neu-
rology and MGH Executive Council on Research. PMR is sup-
ported by NIH K01 HL128791. TT was supported by the
Helsinki University Central Hospital, Sigrid Juselius Foundation,
Sahlgrenska University Hospital, and University of Gothenburg.
A.G.L was supported by the Swedish Heart and Lung Foun-
dation, Region Skåne, Lund University, Skåne University
Hospital, Sparbanksstiftelsen Färs och Frosta, Fremasons
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