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ABSTRACT
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, cov-
ering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body
methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and
configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-
matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing
metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decom-
position analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics
processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the
software is supported by an “open teamware” model and an increasingly modular design.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0055522

I. INTRODUCTION
The era of electronic computing began with the “ENIAC”

machine,1 developed at the University of Pennsylvania beginning
in 1943, and the first commercial machines began to be pro-
duced around 1950. Although originally developed for military
applications, molecular physics was not far behind.2 The exis-
tence of these machines in universities led to the first develop-
ment of quantum chemistry software starting in the mid-1950s.3
Prognosticating on the future of electronic structure theory in his
1966 Nobel Lecture, Mulliken stated that4

. . . the era of computing chemists, when hundreds if not
thousands of chemists will go to the computing machine

instead of the laboratory for increasingly many facets of
chemical information, is already at hand.

However, he did caution that

. . . at the present time the rapid progress which could be
made even with existing machine programs is not being
made, simply because available funds to pay for machine
time are far too limited.

In the ensuing half-century, the problem of inadequate funds
was resolved by the revolution in inexpensive computer hardware
that traces its origin to the invention of the integrated circuit in
the late 1950s and the microprocessor in the mid-1970s. Perhaps
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FIG. 1. Development of leading edge computer capabilities, as documented
through the performance of the world’s top 500 supercomputers, as measured
on dense linear algebra in units of double precision floating-point operations per
second (Flops/s). The data are adapted from Top500.org and compared against
the performance of an eight-core laptop, which evidently has performance compa-
rable to the world’s fastest supercomputer of the mid-1990s to late-1990s.

ironically, a desire for realistic simulation in computer games has
led to such a massive market for high-performance hardware that
today’s laptop computers have the power of the world’s most
powerful supercomputer from the mid-1990s, as shown in Fig. 1.

It is also worth noting that the roughly 100 W power consumption
of today’s eight-core laptop is an impressive 5000× smaller than
the corresponding supercomputer (e.g., the Fujitsu Numerical Wind
Tunnel Computer, which was No. 1 in 1996, consumes 500 kW). At
the other extreme, computing resources well into the terascale are
routinely available on computer clusters, and leadership supercom-
puting is in the midst of a transition from petascale toward exascale
computing.

This revolution in computer hardware is only meaningful to
practicing chemists if corresponding software is available to enable
straightforward and realistic simulation of molecules, molecular
properties, and chemical reaction pathways. The first electronic
structure codes were already working at the time of Mulliken’s
Nobel address, and indeed, Charles Coulson had warned in 1959 of
a growing split between theoretical chemists who were numerical
simulators (primarily early code developers) and those who
developed chemical concepts.5 Today one would rather say that
quantum chemistry calculations are simulations whose results
represent numerical experiments. Just like real experiments, results
from these in silico experiments (even if reliable) must still be
understood in conceptual terms, to the extent possible. The
aspirations of early electronic structure codes are reflected in pro-
gram names such as POLYATOM,6 and such efforts rarely achieved
useful accuracy or else did so via fortuitous cancellation of errors.7
However, today there are many useful program packages including
≈ 20 that are actively developed and supported.8

One of those is the Q-Chem project, which began in the
late 1992.9 Since its inception, Q-Chem has operated as a large

FIG. 2. Statistics showing Q-Chem developer activity since 2006. Top: total number of code commits, organized chronologically by month. The color of each monthly entry
indicates the number of individual developers who made commits. (Light blue is single-digit numbers, and the January 2021 peak represents about 50 developers committing
code that month.) Bottom: growth of the developer base broken down into existing developers vs those who committed code for the first time. The inset depicts the total
number of commits by the 50 most prolific developers.
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collaboration that defines its genre as open teamware scientific
software.9,10 The Q-Chem source code is open to a large group
of developers that currently includes more than 100 individuals
in at least 9 countries. Developers can submit their contributions
for inclusion in the official releases as long as the changes do not
violate the integrity of the overall package and are scientifically
sound. In addition, several Q-Chem modules are distributed as open
source software.11–17 Figure 2 illustrates some statistics regarding
developer activity derived from the Q-Chem source code reposi-
tory logs. These data provide clear evidence of the sustained growth
of the developer community and the code itself over the past
decade.

The Q-Chem collaboration has delivered useful and reliable
quantum chemistry software over the course of five major releases
(as documented in earlier review articles)18–20 and ≈15 minor
releases. The present paper addresses progress made since 2015 by
the relatively large team of academic developers and the relatively
small team of professional programmers who contribute to the pack-
age. The authors of this paper710 represent contributors to Q-Chem
v. 4 and v. 5, while contributors to earlier versions are recognized in
overview articles describing v. 2,18 v. 3,19 and v. 4.20

The remainder of this paper is organized as follows: Sec. II
provides an overview of density functional theory (DFT) capabilities
in Q-Chem, including a survey of the 200+ exchange–correlation
(XC) functionals that are presently available (Sec. II A).21 A variety
of excited-state DFT capabilities are described in Sec. II C, including
time-dependent (TD-)DFT in both its linear-response and its
explicitly time-dependent (“real-time”) versions. Next, Sec. III
describes single-reference correlated wave function methods
and other many-body capabilities, while Sec. IV describes
multireference methods. Section V highlights some specialty
features, including methods for computing core-level (x-ray)
excitation spectra, methods for describing metastable resonance
states, methods for computing vibronic lineshapes, and finally the
nuclear–electronic orbital (NEO) method for describing proton
quantum effects. Section VI surveys methods for describing
a molecule’s extended environment [e.g., quantum mechan-
ics/molecular mechanics (QM/MM), dielectric continuum, and
embedding methods]. Energy decomposition analysis methods are
described in Sec. VII. Section VIII describes the Q-Chem software
development environment, and Sec. IX provides an overview of
high-performance capabilities, including multithreaded parallelism
and algorithms that exploit graphics processing units (GPUs).
Section X describes graphical user interfaces (GUIs). Finally, Sec. XI
provides a wrap-up and a glimpse toward the future.

II. DENSITY FUNCTIONAL THEORY
Standard quantum mechanics, including wave function-based

quantum chemistry, employs an approximate N-electron wave
function ∣Ψ⟩ to evaluate the energy, E = ⟨Ψ∣Ĥ∣Ψ⟩. By contrast, DFT
is based on the Hohenberg–Kohn theorems,22–25 which assert that
the ground state energy E can be expressed as a functional of the elec-
tron density, E = E[ρ(r)]. While the exact functional is unknown
and is almost certainly unknowable in explicit form, tremendous
progress has been made toward achieving useful approximations.
After some minimal background, this section summarizes recent
aspects of that progress that are available in Q-Chem.

A. Exchange–correlation functionals
Nearly all modern density functionals are of the Kohn–Sham

type,23–26 in which the density is constructed from an auxiliary
Slater determinant ∣Φs⟩ composed of Kohn–Sham molecular orbitals
(MOs), {ϕk}. The determinant ∣Φs⟩ describes a system of nonin-
teracting electrons (or partially interacting electrons,27 for rungs
4 and 5 on the hierarchy in Fig. 3), which has the same den-
sity as the physical system of interest. This ensures so-called
N-representability24,25 and is also used to exactly evaluate the nonin-
teracting kinetic energy, Ts = −

1
2 ⟨Φs∣∇̂

2
∣Φs⟩. The Kohn–Sham DFT

energy is expressed as

E = Ts + Vext + EJ + EXC, (1)

where the electron–nuclear attraction term (or “external potential,”
Vext) and the classical Coulomb mean-field energy (EJ) are
known functionals of ρ(r). This leaves only the non-classical
exchange–correlation (XC) energy (EXC) as unknown, and density
functional approximations (DFAs) represent models for EXC.

Given a DFA, the energy is obtained by minimizing the energy
of Eq. (1) with respect to the density ρ(r) = ∑N

k ∣ϕk(r)∣2. This
minimization is equivalent to solving the Kohn–Sham eigenvalue
equation

F̂ϕk(r) = ϵk ϕk(r). (2)

This is a one-electron analog of the time-independent Schrödinger
equation. By analogy to the single-determinant Hartree–Fock
approach in wave function theory (WFT),28 the effective one-
electron Hamiltonian F̂[{ϕk}] is known as the Fock operator, and
it depends on its own eigenfunctions (as in Hartree–Fock theory).
The power of Kohn–Sham DFT is that that the solution of the
self-consistent field (SCF) problem in Eq. (2) would be equivalent

FIG. 3. Illustration of the ladder-based classification of density functionals. Also
shown at each rung are the top-performing functionals (out of 200 DFAs from
rungs 1–4), as assessed using the MGCD84 database containing nearly 5000 data
points.21 Adapted with permission from N. Mardirossian and M. Head-Gordon,
Mol. Phys. 115, 2315 (2017). Copyright 2017 Taylor and Francis.
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to solving the full N-electron Schrödinger equation, if the exact
functional EXC were available.

While that is sadly not the case, the lack of an exact XC
functional happily keeps electronic structure theorists gainfully
employed, and there are many useful DFAs that far exceed the
accuracy of the cost-equivalent Hartree–Fock method. The man-
ner in which different DFAs depend on various descriptors of
the density ρ(r) leads to five broadly recognized categories of
density functionals that are commonly visualized as rungs of
the metaphorical “Jacob’s ladder.”29,30 The rungs are illustrated
in Fig. 3. From lowest to highest, the rungs correspond to the
following:

1. Local Spin Density Approximation (LSDA). The LSDA func-
tional EXC[ρ(r)] depends strictly on the density and solves the
model problem of a uniform electron gas. Common fits to the
uniform electron gas data are known as VWN31 and PW92,32

which are quite similar.33 Most higher rungs of Jacob’s
ladder introduce corrections based on LSDA as a starting
point.

2. Generalized Gradient Approximations (GGAs). GGAs add
a dependence on ∇̂ρ(r) to EXC, making the ansatz
potentially exact for slowly varying electron densities, not
just uniform ones. Many useful GGAs have been developed,
including PBE,34 BLYP,35,36 and B97-D.37 Q-Chem 5 also
includes the nonseparable gradient approximation, GAM.38 It
is nowadays standard to add empirical dispersion corrections
(of the D, D3, or D4 form, for example) to these function-
als,39 in order to improve their performance for non-bonded
interactions.

3. Meta-GGAs. These functionals incorporate an additional
dependence on the kinetic energy density, τ(r). Function-
als on this rung are still under active development and
noteworthy recent meta-GGAs include SCAN,40 B97M-V,41

and revM06-L.42 The “-V” suffix in B97M-V indicates that
the functional also includes a nonlocal correlation functional
(VV10),43 which can (at least in principle) account for
dispersion interactions for the right physical reasons,44

whereas “semilocal” functionals that depend only on
ρ(r), ∇̂ρ(r), and/or τ(r) lack the nonlocality to describe
correlated density fluctuations between nonoverlapping
densities.

4. Hybrid functionals. Hybrid DFAs include some portion of
the “exact” (or Hartree–Fock) exchange energy associated
with the Kohn–Sham determinant. The traditional approach
has used a fixed fraction of exact exchange, and such
functionals are known as “global” hybrid functionals.
Popular examples include B3LYP,35,36 PBE0,45 and M06-2X,46

while some more recent and noteworthy examples of global
hybrids include SCAN0,47 MN15,48 and revM06.49 A popu-
lar alternative to global hybrids uses a variable fraction of
exact exchange that typically increases with the inter-electron
distance, r12. These are known as range-separated hybrid
(RSH) functionals, and notable older examples include
ωB97X50 and ωB97X-D,51 while newer examples include
ωB97X-V52 and ωB97M-V.53 More specialized RSH function-
als are also widely used for time-dependent DFT calculations
of excited states; see Sec. II C.

5. Double-Hybrid (DH) functionals. Hybrid DFAs depend
only on the occupied Kohn–Sham orbitals, but DH-DFAs
add an additional dependence on the virtual (unoccupied)
Kohn–Sham MOs, which facilitates description of nonlocal
electron correlation, as in second-order Møller–Plesset
perturbation theory (MP2). DH-DFAs have undergone
rapid recent development,54,55 and established models
such as B2PLYP-D3,56 XYG3,57 and ωB97X-258 have
been joined by promising new DH-DFAs, including
ωB97M(2),59 and a slew of functionals that involve empirical
scaling of the MP2 spin components.60–62 Relative to the lower
rungs of the ladder, the prospect of higher accuracy from
DH-DFAs also comes with the cost of significantly higher
computational demands, and significantly slower convergence
of the results toward the complete basis set limit.

With respect to DFT, the most important feature of Q-Chem is
that an exceptionally rich set of density functionals is supported: well
over 200 functionals are available for a user to choose between.21 A
closely related feature is that Q-Chem contains a very complete set
of methods for accurate treatment of dispersion interactions. These
include Grimme’s D,37 D3,63,64 and D4 corrections,65 as well as a
variety of nonlocal correlation and van der Waals functionals,43,66–68

the exchange dipole model (XDM),69,70 the Tkatchenko–Scheffler
(TS) model,71 and the many-body dispersion (MBD) model.72–74 In
addition, for calculations on large molecules using the small def2-
SVPD basis set,75,76 a built-in geometric counterpoise correction
method (the so-called DFT-C approach77) is available. Q-Chem also
has analytic nuclear gradients and Hessians for most of this long list
of functionals through rung 4. Some modern DFAs are more chal-
lenging to integrate than older ones, and a set of modern quadrature
grids is available,78 with sensible defaults.

This broad selection of available functionals is a perhaps unfor-
tunate necessity due to the fact that the “best” functional often
depends on the problem at hand. According to Pople’s concept
of a theoretical model chemistry,79,80 one should validate candidate
approximations using known results that are related (as closely
as possible) to the desired area of chemical application and then
proceed to make predictions for related but unknown systems.
The best functional(s) for modeling hydrogen storage in a host
material,81 for example, may differ significantly from the best
functional(s) to describe elementary steps in a CO2 reduction
catalyst,82 or the best functional may even differ from one catalyst
to another,83 as dictated by the need to get reduction potentials in
reasonable agreement with experiment. (Excited-state calculations
bring in a host of other considerations,84–89 as discussed in Sec. II C.)
Problem-specific validation of the choice of DFA for a given applica-
tion is therefore a good idea, particularly if there are good available
data to benchmark several candidate DFAs.

To bring some order to this situation, it is important to
recognize that there are general classes of energy differences that
are common to most applications in chemistry. Such classes include
non-covalent interactions, thermochemical energy differences,
isomerization energies, and reaction barrier heights. The large
main-group chemistry database (MGCDB84) developed by
Mardirossian and Head-Gordon is categorized along these lines
and contains 84 distinct subsets and almost 5000 data points.21 The
top-ranked functional at each rung of Jacob’s ladder, according to
this dataset, is shown in Fig. 3.
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The GMTKN55 dataset is another large diverse set of bench-
marks for main-group chemistry,90 and Fig. 4 summarizes the
performance of a large range of functionals for this dataset.
Consistent with the Jacob’s ladder taxonomy, the performance of the
best functional improves at each rung of the ladder, showing that
the inclusion of additional physical content does indeed improve
accuracy. While it is often (correctly) stated that DFT results on a
given molecule are not systematically improvable by switching from
one functional to another, these results illustrate that in a statistical
sense, DFT does systematically improve when represented by the
best functional at each rung of the ladder. The same need not be
true if one considers worse-performing functionals at each level,
as the additional flexibility associated with higher rungs on Jacob’s
ladder makes it quite possible to overfit complicated functional
forms using limited data, especially where meta-GGA functionals
are concerned.

Diving a bit deeper into the data shown in Fig. 4 reveals a variety
of other interesting observations.

● LSDA (rung 1) is essentially useless for chemical applica-
tions. A good GGA such as B97-D3 is the simplest and
lowest-cost DFT method that is useful for chemistry.

● A good meta-GGA, as exemplified by B97M-V, offers strik-
ing improvements over the best GGA across all categories.
It is clear that meta-GGAs can deliver significantly higher
accuracy than GGAs.

● Significant further improvement is delivered by the best
hybrid functionals, exemplified by ωB97X-V as a RSH-GGA
and ωB97M-V as a corresponding RSH-meta-GGA. This
improvement arises primarily from better accuracy for
barrier heights, thermochemistry, and isomerization ener-
gies. There is good reason for hybrids to be a default choice
for chemical modeling.

● The best DH-DFAs offer further improvements in the same
categories where hybrids improve over meta-GGAs: bar-
rier heights, thermochemistry, and isomerization energies.
However, the significantly higher cost of DH-DFAs means
that they are often used only for single-point energy calcula-
tions at stationary points optimized at lower levels of theory.
Q-Chem includes the efficient occ-RI-K algorithm92 to sig-
nificantly reduce the additional compute cost of DH-DFAs.
Some parallel timings are given in Sec. IX.

● The gap in accuracy between DFT and the best wave
function theories remains quite substantial. For both
bonded and non-bonded interactions, errors associated with
coupled-cluster (CC) methods that include triple excitations
[CCSD(T) or better] are on the order of 5× smaller than
those for the best rung-5 density functionals.59 Therefore,
despite the much higher computational costs, there remains
strong incentive to perform CC calculations when possi-
ble. Some of Q-Chem’s CC capabilities are described in
Sec. III.

Further details regarding the combinatorial design strategy
used to obtain the best functionals at rungs 3, 4, and 5 can be found
in the work of Mardirossian and Head-Gordon.41,52,53,59 It should be
noted that statistical assessments of DFAs are only as transferable as
the data they are built upon. The transferability of the conclusions
discussed above to similar systems is supported by the fact that
broadly similar conclusions can be drawn from other large-scale
data assessments, e.g., comparing MGCDB84 vs GMTKN55 for
main-group compounds. It is a separate issue to investigate the
performance of density functionals for very different classes of
molecules, such as transition metal compounds. (These have
been the target of several other recent benchmark studies.93,94)
Similarly, interest in the quality of densities derived from DFT must

FIG. 4. Weighted errors (in kcal/mol) for a range of functionals, assessed using the GMTKN55 dataset and arranged according to the rungs of Jacob’s ladder in Fig. 3. The
figure is adapted from Ref. 90 but includes additional data from Refs. 91 and 62. Adapted with permission from Goerigk et al., Phys. Chem. Chem. Phys. 19, 32184 (2017).
Copyright 2017 Published by the PCCP Owner Societies.

J. Chem. Phys. 155, 084801 (2021); doi: 10.1063/5.0055522 155, 084801-9

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

be separately assessed, either directly95 or via properties such as
electrical moments.96–99 Similar considerations apply to other
molecular properties, such as polarizabilities100 and nuclear
magnetic resonance (NMR) chemical shifts.101

B. Thermally assisted-occupation DFT
Systems with strong static correlation remain very challenging

for conventional Kohn–Sham DFT. Q-Chem 5 contains thermally
assisted-occupation (TAO-)DFT,102–104 an efficient means to explore
ground-state properties of large electronic systems with strong
static correlation. Unlike Fermi smearing105 (also supported by
Q-Chem), which is a convergence aid for small-gap systems,
TAO-DFT aims to access densities beyond those obtainable
from a single Kohn–Sham determinant. TAO-DFT is similar to
Kohn–Sham DFT in computational complexity but represents the
ground-state electron density in terms of orbitals with fractional
occupation numbers governed by a Fermi–Dirac distribution at
a fictitious temperature that is related to the strength of static
correlation. In TAO-DFT, static correlation can be approximately
described by the entropy contribution,102 even when semilocal102,103

or hybrid104 density functionals are employed. A self-consistent
scheme defining the fictitious temperature has been recently
developed for diverse applications.106 By combining computational
efficiency with reasonable accuracy, TAO-DFT is well positioned
to investigate the ground-state properties of electronic systems at
the nanoscale, especially those possessing strong static correlation
effects.107–111 TAO-DFT has recently been combined with ab initio
molecular dynamics.112

C. Excited-state DFT methods
The TDDFT approach113,114 extends ground-state DFT to elec-

tronically excited states via the linear response (LR) formalism,115,116

incorporating electron correlation at a computational cost equiv-
alent to its uncorrelated Hartree–Fock analog, the configuration-
interaction singles (CIS) method.114 This relatively low cost makes
LR-TDDFT (Sec. II C 1) the most widely used method for computing
vertical excitation spectra and for exploring excited-state potential
energy surfaces (computational photochemistry, Sec. II C 2). An
alternative to the LR formalism is “real-time” TDDFT,117,118 also
known as time-dependent Kohn–Sham (TDKS) theory,119–121 which
is discussed in Sec. II C 3 and which can be used to compute
broadband excitation spectra. Finally, an altogether different
category of DFT-based excited-state methods is the ΔSCF formal-
ism, which is a state-specific approach that fully accounts for orbital
relaxation in the excited state and can be used to describe challeng-
ing problems such as excited-state charge separation and states with
double-excitation character, thereby sidestepping known systemic
problems with LR-TDDFT while retaining SCF cost. The ΔSCF
approach is discussed in Sec. II C 4.

1. LR-TDDFT
Despite its popularity, LR-TDDFT does have systemic prob-

lems for certain classes of excited states, the most infamous of
which is its dramatic underestimation of excitation energies having
charge-transfer (CT) character.85–87,122–127 Nevertheless, this method
often achieves an impressive statistical accuracy of 0.2–0.3 eV for

low-lying valence excitation energies,128 giving it a wide domain of
applicability despite recognized shortcomings.

The CT problem, in particular, can be largely ameliorated
through the use of long-range corrected (LRC) functionals,84–89

which are RSH functionals in which the fraction of Hartree–Fock
exchange is required to go to unity as r12 →∞. The most popular
such functional is LRC-ωPBE,87,129 along with its short-range
hybrid cousin, LRC-ωPBEh,126 although other variants are
available, including LRC-μBLYP and LRC-μBOP.86,88,130 In addition
to these LRC-GGAs, Q-Chem 5 also includes the relatively new
revM11 functional,131 a LRC-meta-GGA functional specifically
optimized for long-range CT excitations.

For best results, the range-separation parameter (ω or μ) is
often “tuned” in order to set the frontier energies based on the
molecule’s own (ΔSCF) ionization energy (IE),89,132–134

IE(ω) = −ϵHOMO(ω). (3)

In Q-Chem 5, an alternative “global density-dependent” (GDD)
tuning procedure is available.135–137 Following a standard SCF
calculation with a functional such as LRC-ωPBE, the GDD pro-
cedure automatically determines a new tuned value (ωGDD) based
on the size of the exchange hole. This approach appears to avoid
system-size-dependent problems with the value of ω tuned accord-
ing to Eq. (3).137

2. Exploring excited-state potential surfaces
Q-Chem 5 contains new tools that enable the exploration of

excited-state potential energy surfaces with LR-TDDFT, includ-
ing algorithms for locating minimum-energy crossing points
(MECPs) along conical seams. For a molecule with nvib = 3natoms − 6
vibrational degrees of freedom, the conical seam (or “conical
intersection”) is a (nvib − 2)-dimensional subspace within which
two electronic states are exactly degenerate. Conical intersections
serve as photochemical funnels for nonadiabatic dynamics,138,139 so
locating the MECP (i.e., the lowest-energy point within the degen-
erate subspace) can help to rationalize excited-state dynamics by
providing a single chemical structure to represent the whole seam
space.140

Orthogonal to the conical seam is the two-dimensional branch-
ing space, within which any infinitesimal displacement lifts the
degeneracy between electronic states ∣ΨJ⟩ and ∣ΨK⟩.138,141 The
branching space is spanned by two (nonorthogonal) vectors,

gJK =
∂EJ

∂R
−
∂EK

∂R
(4)

and

hJK = ⟨ΨJ∣
∂Ĥ
∂R
∣ΨK⟩, (5)

where R indicates the nuclear coordinates. Operationally, the
gradient difference (“g-vector”) is easily computed using any
excited-state method for which analytic gradients are available, but
the nonadiabatic coupling (“h-vector”) is less routinely available.
Analytic h-vectors are available in Q-Chem 5 for both CIS and
LR-TDDFT,141–145 which greatly facilitates efficient optimization

J. Chem. Phys. 155, 084801 (2021); doi: 10.1063/5.0055522 155, 084801-10

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

of MECPs by means of a projected-gradient algorithm that opti-
mizes directly in the seam space.146 Alternatively, for excited-state
methods where analytic gradients (and therefore gJK ) are available
but analytic derivative couplings (hJK ) are not, Q-Chem provides a
branching-plane updating algorithm to optimize MECPs.140,147 This
is significantly more efficient140 than alternative penalty-function
methods,148 which can also be used in the absence of hJK . The
projected-gradient algorithm is the most efficient approach of all,
however, converging in fewer steps while the computation of hJK
adds a modest 10%–20% overhead to the cost of computing the gra-
dients for states J and K.142,149,150 For molecules with intersystem
crossing, analytic gradients and derivative couplings at the CIS and
LR-TDDFT levels are available within both the spin-diabatic and
spin-adiabatic representations.151,152

Nonadiabatic trajectory simulations at the LR-TDDFT level are
available in Q-Chem and take advantage of these analytic deriva-
tive couplings. These simulations can be performed using the Tully’s
“fewest switches” surface hopping (FSSH) algorithm153,154 or using
an “augmented” FSSH algorithm that includes decoherence effects
on the electronic amplitudes.155,156 These corrections are necessary
in order to maintain detailed balance and to describe both short- and
long-time relaxation dynamics, including Marcus theory.157–159 A
Python framework for performing FSSH simulations using Q-Chem
is also available.160

A systematic shortcoming of LR-TDDFT that is relevant here
is an incorrect description of the topology around any conical
intersection that involves the ground state; in such cases, the branch-
ing space predicted by LR-TDDFT is one-dimensional rather than
two-dimensional.141,161 This problem has its roots in the fact that any
excited-state method based on response theory treats the “reference
state” (usually the ground state) in a fundamentally different
manner as compared to the “response” (excited) states. This can
cause difficulties when the reference state becomes quasi-degenerate
with the lowest excited state, and in the context of nonadiabatic
trajectory simulations, this imbalance can manifest as SCF
convergence failure in the vicinity of a conical intersection.162

The “spin–flip” approach to LR-TDDFT163–165 resolves this prob-
lem141,142 by using a reference state with a different spin multiplicity
as compared to the target states of interest. An example is shown
in Fig. 5, which depicts the excitation space for a case where a
high-spin triplet reference state is used to generate determi-
nants for singlet states, including the closed-shell S0 ground state.
The spin–flip single-excitation manifold contains a subset of the
possible determinants that are doubly excited with respect to S0,
including the one (in the “o–o” subspace in Fig. 5) that is necessary
to provide proper topology at the S0/S1 conical intersection.142,161 In
Q-Chem 5, nonadiabatic coupling vectors hJK are available for both
conventional and spin–flip variants of LR-TDDFT.142

While the spin–flip approach rigorously cures the topology
problem at conical intersections,141,142 it unfortunately exacerbates
problems with spin contamination. This is especially true as one
moves away from the Franck–Condon region and starts to break
bonds, for which singlet and triplet states often become comparable
in energy, and may necessitate the use of state-tracking algorithms to
ensure that a geometry optimization or dynamics trajectory remains
on a potential surface of consistent spin multiplicity.166–169 At the
heart of this problem is the fact that each of the determinants
in the c-o, o-v, and c-v subspaces in Fig. 5 is missing one or

FIG. 5. Illustration of the spin–flip TDDFT excitation space for a (4e, 4o) model,
starting from a high-spin triplet reference. Proper spin eigenfunctions can be
formed from the four determinants in the o–o subspace, but the remaining deter-
minants are missing one or more complementary spin functions. Adapted from
X. Zhang and J. M. Herbert, J. Chem. Phys. 143, 234107 (2015) with the
permission of AIP Publishing.

more of the complementary determinants170–172 needed to form an
Ŝ2 eigenstate. The missing determinants are absent because they
cannot be generated from the reference state via a single excitation
combined with a single α→ β spin flip. However, these determi-
nants can be generated, in an automated manner that does not
increase the formal computational scaling of LR-TDDFT, by means
of a tensor equation-of-motion (EOM) formalism.169,173–175 This
formalism has been used to develop a “spin-adapted spin–flip”
(SA-SF) TDDFT method,169 which preserves proper topology at
conical intersections but also restores spin multiplicity as a good
quantum number. Figure 6 shows that SA-SF–TDDFT results are

FIG. 6. Potential energy curves for the singlet N [(π)2
(π∗)0], V [(π)1

(π∗)1],
and Z [(π)0

(π∗)2] states of C2H4, twisting along the C–C axis, computed using
various spin–flip methods in comparison to multireference benchmarks. Both SA-
SF-TDDFT and SA-SF-CIS correctly describe the topology around a conical inter-
action, but the latter lacks dynamical correlation and therefore excitation energies
are not accurate. Adapted from X. Zhang and J. M. Herbert, J. Chem. Phys. 143,
234107 (2015) with the permission of AIP Publishing.
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close to multireference benchmarks for the challenging problem of
twisting ethylene by 90○ about its C–C axis. Analytic gradients for
SA-SF-TDDFT are not yet available, but this method can be used to
check the veracity of any heavily spin-contaminated results that are
obtained with other flavors of LR-TDDFT.

SF-TDDFT methods are also suitable for treating other types
of electronic structure that are not accessible by the standard
Kohn–Sham DFT, such as polyradicals and single-molecule
magnets.163,164,176,177

3. “Real-time” TDDFT
The term “TDDFT” is used almost universally to refer specifi-

cally to LR-TDDFT, which despite its name is a strictly frequency-
domain theory with no explicit time dependence, at least not
within the ubiquitous adiabatic approximation that is used in all
practical implementations.114,115 However, just as the ground-state
Kohn–Sham problem is based on a one-electron analog of the
time-independent Schrödinger equation [Eq. (2)], at the founda-
tion of TDDFT is a one-electron analog of the time-dependent
Schrödinger equation, which governs the time evolution of ∣Φs⟩

and thus the Kohn–Sham MOs. The latter evolve in time
according to

ih̵
dϕk(r, t)

dt
= F̂ϕk(r, t). (6)

Using this TDKS equation, the MOs can be propagated in time
following a perturbation of the ground state density at t = 0
that generates a (non-stationary) superposition of excited states.
Information about electronic excitation energies is encoded into the
time evolution of this superposition state, and an entire broadband
excitation spectrum can be obtained via Fourier transform of the
time-dependent dipole moment function, with a spectral resolution
that improves upon further time propagation.117,178 This approach
has been given the unwieldy moniker of “real-time” TDDFT,117,118

although calling it TDKS theory avoids confusion with the more
widespread LR-TDDFT approach.119–121

In the limit of a weak perturbation at t = 0, propagated to
t →∞ to obtain narrow spectral lines, TDKS spectra are equiva-
lent to those obtained using LR-TDDFT,178 but the TDKS approach
need not be limited to the weak-field LR regime and can be used to
explore strong-field dynamics,179 strong-field ionization,180–183 and
high-harmonic spectra,120,184–187 for example. [Ionization requires
the use of complex absorbing potentials (CAPs), which are dis-
cussed in Sec. V B. These are available for use in TDKS simula-
tions,120,121 along the lines of the atom-centered potentials described
in Refs. 180–183.] In this way, TDKS simulations can describe
time-dependent electron dynamics beyond the Born–Oppenheimer
approximation, where the electrons are out of equilibrium with
the nuclei. At present, Q-Chem’s implementation of the TDKS
method120,121 is limited to clamped-nuclei simulations, meaning
electron dynamics only.

Time propagation according to Eq. (6) is complicated by the
fact that F̂ depends on the MOs and thus the effective Hamiltonian
is time-dependent. The most widely used propagation algorithm is
the modified-midpoint method,188 for which the cost of one time
step is the same as the cost of one SCF cycle of a ground-state
calculation. (It should be noted that for electron dynamics, the

fundamental timescale is attoseconds, and therefore, time steps
Δt ∼ 0.04 a.u. = 10−18 s are typical.119) Q-Chem’s implementation
of the TDKS approach also contains several predictor/corrector
algorithms as alternatives to the modified-midpoint approach.119

These are stable over longer time steps Δt and furthermore facil-
itate on-the-fly detection of instabilities that can lead to spurious
peak-shifting but are not always evident simply by monitoring
energy conservation, which is a necessary but not a sufficient
condition for accurate integration of Eq. (6).119

Figure 7 illustrates a TDKS calculation of a broadband
excitation spectrum, corresponding to x-ray absorption (XAS) at
the oxygen K-edge above 530 eV.120,121 This spectrum was obtained
from 7.3 fs of time propagation with Δt = 0.02 a.u. (meaning
15 140 time steps) using Padé approximants to accelerate con-
vergence of the Fourier transform.120,121,190 Also shown are two
LR-TDDFT excitation spectra computed using the same functional
and basis set, which reproduce the same basic features; however,
hundreds of excited states are required in order to get beyond the
near-edge peak, corresponding to the O(1s) → LUMO transition.
In the TDKS approach, the carbon or nitrogen K-edge spectra (at
lower excitation energies) are obtained from the same calculation,
although the sulfur K-edge appears at significantly higher energy
(above 2400 eV) and requires a smaller time step. In contrast,
LR-TDDFT excitation spectra must be computed in terms of indi-
vidual eigenstates; frozen occupied orbitals are required in order
to make core-level excitations emerge as the lowest-energy states,
and even so, hundreds of eigenstates are required to converge
the features of the spectrum. For the LR-TDDFT calculations in
Fig. 7, only the two O(1s) orbitals of the methionine molecule
were active from the occupied space. Despite this restriction, several

FIG. 7. Absorption spectra of methionine at the oxygen K-edge computed at the
level of SRC1-R1189/def2-TZVPD.75,76 A broadband TDKS calculation is shown
along with two LR-TDDFT spectra using different numbers of roots. The former
is obtained from 7.3 fs of time propagation with Δt = 0.02 a.u. The LR-TDDFT
calculations use an active space consisting of all virtual MOs but only the O(1s)
orbitals from the occupied space. Features below 531 eV in the TDKS spectrum
correspond to N(1s) → continuum transitions that are excluded by this active-
space approximation. Data are taken from Ref. 121.
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hundred states are required in order to access excitation energies
above the first near-edge features, and this quickly becomes
prohibitive for large molecules, especially in terms of memory.
These requirements for the LR-TDDFT calculation can be reduced
by judicious use of frozen orbitals,191,192 and much larger exam-
ples (e.g., C70) have been reported using Q-Chem’s LR-TDDFT
code.191 However, the memory requirement for TDKS (without
approximation) is a mere 2× the memory for a ground-state SCF
calculation, which is quite minimal. That said, whereas LR-TDDFT
naturally provides CIS-like excitation amplitudes that characterize
each excited state, from TDKS calculations it is more difficult to
extract information regarding the specific MOs that contribute to
various spectral features, although some ideas to this end have been
put forward.190,193

Some of these same considerations apply when many-body
methods are used to compute x-ray spectra, as described in Sec. V A.
The LR-TDDFT approach to core-level spectroscopy is discussed
alongside these approaches in that section.

4. ΔSCF and ROKS methods
LR-TDDFT tends to fail systematically for excited states that

involve a significant change in the density, including the afore-
mentioned CT excitations, but also states with double-excitation
character,194 which are often either missing entirely from the
LR-TDDFT excitation spectrum or else are badly in error. Both
types of states are characterized by significant orbital relaxation.
Indeed, it has recently been argued that much of what passes
for double-excitation character (e.g., in the well-known case of
the 21Ag state of butadiene) is simply orbital relaxation and that
double excitations are required within a single-reference CI
formalism simply because the optimal excited-state MOs are very
different from those optimized for the ground state.195 In such cases,
it may make sense to optimize the MOs for the excited state directly.
This is the basis for the “ΔSCF” approach to excitation energies, in
which one uses an orbital-relaxed, non-aufbau Slater determinant
as an approximation for the excited-state wave function. In
general, these non-aufbau solutions are saddle points (rather
than local minima) in the space of MO coefficients, and orbital
optimization runs the risk of variational collapse to the ground-state
solution.

A popular means to overcome this limitation is the max-
imum overlap method (MOM) of Gill and co-workers,196–198

which has been improved in Q-Chem 5 by the addition of an
“initial MOM” (IMOM) variant.198 Starting from a user-specified
non-aufbau electron configuration (using MOs determined from a
previous calculation), the MOM and IMOM algorithms attempt to
preserve the character of this state at each step of the SCF orbital
optimization procedure. While the IMOM algorithm tends to be
more robust as compared to the original MOM, neither one is
guaranteed to avoid variational collapse. Q-Chem 5 offers two
new algorithms that are much more reliable in this capacity:
squared-gradient minimization (SGM)199 and state-targeted energy
projection (STEP).200

The SGM algorithm converts the unstable saddle-point search
associated with excited-state orbital optimization into a simpler
minimization problem by considering the squared-gradient
∥∂L/∂θ∥2 of an excited-state Lagrangian L(θ), where θ is a vector
of orbital-rotation variables. SGM is far more robust than either

MOM or IMOM, although it is a few times more expensive (per
iteration) as compared to the ground-state SCF technology that
underlies MOM,199 and furthermore, not every local minimum
of ∥∂L/∂θ∥2 corresponds to a physically meaningful state.200 An
alternative is the STEP algorithm, which has the same cost as MOM
but tends to be more robust.200 This approach uses a level-shift in
order to optimize a determinant containing a “hole” in the occupied
space, using nothing more than the ground-state machinery of
iterative Fock-matrix diagonalizations.

Both the SGM and STEP algorithms succeed in a variety of
cases where MOM and IMOM suffer variational collapse.199,200

For a challenging database of doubly excited states,201 ΔSCF exci-
tation energies computed with the B97M-V functional are only
0.15 eV away from theoretical best estimates, with a maximum
error <0.5 eV.199,200 (Errors for the same dataset at the CC3
level are ∼1 eV,201 despite the inclusion of triple excitations.)
The ΔSCF approach can also be used for ionization energies,
to access the full valence photoelectron spectrum by systemat-
ically removing an electron from orbitals below the HOMO.200

Because the ΔSCF approach is based on ground-state machinery,
analytic nuclear gradients and even analytic Hessians are avail-
able for many different density functionals. Geometry optimization
can be performed in the presence of a valence hole in order to
compute the adiabatic ionization energy for ionization below the
HOMO.200

As a showcase of the ΔSCF approach, Fig. 8(a) presents
a computed absorption spectrum for the chlorin moiety of
chlorophyll a.200 In accordance with Gouterman’s four-orbital
model,203 the ΔSCF calculation includes the four excitations that
are shown in Fig. 8(b), and the result is in semiquantitative agree-
ment with a recent gas-phase experimental spectrum.202 It is worth
noting that the ΔSCF approach uses a single Slater determinant to
describe the excited-state wave function, but for an open-shell sin-
glet, a minimum of two determinants is required in order to obtain a
spin eigenstate. It is therefore not unusual for the ΔSCF wave func-
tions to exhibit ⟨Ŝ2

⟩ ≈ 1 (in units of h2), indicating approximately
equal mixture of singlet and triplet. A simple spin-purification
procedure,204,205

Esinglet ≈ 2Emixed − Etriplet, (7)

can be used as an a posteriori correction that requires only the
triplet energy (Etriplet) in addition to the spin-contaminated energy
Emixed.

A more elaborate method is to optimize the orbitals directly
using Eq. (7) as the total energy expression, which forms the basis of
the restricted open-shell Kohn–Sham (ROKS) formalism.206,207 ROKS
has been found to be effective in predicting energies of excited
states of small molecules,207 as well as charge-separated excited
states of organic light emitting diode materials,208 to an accuracy
of ∼0.2–0.3 eV. In conjunction with the SGM algorithm, the ROKS
approach can be used to predict core-level excitation energies to
an accuracy of 0.2–0.3 eV,209 as described in Sec. V A. Nuclear
gradients for ROKS are available in Q-Chem,207 permitting geom-
etry optimizations and (finite-difference) frequency calculations in
the excited state. Finally, note that Eq. (7) is only appropriate in the
case of two unpaired electrons, and more elaborate treatments are
necessary in more complicated cases.210–212
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FIG. 8. (a) Absorption spectra of the Mg-chlorin chromophore of Chl a (structure
shown), comparing a gas-phase experimental spectrum202 to a ΔSCF calculation
at the B97M-V/def2-TZVPD level, which is then spin-purified using Eq. (7).200 (b)
Four-orbital model demonstrating the states that were targeted using the STEP
algorithm and included in the excitation spectrum shown in (a). Adapted with per-
mission from K. Carter-Fenk and J. M. Herbert, J. Chem. Theory Comput. 16, 5067
(2020). Copyright 2020 American Chemical Society.

III. MANY-BODY METHODS
Whereas Jacob’s ladder of DFT provides a hierarchy of

methods that are improvable only in a statistical sense, meaning
that the best functionals on a given rung are usually (but not
always) better than the ones on the rung below, many-body
approaches to the electron correlation problem provide a systematic
and rigorous way to approach the exact solution for any given
molecule.213 Particularly powerful are the hierarchical approxi-
mations built upon the Møller–Plesset (MP) perturbation theory
and coupled-cluster (CC) frameworks,214 which do not involve
system-specific parameterization. Q-Chem offers fast and efficient
implementations of the standard many-body approaches, includ-
ing MP2, MP3, CCSD, and CCSD(T). These codes exploit
shared-memory parallelism (OpenMP) as well as numerous cost-
reduction and resource-reduction techniques. Among these are

resolution-of-identity approximations (also known as density
fitting),215 Cholesky decomposition of the electron repulsion
integrals (ERIs),215,216 frozen natural orbitals,217,218 and efficient
tensor libraries.12,13 Mixed-precision CC and EOM-CC calcula-
tions are also available for energies, properties, and gradients.219

Q-Chem 5 also features mixed precision (T) calculation. A com-
bination of these techniques enabled calculations of magnetic
properties of single-molecule magnets and even infinite spin-chains
at the CC/EOM-CC level of theory.177,220–223 A new object-oriented
implementation of the MP2 energy and gradient and of MP3
energies (including orbital-optimized variants) requires no storage
of amplitudes or four-index electron repulsion integrals and is
optimized for OpenMP parallelism.

Single-reference wave function methods can be extended to
tackle many problems traditionally described as “multi-reference.”
For example, many types of open-shell and electronically excited
species can be handled by equation-of-motion (EOM)-CC meth-
ods224–226 as well as by methods based on the algebraic diagrammatic
construction (ADC).227 At the same time, Q-Chem also contains
methods based on the CI formalism, including active-space methods
for the treatment of strong correlation. Those methods are described
in Sec. IV, whereas the present section highlights some examples of
new development in MPn and CC methods.

A. Extensions of MPn theory
MPn theory is traditionally applied to the Hartree–Fock deter-

minant, on the assumption that it is the best single-determinant
approximation to the correlated wave function, an assumption that
may not be valid for open-shell systems or cases where static cor-
relation is important. Deficiencies of Hartree–Fock orbitals include
excessive spin polarization (i.e., artificial symmetry breaking)228 and
charge distributions that are slightly too diffuse and too polar.229

These deficiencies can be addressed using orbital-optimized (OO)
approaches in which the orbitals are determined by minimizing a
correlated energy expression. In the context of MP2, this can be
done using either the opposite-spin correlation energy230 or the
total MP2 correlation energy.231,232 However, OOMP2 exaggerates
correlation effects and this can lead to artifacts, especially when
orbital energy gaps become small.233 This issue is addressed by an
improved version of OOMP2, termed κ-OOMP2,234 which applies
a novel energy-dependent regularization to the electron repulsion
integrals,

⟨ij∥ab⟩(κ) = ⟨ij∥ab⟩[1 − exp(−κΔab
ij )]. (8)

This removes divergences associated with small denominators
Δab

ij = ϵa + ϵb − ϵi − ϵj in the κ-OOMP2 energy expression

E = E0 −∑
i<j
∑
a<b

[⟨ij∥ab⟩(κ)]2

Δab
ij

. (9)

With the recommended choice of κ = 1.45 a.u., κ-OOMP2 signifi-
cantly improves upon standard MP2 for thermochemical properties,
non-covalent interactions, and reaction barrier heights.
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The use of κ-OOMP2 orbitals also sidesteps artificial symmetry
breaking, and in this capacity the method can be useful for
diagnosing the presence of strong correlation. By design, κ-OOMP2
includes a simple treatment of dynamical (or weak) correlation but
zero contribution in the strongly correlated limit.235 In molecules
without strong correlation, spin symmetry-breaking (SSB) exhib-
ited by Hartree–Fock orbitals is dramatically reduced by κ-OOMP2,
signifying that the SSB in question was “artificial,” caused by the
absence of dynamic correlation. In molecules with strong correla-
tion, Hartree–Fock SSB is preserved in the κ-OOMP2 orbitals, sig-
nifying the presence of essential SSB associated with multireference
character.

This approach helped to resolve a controversy236,237 regarding
the character of electron correlations in fullerenes. Hartree–Fock
theory shows dramatic SSB in C60, with the global-minimum
solution exhibiting complex and general symmetry breaking,
which has been interpreted as a signature of strong correlation
and polyradical character. However, the κ-OOMP2 global-
minimum orbitals remove this artificial SSB and are spin-pure, thus
establishing that C60 is not a strongly correlated system, which
is consistent with other observables.235 By contrast, more
reactive fullerenes, such as C30, do exhibit essential SSB in
κ-OOMP2. In conjunction with other observables, this confirms the
presence of strong correlations in their ground states. By using
κ-OOMP2 with either spin projection or complex orbitals, one can
treat large diradicaloid systems, on the size scale of the reactive
fullerenes.238

The κ-OOMP2 energy and gradient are implemented in
Q-Chem 5 within a modern MPn suite that includes MP3. The
long-neglected MP3 ansatz, when used with orbitals from either
κ-OOMP2 or a good DFA, can deliver accuracy comparable to
that of CCSD but is 20–30× faster.239,240 Figure 9 illustrates the
improvement of κ-OOMP2 relative to MP2, as well as the dramatic
improvement in MP3 when using κ-OOMP2 orbitals instead of
Hartree–Fock orbitals.

FIG. 9. RMS errors (in kcal/mol) relative to benchmark CCSD(T) values for seven
different datasets assessed using MP2, MP3, and CCSD methods. Reprinted with
permission from Bertels et al., J. Phys. Chem. Lett. 10, 4170 (2019). Copyright
2019 American Chemical Society.

B. CC/EOM-CC and ADC methods for open-shell
and electronically excited species

Q-Chem contains an ever-growing suite of many-body meth-
ods for describing open-shell molecules and excited states.172

The EOM-CC224–226 and ADC227,241 formalisms are two power-
ful approaches for describing multiconfigurational wave functions
within a black-box single-reference formalism. Target states ∣Ψex⟩

are described as excitations from a reference state ∣Ψ0⟩,

∣Ψex⟩ = R̂∣Ψ0⟩, (10)

where R̂ is an excitation operator parameterized via amplitudes that
are determined by solving an eigenvalue problem. In EOM-CC,
these amplitudes are eigenvectors of the effective Hamiltonian

H = e−T̂ĤeT̂ , (11)

in which T̂ is either the CC or the MP2 operator for the reference
state. Currently, EOM-CCSD and EOM-MP2 models are avail-
able. In ADC, an effective shifted Hamiltonian is constructed
using perturbation theory and the intermediate state representation
(ISR) formalism,227,241 similar to Eq. (10), to afford

M = ⟨Ψex∣Ĥ − E0∣Ψex⟩, (12)

where E0 is the energy of the MPn reference state. Diagonaliza-
tion of the Hermitian matrix M yields excitation energies, and the
ADC eigenvectors give access to the excited-state wave function.
Second-order standard ADC(2), extended ADC(2)-x, and ADC(3)
are available.241 For the second-order ADC schemes, spin-opposite-
scaled (SOS) variants are also implemented.242

Various EOM-CC and ADC models are defined by the choice
of reference state ∣Ψ0⟩ and excitation operator R̂, as illustrated in
Fig. 10. The following models are available:224,227,241 EE (excita-
tion energies), IP (ionization potentials), EA (electron affinities),
SF (spin–flip, for triplet and quartet references), 2SF (double SF,
for quintet references); DIP (double IP), and DEA (double EA).
At present, the 2SF, DIP, and DEA variants are only available in
combination with an EOM treatment.243

Analytic gradients244,245 and properties246–248 are available for
most of these models, including transition properties between
different target states (e.g., transition dipoles, angular momentum,
and electronic circular dichroism rotatory strengths),249 nonadi-
abatic couplings,250 spin–orbit couplings,220,251,252 and nonlinear
optical properties, including two-photon transition moments and
(hyper)polarizabilities for both ground and excited states.253–256

Extensions of these theories to metastable states257 (resonances) and
to core-level excitations258–260 are also available and are highlighted
in Sec. V.

The IP and EA variants of these models afford spin-pure
descriptions of ground and excited doublet states and are use-
ful for modeling charge-transfer processes. EOM-SF and SF-ADC
methods are suitable for treating diradicals, triradicals, and conical
intersections. The DEA and DIP ansätze further expand the scope of
applicability.243 Spin–flip methods can be used to treat strongly cor-
related systems within an effective Hamiltonian formalism,221,261,262
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FIG. 10. Schematic representation of the manifolds of target states that are
accessed within various EOM-CC and ADC formalisms by combining particular
choices of reference state and excitation operator in Eq. (10). For example, in
the EE models for electronically excited states, the reference ∣Ψ0⟩ is the closed-
shell ground-state wave function and the operator R̂ conserves the number of
α and β electrons in generating a target manifold of correlated excited-state
basis functions. Non-particle-conserving operators (IP, EA, DIP, and DEA) and
spin-flipping (SF) operators open a route to the multi-configurational wave func-
tions encountered in radicals, diradicals, triradicals, and bond-breaking processes.
Reprinted with permission from D. Casanova and A. I. Krylov, Phys. Chem.
Chem. Phys. 22, 4326 (2020). Copyright 2020 Published by the PCCP Owner
Societies.

with applications to single-molecule magnets and even infinite spin
chains.222

For visualization purposes, both Dyson orbitals264 and
natural transition orbitals265 (NTOs) are available,15,88,220,266–269

including NTOs of the response density matrices for analyzing
two-photon absorption270 and resonant inelastic x-ray scattering.271

Figure 11 highlights the application of these tools to model
magnetic properties and spin-forbidden chemistry. Exciton
analyses,267,268,272–274 bridging the gap between the quasiparticle
and MO pictures of excited states, enable the calculation and
visualization of electron–hole correlation.89,267,268,272,273

IV. ACTIVE-SPACE METHODS FOR STRONG
CORRELATION

The applicability of single-reference methods rests on an
assumption that the wave function is dominated by a single Slater
determinant. While justified for ground states of well-behaved
closed-shell molecules, this assumption is inappropriate for systems

FIG. 11. Spinless NTOs for selected transitions between two quintet d6 states in a
tris(pyrrolylmethyl)amine Fe(II) single-molecule magnet,263 which are responsible
for its large (158 cm−1) spin-reversal barrier. Q-Chem’s efficient EOM-CC imple-
mentation using the spin–orbit mean-field approximation and the Wigner–Eckart
theorem enables calculations for medium-size molecules such as the one shown
here. The computed spin-reversal barrier is within 1 cm−1 of the experimen-
tal value.252 The key object, the spinless triplet transition density matrix, pro-
vides valuable information about the nature of spin–orbit coupling and the
related properties. Spinless NTOs (shown here) allow one to quantify and
validate El-Sayed’s rules.252 Reprinted with permission from Pokhilko et al.,
J. Phys. Chem. Lett. 10, 4857 (2019). Copyright 2019 American Chemical
Society.

exhibiting strong (or static) correlation, where many Slater
determinants may make comparable contributions. Examples of
multiconfigurational systems include organic polyradicals and
transition metals.275,276 While certain classes of multiconfigura-
tional wave functions can be effectively described by single-reference
methods, such as EOM-CC and ADC (Sec. III B), more general
treatments are sometimes desirable.

The exact solution to the finite-basis Born–Oppenheimer
electronic structure problem is the full configuration interaction
(FCI) wave function, but factorial scaling generally limits its
applicability to very small systems. It is thus more effective to
solve the FCI problem within an active space of chemically
relevant orbitals that contains the strong correlations, leaving the
other orbitals to be described via mean-field theory. Although the
introduction of an active space imparts an arbitrariness, which is
undesirable for a theoretical model chemistry,79 the necessity of
active-space methods cannot be denied, despite the need to carefully
validate the active-space selection for each particular system and
process.

This complete active-space (CAS-)CI ansatz can be used on its
own277 but is more commonly combined with orbital optimization,
which defines the popular CASSCF method,278,279 also known as the
fully optimized reaction space (FORS).280 Both CASCI and CASSCF
are available in Q-Chem 5, including analytic nuclear gradients.

The CASCI problem still exhibits factorial scaling with respect
to the size of the active space. The total number of Slater determi-
nants in an active space with M spatial orbitals is
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Ndet = (
M
Nα
)(

M
Nβ
), (13)

where Nα and Nβ are the number of α- and β-spin electrons.
This equates to Ndet ∼ 5 × 1011 for M = 22 and Nα = Nβ = 11, which
is close to the practical upper limit and is only feasible within
a massively parallel framework.281 With more typical resources,
the limit is M ≤ 18. On the other hand, the overwhelming major-
ity of these determinants make only a miniscule contribution to
the energy.282,283 This enables the development of approximate
active-space methods that attempt to identify the most important
determinants in an automated way, without solving the full CASCI
problem, and are thus extensible to much larger active spaces than
conventional CASCI or CASSCF methods. The ability to deploy
large active spaces helps to reduce the dependence on the active-
space choice and affords more robust performance, including a more
balanced treatment of dynamic and non-dynamic correlation. Two
such methods, adaptive CI and incremental FCI, are described in
this section.

The CASCI method can be extended by adding electronic exci-
tations beyond the active space, as in the restricted active space CI
(RAS-CI) approach, with single excitations into (hole) and out of
(particle) the active space.284 This method has been implemented
in Q-Chem using an integral-driven algorithm with exact inte-
grals285 and also using the RI approximation.286 Similar to EOM-
CC and ADC methods, target RAS-CI wave functions can be con-
structed with a general excitation-type operator (EE, nIP, nEA or
nSF; see Fig. 10). The intrinsic lack of dynamic correlation within
the RAS-CI family can be addressed by means of multi-reference
perturbation theory [RAS-CI(2)]287 or by the use of short-
range density functional correlation energy (RAS–CI–srDFT).288,289

Q-Chem’s RAS-CI implementation can compute state and transi-
tion properties, including transition dipole moments and spin–orbit
couplings.290

A. CI with adaptive selection
“Selected” CI (SCI) methods aim to exploit the sparsity

of the Hilbert space by identifying important determinants and
diagonalizing the Hamiltonian only within the space of impor-
tant configurations. Although formulated long ago,291–296 these
methods have re-emerged recently due to breakthroughs in effi-
cient search of the determinantal space.297–304 Q-Chem 5 contains
an implementation of the adaptive sampling configuration inter-
action (ASCI) method,304–306 which efficiently selects important
configurations to yield compact CI wavefunctions that account for
most of the correlation energy. Based on the computer resources
available, the user selects a maximum number of determinants
t to keep in the variational CI wave function and a cutoff of
the top c determinants in this list to generate new determi-
nants that are iteratively considered to replace the least significant
members of the t-list. While still exponential-scaling, the ASCI
algorithm permits dramatically larger FCI calculations than the
standard approach. To correct for missing configurations, ASCI
can be complemented with a second-order perturbation theory
correction for the missing configurations to approach chemical
accuracy of ∼1 kcal/mol.

While the “soft exponential” scaling of ASCI is a tremendous
improvement over conventional FCI, it is still critically important

to minimize the size of the FCI problem if the ASCI algorithm
is to obtain chemical accuracy. ASCI can be used as an approx-
imate CASCI solver for CASSCF calculations, with the resulting
ASCI-SCF method extends the applicability of CASSCF to problems
as large as CAS(50, 50) so that periacenes or iron porphyrin can be
handled in this way.307 The difference between this and the con-
ventional “hard exponential” limit of around CAS(18, 18) illustrates
the utility of the ASCI-SCF method for extending the scale of feasi-
ble chemical applications. ASCI-SCF nuclear gradients for geometry
optimizations are also available in Q-Chem 5.

B. Incremental full CI
The method of increments308–310 provides an alternative means

to approach the FCI solution without the associated exponential
scaling via an incremental expansion of correlation energy,311

Ec =∑
p
εp +∑

p<q
Δεpq + ∑

p<q<r
Δεpqr + ⋅ ⋅ ⋅ . (14)

Q-Chem 5 contains an incremental FCI (iFCI) method based on this
idea,312–317 using occupied MOs for the indices p, q, r, . . .. Successive
n-body contributions to Eq. (14) can be computed in a manner that
is highly parallelizable, and iFCI recovers both static and dynamic
correlation with polynomial scaling. Both the cost and the fraction of
Ec that is recovered depend upon the level of truncation in Eq. (14);
tests have shown that a three-body expansion (through εijk) recovers
most of the correlation energy, but a four-body expansion is needed
to reproduce full CI to within ∼10−3Eh. Equally important to sys-
tematic convergence is the use of a localized orbital basis, which
greatly speeds up the recovery of dynamic correlation. The general-
ized valence bond perfect-pairing (GVB-PP) method in Q-Chem318

suits this purpose well, providing localized bonding/antibonding
pairs of orbitals for iFCI.314 When applied to butadiene and ben-
zene, which are two standard test cases for FCI-level approaches,319

the four-body iFCI method provides total energies that are within
10−3Eh of other benchmarks.314,317

The iFCI method has also provided solutions equivalent to the
largest CI problems to date, including a recent study of transition
metal complexes.317 For example, the vanadium maltolato dimer,
[(μOCH3)VO(ma)]2, was examined to quantify its singlet–triplet
gap (Fig. 12). The unpaired electrons of the vanadium atoms
are coupled through a μ-oxo bridge, making for a complicated
correlation problem involving both static and dynamic correlation.
A three-body iFCI approach, correlating all 142 electrons in the 444
orbital space, affords a singlet–triplet gap within a few tens of cm−1

of experiment. To achieve this result, a systematic truncation scheme

FIG. 12. A challenging case of strong and weak correlation: the [(μOCH3)VO(ma)]2
dimer complex and its two singly occupied MOs. The three-body iFCI yields a
singlet–triplet gap within 30 cm−1 of experiment.317
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was used to eliminate over 90% of the three-body contributions,
based on selecting incremental terms that do not significantly affect
the gap.317

C. Other methods
Q-Chem contains several novel active-space methods that

blend together aspects of CC and valence bond (VB) theories.320–325

These CCVB methods separate n electron pairs into arbitrary
radical fragments such that the dissociation energy matches CASSCF
but the computational cost is only polynomial. However, these
methods are difficult to use in practice due to a nonlinear wave
function ansatz and a lack of orbital invariance, which leads to a
challenging multiple-minimum problem in the orbital optimization.
The CCVB-SD method326 restores invariance with respect to
orbital mixing within the core, active-occupied, active-virtual, and
inactive-virtual subspaces while retaining the desirable formal
features of the CCVB expansion. Q-Chem 5 contains a production-
level implementation of the CCVB-SD energy and gradient327 using
the same tensor tools used in Q-Chem’s efficient implementation
of other CC methods.12 As such, the cost of CCVB-SD is nearly
identical to CCSD, but the former can tackle strongly correlated
systems. It is natural to use CCVB-SD with an active space
because it can describe both strong and weak correlations but not
simultaneously. See Ref. 327 for recent applications of CCVB-SD.

Direct variational determination of the two-electron reduced
density matrix (2RDM) provides an efficient description of
many-electron systems that naturally captures strong correlation
effects. The variational 2RDM (v2RDM) approach can be used
as a driver for approximate CASSCF calculations with polyno-
mial scaling.328,329 Q-Chem 5 supports v2RDM-driven CASSCF
calculations in which the active-space 2RDM is constrained
to satisfy two-particle (“PQG”) positivity conditions,330 partial
three-particle conditions,331 or else full three-particle
N-representability conditions.332 Using PQG conditions only,
v2RDM-driven CASSCF can be applied to systems with active
spaces as large as (64, 64).333 Analytic energy gradients are
available for v2RDM-CASSCF calculations with all three choices
of N-representability conditions.334

V. SPECIALIZED METHODS
This section highlights some specialized features of contempo-

rary interest. Quantum chemistry is witnessing a surge of interest
in x-ray spectroscopy,192,335–339 fueled by advanced light sources and
free-electron lasers, and by the recent availability of tabletop laser
sources with femtosecond time resolution.340–344 For that reason,
we highlight Q-Chem’s capabilities for core-level spectroscopy in
Sec. V A. Q-Chem also features a suite of methods for describing
metastable resonances, which are more often handled with special-
ized scattering codes, and Q-Chem’s functionality here is unique
among widely used electronic structure packages. Unlike bound
states, resonance wave functions are not square-integrable, and their
description requires specialized methods based on non-Hermitian
quantum mechanics,345 which are summarized in Sec. V B. Meth-
ods for vibronic lineshapes are described in Sec. V C, and Sec. V D
describes the nuclear–electronic orbital method for the description
of proton quantum effects.

A. Modeling core-level spectroscopy
Various core-level (x-ray) processes are illustrated schemat-

ically in Fig. 13. These include x-ray absorption (XAS), x-ray
emission (XES), resonant inelastic x-ray scattering (RIXS), and
x-ray photoelectron spectroscopy (XPS). The relaxation of the
core-level states can also result in secondary ionization, giving
rise to Auger spectroscopy. These techniques correspond to pho-
ton energies above 200 eV such that core-to-valence excitations
are embedded in an ionization continuum. Standard quantum
chemistry approaches require modification in order to deal with
these highly energetic excitations,192,335 especially in models with
double (and higher) excitations that allow core-level states to decay.
Because core-level states are Feshbach resonances that decay via
two-electron processes, attempts to solve unmodified EOM-CCSD
or ADC equations for core-level states lead to the same phys-
ically correct but practically disastrous behavior as attempts to
describe transient anions (e.g., N−2 , CO−2 ) by standard bound-state
methods.257,346 In both cases, the solutions depend strongly on
basis set (which affects how the continuum is discretized),346 and
in the limit of a complete basis set, these states dissolve into the
continuum.257,346,347

The ionization continuum can be projected out using the
core/valence separation (CVS) scheme,348 which entails pruning the
target Fock space by removing the configurations that do not engage
the core electrons. By doing so, CVS effectively blocks the ion-
ization channels, artificially making core-excited states bound with
respect to electron loss. In addition, CVS removes the large man-
ifold of valence excited states so that core-level excitations appear
at the bottom of the excited-state manifold, within easy reach of
standard iterative eigensolvers. Uncontracted or otherwise special-
ized basis sets are sometimes required,192,197,349–354 because stan-
dard Gaussian basis sets are designed for valence chemistry and
may not describe the strong orbital relaxation induced by the cre-
ation of the core holes. (TDDFT is considerably less sensitive in this

FIG. 13. Schematic illustrations of core-level phenomena. The XAS and XPS
processes involve excitation into a virtual bound molecular orbital or into the con-
tinuum, respectively, whereas the XES signal is produced by radiative relaxation
of a valence electron into a core hole. The nonlinear RIXS phenomenon can be
described as a coherent combination of XAS and XES transitions.
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regard, however.121,351) In addition, relativistic effects and spin–orbit
coupling become important for L- and M-edge excitations.338

Q-Chem offers a variety of methods for computing transi-
tions involving core orbitals and the corresponding spectroscopic
properties. These can be classified as follows:

● Calculations based on orbital eigenvalue differences, often
using fractional orbital occupations.355–359

● State-specific ΔSCF methods197,200,337 (or ΔMP2, etc.) and
spin-recoupled ROKS methods209,211 based on a non-aufbau
determinant containing an orbital-relaxed core hole.

● Non-orthogonal CIS (NOCIS), which employs relaxed
core holes and returns a spectrum of core excitation
energies.360–362

● LR-TDDFT calculations using a restricted excitation
window.189,191,337,363 In conjunction with a non-aufbau
reference determinant, this approach can also be used to
simulate XES.364

● Real-time TDDFT calculations of an entire broadband
excitation spectrum (Sec. II C 3).

● Correlated methods within the CVS scheme, such as
CVS-ADC258,259 and CVS-EOM-CC,260,365–367 for XAS, XPS,
XES, x-ray electronic circular dichroism (or simply XCD),
RIXS, and Auger spectroscopy. These may also be used with
a non-aufbau reference determinant to simulate excited-
state XAS and XPS, as needed in the context of time-resolved
experiments.364,368–370

With the exception of real-time TDDFT, each of these
methods invokes some sort of decoupling from the valence
continuum. Neglecting the valence continuum is an approximation,
which can affect the position of the core-level resonances. Apart
from fully time-dependent treatment, the effect of the continuum
can also be incorporated via the Feshbach–Fano formalism by com-
bining the CVS treatment with the continuum orbitals371 or with
other non-Hermitian methods described in Sec. V B.

Methods based on SCF eigenvalue differences ϵa − ϵi have their
origins in Slater’s transition method,372,373 which is based on a proof
that ϵa − ϵi is the leading-order approximation to a true excitation
energy if the SCF calculation is performed with fractional occupation
numbers ni = 1/2 = na. Due to the impracticality of computing an
entire spectrum state-by-state, it is often assumed that the potential
generated by placing 1/2 electron in the LUMO will approximately
mimic that obtained by placing 1/2 electron into a higher-lying vir-
tual orbital so that only a single fractional-electron SCF calcula-
tion is required. This approach is usually known as the transition
potential method.355–357 Other occupancy schemes have sometimes
been considered,359,374,375 with names such as “half core-hole,” “full
core-hole,” and “excited core-hole.”375

The state-specific ΔSCF approach was described in Sec. II C 4.
Here, the requisite non-aufbau determinant (containing a core hole)
can be optimized using one of several algorithms that are available in
Q-Chem, including MOM,197 IMOM,198 SGM,199 or STEP.200 This
approach accounts for orbital relaxation and works very well for
core-level ionization (XPS), but in the context of XAS it suffers from
the same impracticality that limits Slater’s transition method. State-
specific calculations are most commonly performed at DFT levels of
theory (hence ΔSCF), but in principle a non-aufbau Hartree–Fock
determinant could be used as a reference state for a subsequent wave

function treatment of correlation, e.g., ΔMP2 or ΔCCSD.197,200 It
should be kept in mind that non-aufbau determinants do suffer from
spin-contamination (see Sec. II C 4) and sometimes from artificial
symmetry breaking. The convergence of CC methods can sometimes
be problematic when using a highly excited reference state.376

Regarding LR-TDDFT, it is worth noting that workhorse func-
tionals for the ground-state SCF problem, which might be accurate
to 0.2–0.3 eV for valence excitation energies,128 afford much larger
errors where core-level excitation energies are concerned, e.g., shifts
> 10 eV are typically required using B3LYP.377 (That said, a recent
benchmark study suggests that these large shifts do not dramatically
affect the precision of LR-TDDFT excitation energies,378 such that
the features of a shifted spectrum might be acceptable.) To improve
the absolute accuracy, early studies suggested increasing the frac-
tion of Hartree–Fock exchange in B3LYP to 50%–70%189,364,379–381

in order to balance core and valence self-interaction, but such severe
modification makes these functionals inappropriate for application
to valence chemistry.

An alternative is to use range separation to dial in a large
fraction of exact exchange on very short length scale (<1 Å),
preserving the balance of semilocal vs Hartree–Fock exchange at
larger distances. This is the basis of short-range corrected (SRC)
functionals developed specifically for x-ray spectroscopy,189,388

which afford an absolute accuracy of ∼0.3 eV for core-level excita-
tions of second-row elements when used with LR-TDDFT.

Q-Chem has the capability to perform LR-TDDFT calcula-
tions that are optimized for XAS, reducing both the computational
time and memory requirements.191,192 Examples of what is feasible
with this approach, using a restricted excitation window approxima-
tion (analogous to the CVS approximation) at the carbon K-edge,

FIG. 14. Carbon K-edge spectra for several large molecules computed with LR-
TDDFT (SRC2 functional189 and 6-31G∗ basis set,382,383 in black) in compari-
son to experimental near-edge x-ray absorption fine structure (NEXAFS, in red).
The experimental data are from Refs. 384–387. Reprinted with permission from
N. A. Besley, J. Chem. Theory Comput. 12, 5018 (2016). Copyright 2016 American
Chemical Society.
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are shown in Fig. 14. These spectra were computed at the TD-
SRC2189/6-31G∗382,383 level of theory and are compared directly to
experiment,384–387 without empirical shifts.

Whereas ΔSCF calculations are a single-determinant approx-
imation for the excited state, ROKS calculations provide a spin-
pure treatment of open-shell singlet excited states, as discussed
in Sec. II C 4, while also providing full core-hole relaxation.
ROKS with Hartree–Fock orbitals attains a root-mean-square
error (RMSE) of 0.6 eV for K-edge excitations of second-row
elements,212 without any correlation, highlighting the importance
of orbital relaxation in describing core-level states. Inclusion of
dynamic correlation via DFT can lead to better results, with
the modern SCAN meta-GGA40 affording a RMSE of ∼0.2 eV
for K-edge excitations of C, N, O, and F.209 Similarly, small
errors are obtained at the L-edges of third-row elements.209 The
relatively low computational scaling of the semilocal SCAN
functional (as compared to hybrid DFAs) makes this approach
particularly appealing for larger systems. While it might appear
tedious to optimize each possible excitation individually with
ROKS, the suite of excited state orbital optimization methods in
Q-Chem permits explicit computation of a full spectrum without
too much difficulty. This is demonstrated in Fig. 15, which depicts
the carbon K-edge spectrum of adenine computed via ROKS using
the SCAN functional and the SGM algorithm.

It is also possible to compute multiple excited states
simultaneously while accounting for core–hole relaxation. The
non-orthogonal CIS (NOCIS) approach achieves this by performing
CIS with relaxed orbitals for the core-ionized state.360,362

Specifically, NOCIS computes optimal core-ionized orbitals
for each possible atomic core-excitation site, builds all singly excited
configurations that preserve the desired core hole, and then
diagonalizes the Hamiltonian within the subspace spanned by these
(non-orthogonal) determinants. Some additional considerations
involving ΔSCF states are necessary to extend NOCIS to open-shell
systems,361,362 and the lack of dynamic correlation leads to small
(0.5–1.0 eV) overestimation of excitation energies. However, these
drawbacks should be balanced against the ability to compute
multiple excited states simultaneously, which is not possible with
the more accurate ROKS approach. Much efficiency is gained and
almost no accuracy is lost by restricting the CI space to individual
atoms.362

Finally, many-body methods, such as ADC227 and EOM-CC,224

provide the means to compute core-excited transitions with system-
atically improvable accuracy. These methods include both orbital
relaxation and electron correlation in a single computational step,
within a multi-state formalism that naturally affords transition
properties. These methods are naturally spin-adapted when used
with a closed-shell reference determinant. Q-Chem 5 facilitates cal-
culation of XPS, XAS, and XES using the CVS-EOM-IP-CCSD
approach260,366 and XAS using either CVS-EOM-EE-CCSD260,366 or
CVS-EE-ADC.259,394,395

CVS-EOM methods combined with spin–orbit coupling have
been used to compute L-edge XPS,369 as in Fig. 16(a). Time-resolved
variants of XPS or XAS can be modeled by using a non-aufbau
reference determinant366,368,370 or directly as transitions between
target ADC/EOM states,260,368 as illustrated in Fig. 16(b). Non-
linear spectra, including RIXS, can also be computed with
correlated methods,367,399 as in Fig. 16(c). Features such as

FIG. 15. Carbon K-edge spectra of adenine obtained using (a) LR-TDDFT with
the CAM-B3LYP functional389 vs (b) state-specific ROKS calculations using the
SCAN functional. All calculations used a mixed basis set consisting of aug-cc-
pCVTZ390 on the core-excited atom and aug-cc-pVDZ391,392 on all other atoms.
The LR-TDDFT calculations require a 10.4 eV shift to align the low-energy edge
of the calculated spectrum with experiment,393 whereas the ROKS spectrum is
unshifted.

Dyson orbitals,264,366 attachment/detachment densities,400 and
NTOs15,88,266,267,401 facilitate analysis and interpretation of the
computed spectra. A unique feature of Q-Chem is the abil-
ity to compute Auger decay rates and Auger spectra using the
Feshbach–Fano formalism combined with CVS-EOM-CC and
an explicit description of the free electron,371 as illustrated in
Fig. 16(d).

B. Methods for metastable resonances
Electronic resonances, meaning states that are unstable with

respect to electron loss, are ubiquitous in energetic environments
such as plasmas, in combustion, and in the presence of ionizing
radiation.257,345 Resonances are also relevant to condensed-phase
processes under milder conditions, e.g., plasmonic catalysis,402

and may play a role in radiation-induced damage to living
tissue.403 Because resonances lie in the continuum, their wave
functions are not square-integrable and cannot be described
using standard quantum-chemical methods designed for isolated
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FIG. 16. Exemplary applications of CVS-EOM-CCSD methods to x-ray spectroscopy. (a) Sulfur L-edge XPS spectra of thiophene with and without spin–orbit coupling
computed at the fc-CVS-EOM-CCSD/u6-311+G(3df) level. The notation u6-311+G(3df) indicates an uncontracted version197,353 of 6-311+G(3df).396–398 (b) Oxygen
K-edge XAS spectra of uracil in its S0, S1, and S2 states computed at the fc-CVS-EOMEE-CCSD/6-311++G∗∗ level. Intensity of the excited state bands has been
reduced assuming 15% population. NTOs of the 1s → SOMO transition in S1 are also shown. (c) RIXS/REXS two-dimensional energy-loss spectrum of benzene vs
pumping frequency ωex computed at the fc-CVS-EOM-CCSD/u6-311(2+,+)G∗∗ level. Intensities are on a logarithmic scale. (d) Illustrations of various Auger effects: (1)
regular Auger decay, (2) resonant (participator) decay, and (3) resonant (spectator) decay. Regular Auger decay is relevant for XPS, whereas resonant Auger processes
occur in XAS. These processes can be modeled within the Feshbach–Fano framework using CVS-EOM-CC to describe the initial core-excited or core-ionized state and
EOM-IP-CC or DIP-CC to describe the final state. Panel (a) is adapted with permission from Vidal et al., J. Phys. Chem. Lett. 11, 8314 (2020). Copyright 2020 American
Chemical Society. Panel (b) is adapted from Vidal et al., J. Chem. Theory Comput. 15, 3117 (2019). Copyright 2019 American Chemical Society. Panel (c) is reproduced
with permission from Nanda et al. Phys. Chem. Chem. Phys. 22, 2629 (2020). Published by the PCCP Owner Societies. Panel (d) is reproduced from W. Skomorowski and
A. I. Krylov, J. Chem. Phys. 154, 084124 (2021) with the permission of AIP Publishing.

bound states. Naïve application of bound-state quantum chem-
istry to metastable states does not capture genuine resonances but
rather “orthogonalized discretized continuum states,”346 where the
metastable state behaves like a poor approximation to a plane wave,
trapped by a finite Gaussian basis set, with properties that are arti-
ficial and prone to change erratically as the basis set is changed,
especially if additional diffuse functions are introduced.

This computational predicament is elegantly circumvented
within non-Hermitian quantum mechanics based on complex-
variable techniques,345 which generalizes and extends concepts
from bound-state quantum chemistry to the case of electronic
resonances.257,345,346 Within this modified formulation, electronic

resonances can be described as square-integrable quasi-stationary
states albeit with complex-valued energies, E = ER − iΓ/2, where ER
is the resonance position and Γ is the resonance width, the latter of
which arises from lifetime broadening.

Q-Chem offers three different complex variable techniques:
complex coordinate scaling (CS),346,404–409 complex basis functions
(CBFs),410–413 and complex absorbing potentials (CAPs).414–417 The
CS approach regularizes the resonance wave function by rotating all
coordinates in the Hamiltonian into the complex plane, x → xeiθ.
This approach has a rigorous mathematical foundation but is not
compatible with the Born–Oppenheimer approximation, limiting its
applicability to atoms, whereas CBFs and CAPs are applicable to
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molecules. (The latter approaches can be considered as approxima-
tions to “exterior” CS.418,419) CBF methods utilize mixed basis sets
in which the exponents of the most diffuse functions are complex-
scaled, whereas the CAPs simply add an imaginary potential to the
molecular Hamiltonian Ĥ0,

Ĥ = Ĥ0 + îW(x). (15)

The CAP serves to absorb the non-normalizable tail of the resonance
wave function, and several functional forms for Ŵ(x) are available
in Q-Chem. Although there is some arbitrariness associated with
the details of the CAP, these methods are generally easier to use as
compared to alternative “stabilization” methods,346,420,421 in which
Gaussian exponents or atomic numbers are modified in order to
stabilize the resonance (making it amenable to standard bound-state
methods), with the results then extrapolated back to the physical
system of interest. If applied carefully, both the stabilization and
CAP methods afford useful results;422 however, the CAP approach
is more rigorous and more straightforward to extend to other
molecular properties.

The CS, CBF, and CAP techniques can each be combined
with the full EOM-CCSD suite of methods implemented in
Q-Chem. The CAP technique is also available for all ADC
methods,248 implemented via a subspace projection approach.423

The EOM-EA or EA-ADC variants are appropriate for treat-
ing metastable radical anions of closed-shell molecules, whereas
super-excited states of neutral molecules and metastable excited
states of closed-shell anions are best described using EOM-EE or
EE-ADC.

Q-Chem offers several functionalities for the characteriza-
tion of electronic resonances beyond their positions and widths,
including

● first-order one-electron state properties and transition
moments for all complex-variable EOM-CC methods,415,424

● Dyson orbitals for all complex-variable EOM-CC
methods,424–426

● NTOs for CAP-EOM-CC methods,427 and
● analytic gradients for CAP-EOM-CC methods.428

These tools are useful for investigating the spectroscopy and
chemical reactivity of electronic resonances. Dyson orbitals and
NTOs, for example, provide compact representations of changes
in the wave function upon electron attachment or electronic
excitation. Since complex-valued Hamiltonians are not Hermitian
but rather complex-symmetric, these quantities conform to a
modified metric in which the real part of the complex electron
density integrates to the number of electrons, while its imaginary
part integrates to zero.406 Related results hold for density matrices,
transition density matrices, orbitals, and wave functions, all of
which also feature a real and an imaginary part. Analogous to
the case of bound states, a singular value decomposition of the
one-electron transition density matrix affords pairs of NTOs, which
facilitate the interpretation of an electronic excitation in terms of
MO theory.269

Further analysis of NTOs and exciton wave functions can
be accomplished based on the Feshbach formalism,429 wherein a
resonance is described as a bound state coupled to a continuum

FIG. 17. Real and imaginary NTOs for the 1Σ+ resonance in C7N−. This state has
mixed π → π∗ and σ → σ∗ character, as apparent from the participation ratio
PRNTO(γRe

) ≈ 3. Based on the singular values σ Im
K , the total width of 0.13 eV can

be separated into two contributions, ΓΣ = 0.10 eV and ΓΠ = 0.03 eV, correspond-
ing to the two decay channels in which the C7N radical is either formed in the
2Σ+ or the 2Π state. Reprinted with permission from W. Skomorowski and A. I.
Krylov, J. Phys. Chem. Lett. 9, 4101 (2018). Copyright 2018 American Chemical
Society.

of scattering states. This analysis demonstrates that the real part
of the excitonic wave function describes changes in the electron
density corresponding to the bound part of the resonance, while
the imaginary component of the wave function can be inter-
preted as virtual states that facilitate one-electron decay into the
continuum.427 Singular values associated with particular NTOs can
be related to the partial widths of the respective decay channels. As
an example, Fig. 17 illustrates NTOs for the 1Σ+ resonance in C7N−,
a chain-like cyanopolyyne anion relevant to astrochemistry.430

Analytic gradients enable the search for special points on the
complex-valued potential surfaces of polyatomic resonances. Algo-
rithms are available for equilibrium structures,428,431 for crossings
between resonances and their parent states,432 and for cross-
ings between two resonances,433 the latter of which are known as
exceptional points. These critical points govern the nuclear dynamics
following the formation of a resonance state and, if that resonance
is long-lived enough, can be connected to features in electron
transmission and energy-loss spectra. In particular, exceptional
points may be considered the non-Hermitian analogs of conical
intersections and play a similar role for electron-induced
chemistry as conical intersections do for photochemistry.433

An example involving a dissociative electron attachment pro-
cess434–436 is considered in Fig. 18, in which a (π∗)− resonance
anion state is accessible at the equilibrium structure of the neutral
parent molecule, chloroethylene.433 The dissociative state has (σ∗)−
character but is too high in energy to be accessed directly, and
the reaction proceeds via nonadiabatic transition between the two
resonances, along a seam of exceptional points. The complex-valued
potential surfaces for the (σ∗)− and (π∗)− resonances around the
minimum-energy exceptional point are shown in Fig. 18, computed
using CAP-EOM-EA-CCSD.

C. Calculation of vibronic lineshapes
The vibrational structure of electronic transitions encodes rich

information about molecular structure, in both linear spectroscopies
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FIG. 18. (a) Schematic representation
of dissociative electron attachment to
chloroethylene. The exceptional point
is marked by a blue circle. (b) Real
and imaginary part of the potential sur-
faces in the vicinity of the minimum-
energy exceptional point between the π∗
and the σ∗ states of the chloroethylene
anion, plotted above the plane spanned
by the real gradient difference vector
(xRe) and the imaginary gradient differ-
ence vector orthogonalized to xRe (x′Im).
Reprinted with permission from Z. Benda
and T.-C. Jagau, J. Phys. Chem. Lett. 9,
6978 (2018). Copyright 2018 American
Chemical Society.

(UV–Vis, XAS, XPS, etc.) and nonlinear ones (2PA, RIXS, resonance
Raman, etc.). Quantitative modeling of these spectra combines
calculations of electronic structure and nuclear wave functions via
either a static (time-independent) or a dynamic (time-dependent)
formalism.437–443 Q-Chem 5 provides several capabilities to
calculate the vibrationally resolved spectra and certain types of
electronic cross sections.

Within the dipole approximation, the probability of transition
between an initial state (i) and a final state ( f ) is proportional to the
square of the transition dipole matrix element,

Pi f ∝ (∫ Ψi(r, R) μ̂ Ψ f (r, R) dr dR)
2
, (16)

when the photon is resonant with the energy gap. Here, μ̂ is the elec-
tronic dipole moment operator, and coordinates R and r represent
nuclei and electrons, respectively. Within the Born–Oppenheimer
approximation,444,445 the wave functions Ψ(r, R) can be factored
into a nuclear wave function χ(R) and an electronic wave function
ψ(r; R) so that

Pi′ f ′′ ∝ (∫ ψi(r; R)χi′(R) μ̂ ψ f (r; R)χ f ′′(R) dr dR)
2
. (17)

Indices i′ and f ′′ denote the vibrational states of the two elec-
tronic states. Within the Born–Oppenheimer approximation, the
vibrational wave functions are determined solely from the nuclear
Schrödinger equation with a potential defined by the electronic
Schrödinger equation. Integration over the electronic coordinates

in Eq. (17) affords the electronic transition dipole moment for the
i→ f transition,

μi f (R) = ∫ ψi(r; R) μ̂ ψ f (r; R) dr. (18)

The transition probability can therefore be written as

Pi′ f ′′ ∝ (∫ χi′(R) μi f (R) χ f ′′(R) dR)
2
. (19)

Equation (19) is the basis for modeling the spectrum. It contains an
electronic transition moment μif (R) in addition to vibrational wave
functions for the initial and final states.

Within the Condon approximation,446 it is assumed that μif (R)
depends weakly on the nuclear coordinates so can be evaluated at a
fixed nuclear geometry, e.g., at the equilibrium geometry Re of the
initial state. Then,

Pi′ f ′′ ∝ ∥μi f (Re)∥
2
(∫ χi′(R) χ f ′′(R) dR)

2
. (20)

The overlap integral between the two nuclear wave functions is
called a Franck–Condon factor (FCF),441,446–448 which is directly
related to the intensities of vibrational progressions via Eq. (20).

FCFs for various spectroscopic transitions (photoelectron,
UV–Vis, etc.) can be computed in a post-processing step using the
EZFCF module of the stand-alone software EZSPECTRA,449 which imple-
ments FCFs within the double-harmonic approximation, either
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with or without consideration of Duschinsky rotation,441,450 i.e.,
changes in the normal modes between the ground and excited
electronic states. These calculations require optimized structures
and normal mode analysis for both electronic states but are com-
pletely agnostic regarding the level of electronic structure theory
at which these calculations are performed. EZSPECTRA also contains a
module EZDYSON, which can be used to compute total and angular-
resolved photoelectron spectra. This requires Dyson orbitals that can
be computed using Q-Chem.

To go beyond the Condon approximation, one can invoke the
Herzberg–Teller (HT) normal mode expansion of μif (R) around
the equilibrium nuclear geometry,440,441,451 in order to account
for geometry-dependent changes in the transition dipole moment.
Although the Condon approximation is generally accurate for
strongly allowed transitions for weak or forbidden transitions, the
Franck–Condon term [Eq. (20)] is nearly or exactly zero, and there-
fore higher-order terms may become important. These give rise to
the HT effect.440,441

Raman scattering is a two-photon process (see Fig. 19), and
resonance Raman scattering (RRS) is a particular type of vibrational
Raman spectroscopy in which the incident laser frequency lies close
to an electronic transition.452,453 In RRS, an incident photon with
frequency ωL (the laser frequency) is absorbed and another with
frequency ωS is emitted, with the difference corresponding to a
vibrational level spacing. The differential photon scattering cross
section is given by442,454–456

σ(ωL,ωS)∝ ωLω3
SS(ωL,ωS), (21)

where

S(ωL,ωS) = ∥⟨ψ f ∣M̂∣ψi⟩∥
2δ(ωS − ωL + ω f i) (22)

and the transition operator

FIG. 19. Schematic diagram for one-photon absorption and one-photon emission
(left) and for resonance Raman scattering (RRS, at right).

M̂ =∑
k
[
μ̂ ⋅ e2∣ψk⟩⟨ψk∣μ̂ ⋅ e1

ωL − ωki
−
μ̂ ⋅ e1∣ψk⟩⟨ψk∣μ̂ ⋅ e2

ωS + ωki
] (23)

involves a sum over virtual vibronic states k. In the RRS process,
the initial (i) and final ( f ) electronic states both correspond to the
ground state, so hωfi represents a difference between ground-state
vibrational energy levels, as depicted in Fig. 19. When the energy
gap ωk − ωi between the k state and the i state is close to the laser
frequency ωL, the intermediate state k (a vibrational level of an
excited electronic state) dominates the scattering cross section and
non-resonant contributions can be neglected.

The formalism described above is inconvenient because even
in the resonant case where only a single excited electronic state
is important, Eq. (23) still requires a sum over vibrational levels
on that state. An alternative strategy is based on a time-dependent
formalism,457,458 which circumvents the evaluation of the multidi-
mensional integrals that appear when FCFs are computed beyond
the parallel-mode approximation, i.e., when Duschinsky rotation is
included. In this approach, matrix elements of M̂ (which generates
the polarizability tensor) are avoided and the scattering cross section
is expressed in terms of the Fourier transform of a time correlation
function representing the overlap between the final state ∣ψ f ⟩ and
the time-evolving wave function ∣Ψ(t)⟩ following excitation to the
upper electronic state,

σ(ωL)∝ ∫

∞

0
eiωL−Γt

⟨ψ f ∣Ψ(t)⟩ dt +NRT. (24)

(Here, “NRT” denotes the non-resonant terms that can be neglected
in RRS, and Γ is a damping factor.) A detailed theoretical back-
ground is given in Ref. 442.

Q-Chem 5 includes a built-in implementation of the time-
dependent correlation function approach at the LR-TDDFT level,
which enables calculation of vibrationally resolved one-photon
and two-photon absorption and emission spectra462,463 and RRS
spectra440 within the double-harmonic approximation, including
both Duschinsky rotation and HT effects in the time domain. To
illustrate the capabilities of the theory, Fig. 20 compares calculated
FC and FC-HT spectra for the benzyl radical to experiment. The
absorption and fluorescence spectra arise from the D0 → D3 and
D1 → D0 transitions, respectively. In particular, for the stimulated
emission and the RRS spectra, agreement with experiment improves
upon inclusion of the HT terms.

For semiquantitative calculations, a short-time approximation
to Eq. (24) can be used, which turns out to be equivalent to the
“independent mode, displaced harmonic oscillator” model,438,456,464

in which it is assumed that equilibrium displacements of the
vibrational normal modes change upon electronic excitation but not
the modes themselves or their frequencies. Under those assump-
tions, the dimensionless displacement Δk = (ωk/h̵)1/2ΔQk for
normal mode Qk can be related to the excited-state gradient,
i.e., the derivative ∂Ω/∂Qk of the electronic excitation
energy, Ω:465,466

Δk =
1

√
h̵ω3

k

(
∂Ω
∂Qk
). (25)
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FIG. 20. (a) Absorption spectra, (b) emission spectra, and (c) RRS spectra of benzyl radical, comparing experimental results to calculations within the FC approximation (in
blue) vs the FC-HT approximation (in red). A damping factor of Γ = 300 cm−1 and temperature T = 298 K were used for the absorption spectrum vs Γ = 20 cm−1 and T = 0
K for the emission spectrum. For the RRS spectrum, a damping factor of 100 cm−1, Lorentzian broadening of Γ = 20 cm−1, and T = 298 K are used. All electronic structure
calculations are performed at the (TD-)B3LYP/6-311G∗∗ level. To make the simulated spectra consistent with experiment,459–461 the adiabatic energy gap is shifted by
0.04 eV for absorption, −0.34 eV for emission, and −0.11 eV for RRS. The wavelength of incident light for the RRS simulation is 315 nm, as in the experiment.460

The relative resonant enhancement in the intensity of mode Qj vs
mode Qk is466

Ij

Ik
= (

ωjΔj

ωkΔk
)

2
. (26)

Within this approximation, the resonant enhancement in RRS (as
compared to normal Raman scattering) consists of the excited-
state gradient projected onto ground-state normal modes {Qk},
so this approach has also been called the excited-state gradient
approximation.465,467 It has been implemented in Q-Chem 5 for
CIS and LR-TDDFT excitation energies and used to compute the
resonance Raman spectra of complex systems, such as e−(aq).466

This approach has also been combined with ab initio molecu-
lar dynamics to simulate transient (excited-state) RRS,468 which is
measurable via the emerging technique of femtosecond stimulated
Raman spectroscopy.469,470

D. Nuclear–electronic orbital methods
Nuclear quantum effects are essential in many chemical and

biological processes, such as proton transfer and proton-coupled
electron transfer reactions. The nuclear–electronic orbital (NEO)
method provides a framework for the accurate and computa-
tionally efficient incorporation of the significant nuclear quantum
effects within an electronic structure calculation.471,472 In this
approach, specified nuclei are treated quantum mechanically along-
side the MO description of the electrons, thereby avoiding the
Born–Oppenheimer separation between the electrons and the quan-
tum nuclei. Treating at least two nuclei classically prevents com-
plications with translations and rotations. Typically, the quantum
nuclei are chosen to be protons or deuterons, although the NEO
method has also been applied to positrons.473,474 For simplicity, the
formalism presented below assumes quantum protons. A significant
advantage of the NEO method is that anharmonicity, proton delo-
calization, and zero-point energy are included directly in energies,
geometry optimizations, reaction paths, and molecular dynamics.

Both wave function and DFT methods have been developed within
the NEO framework for the accurate description of nuclear quantum
effects in the ground and excited states of molecular systems.474–490

The NEO Hamiltonian operator is471

ĤNEO = T̂e
+ V̂e

+ V̂ee
+ T̂p

+ V̂p
+ V̂pp

+ V̂ep, (27)

where T̂e, V̂e, and V̂ee are the conventional electronic operators
corresponding to kinetic energy, electron–nuclear attraction (for the
classical nuclei only), and electron–electron repulsion, respectively.
Operators T̂p, V̂p, and V̂pp represent the analogous quantities for
the quantum protons. Finally, V̂ep is the operator corresponding to
the electron–proton Coulomb interaction. Simultaneous mean-field
descriptions of both the electrons and the quantum protons results
in the NEO-Hartree–Fock ansatz,471 but unfortunately the omission
of electron–proton correlation effects makes this model inadequate
for predictions of reliable energies or geometries.472 The rest of this
section describes DFT-based alternatives.

1. NEO-DFT
The NEO-DFT method is a multicomponent extension of the

conventional electronic DFT formalism, in which different types of
particles (e.g., electrons and protons) are treated quantum mechan-
ically.491–493 Similar to NEO-HF, the NEO-DFT Kohn–Sham wave
function is the product of electronic and protonic Slater determi-
nants composed of the Kohn–Sham spin orbitals. The NEO-DFT
energy is

E[ρe, ρp
] = Eext[ρe, ρp

] + Eref[ρ
e, ρp
] + Eexc[ρe

]

+ Epxc[ρp
] + Eepc[ρe, ρp

]. (28)

Here, Eext[ρe, ρp
] is the interaction of the electronic and protonic

densities, ρe and ρp, with the external potential created by the
classical nuclei. The term Eref[ρe, ρp

] contains the electron–electron,
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proton–proton, and electron–proton classical Coulomb energies, as
well as the noninteracting kinetic energies of both electrons and
quantum protons. The final three terms are electron–electron XC,
proton–proton XC, and electron–proton correlation functionals.
Variational minimization of the NEO-DFT energy with respect to
the densities leads to two sets of coupled Kohn–Sham equations
for electrons and protons, which are strongly coupled and must be
solved together self-consistently.

Implementation of the NEO-DFT method requires the func-
tionals in Eq. (28). Within this framework, any conventional
electron–electron XC functional can be employed.477 Due to the
local nature of the quantum protons in molecular systems, the
proton–proton XC energies are negligible,472 but the Hartree–Fock
proton–proton exchange is included. The electron–proton cor-
relation (epc) functional is essential for accurate calculations of
proton densities and energies. The epc17 (LDA form)475,476 and
epc19 (GGA form)478 functionals were formulated as extensions of
the Colle–Salvetti formalism for electron–electron correlation494,495

to the case of electron–proton correlation. These functionals are
designed to accurately describe proton densities and energies of
molecular systems.

The importance of electron–proton correlation for the
prediction of accurate proton densities is shown in Fig. 21 for the
FHF− molecular ion, where results from NEO-DFT with several
different electron–proton correlation treatments are compared to
a near-exact result computed using the Fourier grid method.496–498

In the absence of electron–proton correlation (NEO-DFT/no-epc
in Fig. 21), the proton density is much too localized, similar to
NEO-HF results. Inclusion of electron–proton correlation using
either the epc17-2 functional475,476 or the epc19 functional478

significantly improves the proton densities.
In addition to accurate proton densities, these two epc func-

tionals were shown to predict accurate proton affinities for a diverse

FIG. 21. (a) On-axis and (b) off-axis proton density for FHF− computing using
NEO-DFT with no electron–proton correlation and two different electron–proton
correlation functionals, in comparison to a grid-based reference calculation. All
calculations use the B3LYP electronic functional, def2-QZVP electronic basis
set,75 and an even-tempered 8s8p8d protonic basis set. Adapted with permission
from Pavošević et al., Chem. Rev. 120, 4222 (2020). Copyright 2020 American
Chemical Society.

set of molecules composed of amines, carboxylates, aromatics, and
inorganic species.476,478 Because the NEO-DFT method inherently
includes the zero-point energy contributions from the quantum
protons, the proton affinity of molecule A is simply

PA(A) = EA − EHA+ +
5
2

RT, (29)

where EA is the energy of A computed with conventional DFT
and EHA+ is the energy of the protonated species calculated using
NEO-DFT. This procedure does not require the calculation of
computationally expensive Hessians because the zero-point energy
contributions from the other nuclei have been shown to be neg-
ligible due to cancellation.480 Moreover, the NEO-DFT method
includes the anharmonic effects associated with the quantized
proton.

Analytic geometry gradients for the NEO-DFT method with
the epc17-2 and epc19 functionals allow geometry optimizations
that include the effects of proton delocalization, anharmonicity,
and zero-point energy. Figure 22 shows that the NEO-DFT/epc17-
2 method accurately predicts the increased F–F bond length in the
FHF− ion, which is shifted by ≈0.02 Å due to proton quantiza-
tion.476 The NEO-DFT/epc17-2 method has been used to optimize
the geometries of protonated water tetramers with all nine protons
treated quantum-mechanically and correctly predicts the energetic
ordering of the four isomers.490

The NEO-HF, NEO-DFT/no-epc, NEO-DFT/epc17-2, and
NEO-DFT/epc19 methods are available in Q-Chem 5 in both
restricted and unrestricted formalisms. The quantum protons are
always assumed to be high-spin. Analytic gradients are available
for each of these methods, enabling geometry optimizations. The
user must specify the quantum protons, the electronic and protonic
basis sets,475,483,499 and the electron and electron–proton correlation
functionals.

FIG. 22. Energy as a function of F–F distance for FHF−, comparing conventional
DFT and NEO-DFT results to a grid-based reference. Quantization of the proton
increases the equilibrium F–F distance. These calculations were performed using
the B3LYP electronic functional, the def2-QZVP electronic basis set, and an even
tempered 8s8p8d protonic basis set. Data are from Ref. 476.
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2. NEO-TDDFT
NEO-TDDFT is a multicomponent extension of conventional

electronic LR-TDDFT that allows for the simultaneous calculation
of electronic and protonic (vibrational) excitation energies,479 as
depicted in Fig. 23. The formalism follows from the linear response
of the NEO Kohn–Sham equations to an external perturbation, and
NEO-TDDFT excitation energies Ω are obtained by solving the
following multicomponent equation:479

⎡
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
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The matrices Ae, Be, Xe, and Ye are analogous to the orbital Hessians
(A and B) and response amplitudes (X and Y) that appear in conven-
tional LR-TDDFT,114,115 albeit with an additional term associated
with electron–proton correlation in Ae and Be. The quantities Ap,
Bp, Xp, and Yp are their protonic counterparts. The quantity C is a
coupling matrix that includes terms associated with electron–proton
Coulomb interactions and electron–proton correlation.

NEO-TDDFT predicts proton vibrational excitation ener-
gies that are in a good agreement with grid-based reference val-
ues for the fundamental vibrational modes.483,484 The electronic
excitation energies for the lower electronic states are similar to
those obtained with conventional electronic LR-TDDFT,479 but
vibronic mixing is found to impact the electronic excitation energies
for some of the higher electronic states.486 The Tamm–Dancoff
approximation114 can be applied to Eq. (30), eliminating the Ye and

FIG. 23. (a) Schematic depiction of the electronic and proton vibrational excita-
tions obtained from a single NEO-TDDFT calculation. (b) Transition densities for
the bend and stretch modes of FHF−. Panel (a) is reproduced with permission
from Yang et al., J. Phys. Chem. Lett. 9, 1765 (2018). Copyright 2018 American
Chemical Society. Panel (b) is reproduced from Culpitt et al., J. Chem. Phys. 150,
201101 (2019) with the permission of AIP Publishing.

Yp amplitudes, though the resulting NEO-TDA method tends to
significantly overestimate proton vibrational frequencies.479

The NEO-TDDFT, NEO-TDHF, NEO-TDA, and NEO-CIS
methods are available in Q-Chem 5 in both restricted and unre-
stricted versions. The quantum protons are always assumed to be
high-spin. These methods provide electronic, proton vibrational,
and electron–proton (vibronic) excitation energies.

VI. MODELING THE ENVIRONMENT
Most chemistry occurs in the condensed phase, and 21st-

century quantum chemistry is characterized by a variety of increas-
ingly sophisticated theoretical models to describe the extended
environment around a smaller part of the system that is modeled
in detail using electronic structure theory. The simplest approach
to modeling a solution-phase molecule is to replace vacuum bound-
ary conditions with dielectric continuum boundary conditions.500,501

Section VI A highlights some continuum methods that are new in Q-
Chem 5, including capabilities for describing solvent effects on spec-
troscopy (vertical excitation and ionization energies) and for using a
continuum model to describe an anisotropic solvation environment,
such as an air/water or aqueous/organic interface.

Hybrid quantum mechanics/molecular mechanics (QM/MM)
methods represent a higher degree of sophistication that allows the
environment to have atomistic structure, although this necessitates
sampling over those atomistic degrees of freedom, at increased cost.
Available QM/MM functionality, including interfaces with various
MM software packages, is described in Sec. VI B. Taking this one
step further, one can imagine “QM/QM” methods that describe
the environment at a lower but still quantum level of theory.
Historically, this was often accomplished via “subtractive”
approaches,502,503 as pioneered by Morokuma and co-workers in the
“ONIOM” scheme,504 but more recently there is growing interest
in QM/QM embedding schemes that stitch together two levels of
theory in a potentially more natural way. For this purpose,
Q-Chem contains a version of projection-based embedding505,506

that is described in Sec. VI C. Finally, for a homogeneous QM
description of a system that is too large to be tackled in a straight-
forward way, one can turn to fragmentation methods,507 a few of
which are described in Sec. VI E.

A. Continuum solvation models
Dielectric continuum models represent a form of implicit sol-

vation that sidesteps configurational averaging over solvent degrees
of freedom, as that averaging is contained (implicitly) within the
value of the solvent’s static or zero-frequency dielectric constant,
ε0. Within quantum chemistry, the oldest of these models are the
polarizable continuum models (PCMs),508 but historically the best
black-box solvation models are the “SMx” models developed by
Cramer and Truhlar.509 See Refs. 501 and 510 for a discussion of
the similarities, differences, and nuances of these various models.
Q-Chem 5 contains a range of these models,511 built upon a smooth
discretization procedure for the cavity that defines the interface
between the atomistic solute and the structureless continuum.511–515

This procedure eliminates numerical artifacts such as discontinu-
ities in the potential energy surface, which can appear in some
implementations.511–513
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1. Models for solvation energies
Q-Chem includes the SM8,516 SM12,517 and SMD518 vari-

ants of SMx, where the “D” in SMD stands for “density”. Of
these, SMD is perhaps the most interesting because it uses density-
based electrostatic interactions based on a PCM, and is avail-
able (with analytic gradient) in arbitrary basis sets. In addition
to these models, Q-Chem 5 also includes the “composite model
for implicit representation of solvent” (CMIRS) approach, originally
developed by Pomogaeva and Chipman,519–522 and later modified
by You and Herbert.523 CMIRS is designed as a less-empirical con-
tinuum solvation model and uses dramatically fewer parameters as
compared to the SMx models, although the trade-off is that it is
presently parameterized for only a few solvents. For the important
case of aqueous solvation, error statistics (versus experiment) for
small-molecule hydration energies ΔhydG○ are provided in Table I,
and these statistics demonstrate that CMIRS outperforms the SMx
models for ions in aqueous solution. The dataset is the Minnesota
solvation database,518,524,525 for which the error bars on the single-
ion hydration energies are estimated to be ±3 kcal/mol.525 This
means that the CMIRS model has reached the limit of the accuracy of
the experimental data against which all of the models in Table I were
parameterized.

CMIRS uses an isocontour of the solute’s electron density
ρ(r) to define the cavity surface,526 which is therefore defined in
terms of a single empirical parameter and is pleasantly free of other
parameters such as atomic van der Waals radii. The disadvantage
is that the isodensity construction lacks analytic energy gradients,
which are available in Q-Chem 5 for SMD. In Q-Chem, the
self-consistent reaction field problem defined by the continuum
model can be iterated to self-consistency with any SCF level of the-
ory. For post-Hartree–Fock methods, the use of solvent-polarized
MOs in the subsequent electron correlation calculation affords a
“zeroth-order” correction for solvation effects that is probably accu-
rate to within the limitations of the continuum approach itself.501

There is significant confusion in the literature regarding
terminology for continuum solvation models.501,510 PCMs them-
selves are electrostatics-only models,501 which must be augmented
with nonelectrostatic contributions (Pauli repulsion, dispersion,
cavitation, etc.) in order to model solvation energies. Models for
these nonelectrostatic contributions to ΔsolvG○ are included as part
of the SMx and CMIRS solvation models but are not included
in PCMs. Even relatively sophisticated electrostatics treatments,
such as the “integral equation formulation” (IEF-PCM)508 and

TABLE I. Mean unsigned errors (MUEs) for hydration energies ΔhydG○ using contin-
uum solvation models.a

MUE (kcal/mol)

Datasetb Ndata SM12 SMD CMIRS

Neutrals 274 1.3 0.8 0.8
Cations 52 3.5 3.4 1.8
Anions 60 3.8 6.3 2.8
All ions 112 3.7 4.7 2.4
aComputed at the B3LYP/6-31G∗ level, from Ref. 501.
bMinnesota solvation database.518,524,525

the closely related “surface and simulation of volume polarization
for electrostatics” [SS(V)PE] model,527,528 are electrostatics-only
descriptions of solvation, as is the much simpler “conductor-like
screening model” (COSMO),529,530 which often affords results quite
similar to IEF-PCM and SS(V)PE.531 All of these models are
available in Q-Chem; see Ref. 501 for a detailed comparison of them.
While not appropriate for computing ΔsolvG○, a PCM alone can still
be useful for spectroscopic applications, where the frontier orbital
energy levels are modified by the dielectric continuum and this is
reflected in the computed excitation energies. Application of PCMs
to solvatochromic shifts is discussed next.

2. Nonequilibrium models for vertical
excitation and ionization

What is the appropriate manner to describe a sudden change
in the solute’s electron density, which occurs upon electronic excita-
tion or ionization, within a continuum representation of the solvent?
A simple approach is to partition the solvent polarization into “fast”
(electronic) and “slow” (nuclear) components and assume that the
former responds instantaneously but that the latter is frozen and
remains polarized with respect to the initial state.532–535 The slow
polarization is therefore out of equilibrium with the solute’s elec-
trons, and such approaches are known as nonequilibrium solvation
models.501 Within this approach, the solvent’s frequency-dependent
permittivity ε(ω) is modeled using only its ω = 0 limit (the static
dielectric constant, ε0) and its ω→∞ limit (the “optical” dielectric
constant, ε∞). The latter is equal to the square of the solvent’s index
of refraction (ε∞ = n2

ref), with values in the range ε∞ = 1.8–2.5 for
common solvents.501

For an electronic transition from initial state ∣Ψ0⟩ to final state
∣Ψk⟩, the Schrödinger equation that one would like to solve is

(Ĥvac + R̂s
0 + R̂f

k)∣Ψk⟩ = Ek∣Ψk⟩, (31)

where Ĥvac is the vacuum Hamiltonian and R̂k = R̂s
0 + R̂f

k is the
reaction-field operator, partitioned into a “slow” initial-state com-
ponent R̂s

0, representing polarization using wave function ∣Ψ0⟩

and dielectric constant ε0, and a “fast” final-state component R̂f
k,

representing polarization using wave function ∣Ψk⟩ and dielectric
constant ε∞.501 The state-specific nature of the Hamiltonian in
Eq. (31) is problematic, however.536 A simple solution is to treat
R̂f

k using first-order perturbation theory in a basis of mutually
orthogonal eigenstates of Ĥ0 = Ĥvac + R̂s+f

0 . This has been called the
perturbation theory state-specific (ptSS) approach to nonequilibrium
solvation.537–539 When applied to the CIS-like eigenvalue problem
that defines LR-TDDFT, the ptSS approach is closely related to
the “corrected LR” approach of Caricato et al.;540 see Ref. 501 for
details.

The ptSS model for solvatochromic shifts is available in
Q-Chem 5 for LR-TDDFT537,538 and ADC methods.538,539 Figure 24
shows some results for a set of nitrobenzene derivatives, with
excitation energies computed at the ADC(2) level. The ptSS-PCM
solvatochromic shifts compare very well with experiment, and the
details of how electron correlation contributions are included in
the excited-state density (iteratively alongside the PCM correction
or not) matter very little.539 In conjunction with LR-TDDFT, the
ptSS-PCM approach can also be applied to emission and photo-
electron spectroscopies.537 In the latter case, nonequilibrium effects
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FIG. 24. Solvatochromic shifts in the lowest 1ππ∗ state for derivatives of nitrobenzene (PhNO2) in different solvents, comparing experimental values to those computed at
the ADC(2) level using the ptSS-PCM approach.538 The PTE, PTD, and PTD∗ variants represent slightly different ways of treating the correlated excited-state density.501,539

Adapted with permission from Mewes et al., J. Phys. Chem. A 119, 5446 (2015). Copyright 2015 American Chemical Society.

of 0.5–1.0 eV on vertical ionization energies (VIEs) have been
documented.541–543 The nonequilibrium corrections are not yet
available for other kinds of excited-state methods (such as
EOM-CC), but in those cases, one can still include zeroth-order
solvation effects simply by using solvent-polarized Hartree–Fock
orbitals in the correlated calculation.

3. Poisson–Boltzmann approach for arbitrary
dielectric environments

The solvation models discussed above are designed for the
isotropic environment of a bulk solvent, in which case the solvent
is characterized by a scalar dielectric constant and Poisson’s
equation (which defines the continuum electrostatics problem) can
be replaced by a more efficient PCM formalism.501 However, if
the environment is anisotropic (at an interface, for example), then
the continuum electrostatics problem is defined instead by the
generalized Poisson equation

∇̂ ⋅ [ε(r)∇̂φtot(r)] = −4πρsol(r), (32)

in which ε(r) is an inhomogeneous permittivity function and
ρsol(r) is the charge density (nuclei + electrons) of the atomistic
solute that is described using quantum chemistry. The solution
of Eq. (32) is more expensive than a PCM calculation because it
requires discretization of three-dimensional space, but an advan-
tage of the three-dimensional approach is that it provides an exact
solution (within the model problem defined by a continuum envi-
ronment) for the “volume polarization” that arises when the tail
of the solute’s charge density penetrates beyond the cavity.501,544,545

Equation (32) can also be modified to include the effects of ionic
strength (Poisson–Boltzmann equation).501,546

Q-Chem 5 includes a generalized Poisson equation solver
(PEqS) for Eq. (32) and the analogous Poisson–Boltzmann
equation.542,546 For isotropic solvation, ε(r) can be designed to
interpolate smoothly across the atomic van der Waals radii, between
a “vacuum” value ε = 1 in the atomistic (quantum chemistry)
region and a bulk solvent value outside of that region. A similar
construction can be used to obtain a continuum model for
the air/water interface,541–543 as shown schematically in Fig. 25.
Other permittivity models ε(r) have been constructed to describe

host/guest systems, where the inside of a molecular capsule screens
a guest molecule from the high-dielectric solvent outside, with
consequences for the spectroscopy of the guest.547

The nonequilibrium ptSS formalism for ionization537

(Sec. VI A 2) has also been formulated for use with generalized Pois-
son boundary conditions,541,542 and this ptSS-PEqS approach has
been used to compute solution-phase VIEs, including those for ions
at the air/water interface.541–543 These applications require the use of
some explicit water molecules in the atomistic QM region, as shown
in Fig. 25. However, whereas aqueous VIEs are notoriously slow to
converge, often requiring >500 explicit water molecules,548–555 the
use of continuum boundary conditions leads to converged results
using only about two solvation shells of explicit water.541,543 Impor-
tantly, only the nonequilibrium version of continuum solvation
affords VIEs in agreement with experiment.501,543 The equilibrium
PCM approach may be adequate for adiabatic ionization energies
but lacks the correct physics to describe vertical excitation or
ionization.501

FIG. 25. Illustration of an anisotropic permittivity function ε(r) for the air/water
interface. The atomistic solute is ClO−3 (H2O)30, which amounts to two solvation
shells around the ion. Adapted with permission from J. M. Herbert, Wiley Inter-
discip. Rev.: Comput. Mol. Sci. 11, e1519 (2021). Copyright 2021 John Wiley and
Sons.
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B. QM/MM methods
By itself, Q-Chem contains some limited functionality for

QM/MM simulations using standard non-polarizable force fields.
This functionality does include periodic boundary conditions for
solution-phase QM/MM calculations,556,557 and these features have
been used to simulate the electronic spectroscopy of aqueous
chromophores,558 including solvated electrons and other aqueous
radicals.466,557,559–562 A QM/MM model for physisorption, inspired
by dispersion-corrected DFT, is new in Q-Chem 5.563

For QM/MM calculations with polarizable force fields, Q-
Chem can perform calculations using the effective fragment poten-
tial (EFP) method,564 a QM-derived polarizable force field.564–566

QM/EFP calculations can be performed through an interface
between Q-Chem and the open-source libefp library.11,565 As in
previous versions of Q-Chem, QM/EFP calculations are supported
at QM levels of theory, including EOM-CC, CIS(D), and LR-TDDFT
for excited-state calculations;567 in Q-Chem 5, support has been
added for ADC/EFP568 and for two-photon absorption calculations
using EOM-CC/EFP.569

Even more flexibility with respect to polarizable force fields
is provided by the polarizable embedding (PE) framework,570

calculations with which are enabled via an interface between
Q-Chem and the open-source cppe library.14 PE/SCF calculations
are currently enabled for all ground-state SCF methods, and excited-
state calculations can be performed at the PE/ADC level.14 The latter
method has been used to tackle excited states of large biomolecular
systems.571

For many biomolecular QM/MM applications, it is crucial to
have sophisticated tools for visualization and manipulation of coor-
dinates and trajectory data, as well as access to advanced methods
for sampling potential energy surfaces. For these purposes, Q-Chem
includes interfaces to several popular MM software packages, which
serve as front-end drivers to Q-Chem’s computational quantum
chemistry engine. An interface to the CHARMM program572 has
long been a part of Q-Chem,573 which can also be accessed via the
“CHARMMing” web portal.574,575 New in Q-Chem 5 are interfaces
to the GROMACS576 and NAMD577 classical molecular dynamics
programs. The GROMACS interface, in particular, supports nona-
diabatic trajectory surface-hopping simulations at the CIS and
LR-TDDFT levels of theory, including SF-TDDFT (see Sec. II C 2),
with GROMACS as the driver for the dynamics. Some tools for
“QM-cluster” modeling578 of enzyme active sites are also available
in Q-Chem itself.579

C. Embedding methods
Taking one step further than QM/MM, one can employ a cost-

effective QM theory to describe the environment. The projection-
based QM embedding theory505,506 provides a robust and formally
exact approach to partition a chemical system into two subsystems
(A and B) that are treated at two different levels of QM theory.
Typically a small, chemically important part of the system (A) is
described by a correlated wave function theory (WFT, e.g., MPn or
CC), while its environment (subsystem B) is described using DFT.
This scheme goes beyond the electrostatic embedding formalism
that is common in ONIOM-style treatments,504 as the interaction
between the two subsystems is described at the DFT level and is
therefore fully quantum-mechanical. Q-Chem 5’s implementation

of projection-based embedding supports the use of a myriad of
WFT/DFT combinations, thanks to its broad coverage of these two
families of electronic structure methods.

A WFT(A)-in-DFT(B) calculation comprises the following
steps:

● Converge the SCF calculation for the full system at the DFT
level of theory.

● Partition the occupied orbitals by localizing the canoni-
cal MOs and assigning the localized MOs to subsystems A
and B.

● Perform the WFT calculation for the embedded subsys-
tem A, which means performing a Hartree–Fock calculation
followed by a correlated wave function calculation using the
MOs for A.

In the final step of this procedure, the MOs assigned to
subsystem B remain frozen and are employed to construct a pro-
jection operator that enforces orthogonality between the MOs
of A and B when the former’s MOs are being re-optimized. Mean-
while, the “environment” subsystem (B) affects the QM calculation
of A by contributing an embedding potential to the one-electron
Hamiltonian of A, which comprises the Coulomb and XC interac-
tions between two subsystems.

Compared to the original formulation of the projection-based
embedding theory,505 the implementation in Q-Chem 5 has (i)
replaced the use of a somewhat arbitrary level-shift parameter
with a strict projection scheme; (ii) implemented the subsystem-
projected atomic orbital decomposition (SPADE) partition of the
occupied space,580 which is more robust than the original scheme
based on the Pipek-Mezey localization procedure;581 and (iii)
includes a “concentric localization” scheme to truncate the virtual
space with systematically improvable accuracy.582 Truncation of the
virtual space is essential to reducing the cost of a WFT-in-DFT
calculation (relatively to a full WFT treatment), especially for CC
methods whose cost increases steeply with the number of virtual
orbitals.

Besides the projection-based embedding theory, other notable
QM/QM embedding schemes that are available in Q-Chem 5 include
frozen-density embedding,583–587 embedded mean-field theory,588

and the related polarized many-body expansion (MBE) scheme.589

D. Molecules under pressure
Q-Chem includes methods to incorporate the effects of hydro-

static pressure or mechanical forces on molecular structures in
geometry optimizations and ab initio molecular dynamics simula-
tions. The application of mechanical forces to molecules is modeled
by the “external force is explicitly included” approach.590 Applica-
tion of pressure can be modeled either by the hydrostatic compres-
sion force field approach,591 in which forces point toward the molec-
ular centroid, or via a more refined algorithm, in which mechanical
forces are applied perpendicular to the molecular van der Waals
surface.592 These methods can be deployed in combination with
any electronic structure method for which nuclear gradients are
available, with no additional computational overhead. Benchmarks
show that physically sound geometries are retained even at high
pressure.592 A more sophisticated approach for applying pressure
to chemical systems is the Gaussians on surface tesserae simulate
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hydrostatic pressure (GOSTSHYP) algorithm.593 This approach uses
Gaussian potentials that are distributed evenly on the discretized
molecular van der Waals surface to compress the electron den-
sity and affords accurate results for energies, structural parame-
ters, dipole moments, and chemical reactions under pressure.593

GOSTSHYP energies and gradients are currently implemented only
at the SCF level, enabling Hartree–Fock and DFT calculations of
compressed atoms and molecules.

E. Fragment-based methods
Fragmentation methods507 seek to sidestep the steep nonlin-

ear scaling of traditional quantum chemistry by sub-dividing a large
system into small pieces that can be tackled more tractably by
means of distributed computing. Although a plethora of approaches
have been discussed in the literature,507,594 they are most often
implemented at the level of external scripts or driver programs
and only a few of them are tightly integrated with Q-Chem itself.
A few of these are discussed in the present section, including a
general-purpose n-body expansion for ground-state energies, an
ab initio exciton model for representing delocalized excited states
in a basis of fragment-localized excitations, and finally a scheme
for computing energy-transfer couplings. The energy decomposi-
tion methods that are described in Sec. VII can also be consid-
ered as examples of fragment-based methods but are discussed
separately.

1. Many-body expansion
A simple and straightforward method is the many-body

expansion (MBE),595–601

E =∑
I

EI +∑
I<J
ΔEIJ + ∑

I<J<K
ΔEIJK + ⋅ ⋅ ⋅ , (33)

which accounts incrementally for two-body interactions
(ΔEIJ = EIJ − EI − EJ), three-body interactions (ΔEIJK ), etc. Both
the MBE and its analytic gradient are available in Q-Chem 5 for
ground-state energies of fragments that are not covalently bonded
to one another. MBE calculations can be parallelized using either
OpenMP (across a node) or MPI, though not both.

Careful analysis of the n-body expansion suggests that
ostensibly slow convergence is sometimes an artifact of basis-set
superposition error (BSSE).598–600,602–604 To avoid this, many-body
counterpoise corrections are available,598,599 which are consistent
order-by-order with Eq. (33).

2. Ab initio exciton model
The Frenkel exciton model605 is an old idea to represent

collective, delocalized excitations in multi-chromophore systems
using direct-product basis states in which a single monomer is
excited,

∣ΞI⟩ =
monomers

∑
X

CX
I ∣ΨA⟩∣ΨB⟩ ⋅ ⋅ ⋅ ∣Ψ∗X ⟩ ⋅ ⋅ ⋅ ∣ΨN⟩. (34)

The advantage of this “site-basis” is that ground- and excited-state
monomer wave functions (∣ΨX⟩ and ∣Ψ∗X⟩, respectively) can be

computed independently of one another, and applications to very
large aggregates are feasible by means of distributed computing.141

The model is completed by computing matrix elements between the
direct-product basis states, e.g., ⟨Ψ∗A ΨBΨC∣Ĥ∣ΨAΨ∗B ΨC⟩, and also the
corresponding overlap integrals ⟨Ψ∗A ΨBΨC∣ΨAΨ∗B ΨC⟩ because basis
functions computed on different monomers are not orthogonal.
Addition of higher-lying excited states ∣Ψ∗∗X ⟩ adds variational
flexibility to the ansatz in Eq. (34), and one solves a generalized
eigenvalue problem whose dimension is a few times the number
of sites, depending on how many excitations are included per
monomer.

Historically, it is common to invoke a dipole-coupling approx-
imation to evaluate matrix elements of Ĥ, and this approxima-
tion continues to be made even in modern implementations.606–608

The dipole approximation may be satisfactory to describe energy
transfer between well-separated chromophores but is questionable
under crystal-packing conditions, as in organic photovoltaic mate-
rials. The dipole-coupling approximation is not required, and in the
ab initio Frenkel exciton model developed by Morrison and Her-
bert,141,609–611 these matrix elements are evaluated exactly, within a
single-excitation ansatz for the monomer excited states,

∣Ψ∗X ⟩ =∑
ia

tX
ia ∣Φ

ia
X ⟩. (35)

Here, ∣Φia
X ⟩ represents a singly excited Slater determinant composed

of MOs on monomer X. This is consistent with either a CIS or a
LR-TDDFT calculation for each monomer, incorporating as many
individual states ∣Ψ∗X ⟩ as desired. In this way, the ab initio exciton
model can be viewed as a specialized form of nonorthogonal config-
uration interaction in a customizable diabatic basis.

Using this flexibility, the ab initio exciton model has been used
to study the singlet fission process in organic photovoltaics,89,611,612

meaning the spin-allowed formation of a pair of triplet charge
carriers (T + T) via one-photon excitation,

S0
hν
ÐÐ→S1

singlet
ÐÐ→
fission

1
(TT) → T + T. (36)

The intermediate “multi-exciton” state 1(TT), involving triplet states
on two different chromophores that are spin-coupled to a singlet, is
challenging to describe using standard quantum chemistry because
it involves a true double excitation,613,614 and such states are absent
from conventional LR-TDDFT.194 Within the ansatz in Eq. (34),
however, the 1(TT) state simply involves a pair of single excitations
with appropriate Clebsch–Gordan coefficients to couple them.89,612

The importance of charge-transfer excitons can be interrogated as
well, simply by including basis states ∣Ψ±A Ψ∓B ΨC⟩ involving ionized
monomers.612 In this way, the ab initio exciton model allows one
to construct a tailored diabatic basis, letting Schrödinger’s equa-
tion decide which basis states are important. Calculations on clus-
ter models of crystalline pentacene have helped to resolve a long-
standing debate about the presence of charge-separated states in the
low-energy optical spectrum of this material.89

Analytic derivative couplings ⟨ΞI ∣(∂/∂x)∣ΞJ⟩ between exci-
tonic states are also available.611 The key ingredient in these cou-
plings are derivatives of the matrix elements of Ĥ in the exciton
site-basis, e.g.,
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H[x]AB =
∂

∂x
⟨Ψ∗A ΨBΨC∣Ĥ∣ΨAΨ∗B ΨC⟩. (37)

Following a transformation from nuclear Cartesian coordinates
to normal modes (x → Q), the quantities H[Q]AB are essentially the
linear exciton–phonon coupling parameters gABθ that appear in
the phenomenological Holstein–Peierls Hamiltonian.615 The diag-
onal coupling parameters gAAθ are the “Holstein couplings” that
describe how the site energies are modulated by phonons θ, whereas
the off-diagonal couplings gABθ are the “Peierls couplings” that
quantify how the energy-transfer integrals HAB are coupled to the
phonons.611 Often these are treated as phenomenological para-
meters, but the ab initio exciton model affords a means to compute
them from first principles. This can be used for a priori identifi-
cation and characterization of the vibrational modes that couple
strongly to excitation energy transfer (EET). An example is shown in
Fig. 26 for crystalline tetracene, a singlet fission material, where the
ab initio exciton model identifies several localized vibrational modes
on the tetracene monomers that strongly modulate the energy-
transfer dynamics.611,612

3. Excitation energy transfer couplings
The ab initio exciton model described above represents one

means to compute EET couplings, but alternative methods exist.616

One of these is the fragment excitation difference (FED) scheme,
an extension of the fragment charge difference (FCD) method.617 In
the FED approach, the charge density difference in FCD is replaced
by an excitation difference density operator (i.e., the sum of elec-
tron and hole densities created upon excitation). Within a single
excitation theory such as CIS, one can easily obtain analytic expres-
sions for the matrix elements of the excitation density. However, for
multi-excitation wavefunctions, no simple expressions exist for the
off-diagonal elements. To circumvent this problem, a new scheme
was developed known as θ-FED.618,619 In this approach, the diabatic
states are assumed to be functions of a mixing angle θ; thus, the dif-
ference density Δx depends on θ as well. In order to obtain “ideal”

diabatic states, the angle θ is scanned from −π/4 to π/4 in order to
maximize the difference of the excitation,

θmax = argmax
−π/4<θ<π/4

∥Δxi(θ) − Δx f (θ)∥, (38)

with i and f indicating the initial and final diabatic states. The
corresponding θ-dependent coupling can then be written as

Vθ−FED =
1
2
(Em − En) sin(2θmax), (39)

where Em and En are the excitation energies for the two adiabatic
states in question.

For wave functions consisting only of single excitations,
it has been demonstrated that this generalized θ-FED scheme
provides results identical to the original FED,618 but the former
can be extended beyond CIS. In Q-Chem 5, the θ-FED scheme is
implemented for both CIS and XCIS,620 as well as RAS-CI.285

VII. ANALYSIS
Q-Chem offers numerous tools to aid interpretation of ab initio

calculations and to provide conceptual insights. Some of the more
popular ones include natural bond orbital (NBO) analysis,621 along
with wave function (orbital and density matrix) analysis,88,269,622

provided by the libwfa module.15 Some recent applications of these
tools have been highlighted in Sec. III B, so the present section will
focus specifically on a different topic, namely, methods for energy
decomposition analysis (EDA).

Successful quantum chemistry calculations are akin to numeri-
cal experiments, whose physical or chemical interpretation remains
a separate problem. To address this problem in the context of
intermolecular interactions, EDA methods seek to partition the
intermolecular interaction energy between a collection of molecules
(or “fragments,” as in Sec. VI E) into physically meaningful
components. Two separate approaches for intermolecular EDA are

FIG. 26. Holstein coupling parameters for crystalline tetracene, obtained from an ab initio exciton calculation of H[x]AB for the unit cell projected onto phonon modes from a
periodic DFT calculation. The couplings are plotted as relaxation energies g2

AAθ/2ωθ, where ωθ is the phonon frequency, and indicate several modes that strongly modulate
the site energies. Peierls couplings for this system are several orders of magnitude smaller; see Ref. 611. Adapted from A. F. Morrison and J. M. Herbert, J. Chem. Phys.
146, 224110 (2017) with the permission of AIP Publishing.
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available in Q-Chem 5, one based on variational minimization
with constraints, via absolutely localized MOs (the ALMO-EDA
scheme,623 Sec. VII A), and another based on symmetry-adapted
perturbation theory (SAPT),624 as described in Sec. VII B.

A. ALMO-EDA method
The ALMO-EDA scheme identifies contributions to the

intermolecular interaction energy by performing variational
minimization of the supramolecular DFT energy in the presence of
constraints that first prevent polarization and charge transfer (CT),
then prevent only CT, and finally with all constraints released. The
total DFT interaction energy for a collection of fragments F,

ΔEINT = EFULL −∑
F

EF , (40)

is partitioned according to

ΔEINT = ΔEGD + ΔEFRZ + ΔEPOL + ΔECT. (41)

The geometric distortion energy (ΔEGD ≥ 0) is the penalty to distort
the fragments from their isolated structures to the geometry
of the intermolecular complex. The frozen energy change (ΔEFRZ)
is the net effect of permanent electrostatics, Pauli repulsion, and
dispersion. ΔEPOL is the energy lowering due to electrical polar-
ization (constrained to prevent charge delocalization). Finally,
ΔECT is the stabilization due to electron delocalization from one
fragment to another,625 which is automatically corrected for BSSE
in Q-Chem. Key advantages of the variational supramolecular
approach include (i) immunity from any convergence questions of
perturbation theory and (ii) the ability to select the best density
functional for the problem at hand (the theory is applicable, in
principle, to the exact density functional, though sadly, it remains
unavailable).

Q-Chem 5 contains the latest (second-generation) version of
the ALMO-EDA,626,627 which includes several significant improve-
ments over the original version.628,629 A detailed discussion of the
theory can be found elsewhere,623 but the following two major
improvements warrant specific mention:

1. The polarization energy is defined in a new way that is
largely independent of details of the atomic orbital basis set
and has a useful complete-basis limit. Intra-fragment relax-
ation of the frozen orbitals is accomplished by allowing
them to mix with fragment-specific electric response func-
tions (FERFs).630 These are the virtual orbitals that exactly
describe the linear response of the frozen orbitals to uniform
electric fields (which requires three dipolar FERFs per
occupied orbital) and the spatial gradients of those fields
(which requires an additional five quadrupolar FERFs per
occupied orbital). The mixing between frozen orbitals and
FERFs on each fragment minimize the energy of the complex
subject to the constraint of no charge flow between frag-
ments, using the SCF for the molecular interactions (SCF-MI)
procedure.631

2. The frozen energy change can be decomposed into contribu-
tions from its three underlying components: permanent elec-
trostatics, Pauli repulsion, and dispersion.632 The dispersion
contribution is separated with the aid of a “dispersion-free”
density functional, e.g., Hartree–Fock theory in the case that
an RSH functional such as ωB97X-V or ωB97M-V is used
to compute EFULL. Electrostatics can be separated using the
traditional quasi-classical definition of the electrostatic
interaction between isolated fragments, and what remains is
identified as Pauli repulsion.633 This traditional approach may
be appropriate for force field assessments because fragment
densities do not change as the complex is rearranged, but
a quantum-mechanically correct alternative definition is also
available, wherein the fragment densities deform so as to sum
to the total frozen density.632

The well-behaved separation of an interaction energy into physically
interpretable contributions has permitted use of the ALMO-EDA to
assess polarizable force fields633,634 and, recently, to develop a highly
accurate polarizable force field for water.635

An important new capability is that ALMO-EDA is properly
integrated with Q-Chem’s polarizable continuum models (PCMs)
of solvent,511–513 specifically C-PCM and IEF-PCM, which are
electrostatics-only, and also SMD518 (see Sec. VI A 1). This ALMO-
EDA(solv) model636 is a significant new capability because the
solvent can exert both qualitative and quantitative effects on the
binding of a complex. For example, electrostatic interactions may
be screened by high-dielectric solvents such as water, whose polar-
ity may also permit larger polarization and/or CT interactions by
stabilizing the resulting deformed densities. An example of the
application of ALMO-EDA(solv) to a CO2 reduction catalyst (in
acetonitrile solution) is presented in Fig. 27, illustrating the effects
of different substituent groups toward stabilizing binding of an
activated CO2 substrate.636

FIG. 27. ALMO-EDA(solv) results for the additional binding of CO2 when
two positively charged substituents (tetramethylammonium, TMA, and an
imidazolium-carrying group denoted as “imid”) are introduced at the ortho
position of the meso-phenyl group in FeTPP, a promising molecular cat-
alyst for CO2 reduction. Compared to unsubstituted FeTPP, the o-TMA
groups stabilize CO2 mainly by alleviating the Pauli repulsion between
CO2 and the FeTPP core, while the o-imid groups stabilize CO2 pri-
marily through attractive Coulomb interactions. The solvent is acetonitrile
(modeled using C-PCM with ε = 35.88), and the calculations were performed at
the ωB97X-V/def2-TZVPP level of theory.636
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In addition, many useful visualization tools are available in
conjunction with ALMO-EDA calculations, including the auto-
matic generation of significant complementary occupied-virtual
pairs (COVPs)629,637 for characterizing charge transfer between frag-
ments, electron density difference (EDD) plots between different
intermediate stages of ALMO-EDA, and its further partition into
natural orbitals for chemical valence (NOCV) pairs.638 Beyond
SCF methods, ALMO-EDA is also available at the MP2 level for
both closed- and open-shell reference determinants.639–641 Beyond
ground states, ALMO-EDA can be used to analyze excited states of
intermolecular complexes (excimers and exciplexes) at the level of
either CIS or LR-TDDFT.642,643

One of the traditional criticisms of EDA techniques is that
the energy components themselves are not observables,644,645 so
there is some arbitrariness in their definitions. A substantive step
to address this issue has been taken with the introduction of an
adiabatic EDA (aEDA),646 where observable quantities such as struc-
ture and vibrational frequencies are computed on the potential
energy surface belonging to each constrained energy. These include
the frozen energy (EFRZ), the polarized energy (EPOL), and the indi-
vidual fragment energies, {EF}, as well as the final unconstrained
supramolecular energy EFULL. This enables calculation of negative
semidefinite aEDA energy components,

ΔEINT = ΔEad
FRZ + ΔEad

POL + ΔEad
CT. (42)

The components in Eq. (42) are given as the energy difference
between the optimal structures in each consecutive pair of states. For
example, if the optimized structures on the FRZ and POL surfaces
are denoted as RFRZ and RPOL, then

ΔEad
POL = EPOL(RPOL) − EFRZ(RFRZ). (43)

Shifts in structures, vibrational frequencies, etc., can be associ-
ated with each of the EDA components so that, for example, the
difference RPOL − RFRZ demonstrates the effect of polarization on
geometry. The example in Fig. 28 illustrates that the redshift of

the hydrogen-bonded O–H stretch in the water dimer is primarily
associated with CT.

Closely related to the aEDA is the possibility of separately
assessing the energetic and observable effects of forward and
backward CT, which can be accomplished via a variational
forward–backward (VFB) scheme.641 The VFB approach uses a
generalized SCF-MI method that can disable either forward- or
back-donation effects in DFT calculations, thus enabling one to
assess the individual role of each, on both the interaction energy
but also structure and vibrational frequencies (by performing
optimization on the constrained surfaces, as in the aEDA).646 This
VFB approach is a powerful tool that has been applied to assess
the character of a variety of interesting bi-directional metal–ligand
interactions, including the novel ligand BF (iso-electronic to CO and
N2) and also BeO and BeCO3 interactions with CO.641

Finally, the ALMO-EDA can be employed for analysis of single
chemical bonds,647,648 yielding a fingerprint picture of the chemical
bond in terms of energy components. Development of the bonded
ALMO-EDA required generalization of the frozen orbital interac-
tion to include the energy lowering associated with spin-coupling of
two unpaired electrons, generalization of the geometric distortion
term (to become a “preparation energy” that includes the electronic
energy cost of hybridizing the orbitals), and finally generalization
of the polarization term to include the energy lowering associated
with orbital contraction. The latter requires the use of monopolar
FERFs.649 One interesting use of the bonded ALMO-EDA is to
clarify how the fingerprints of exotic chemical bonds compare to
those of more familiar bonds, as illustrated in Fig. 29. As one
example, the Zn(I)–Zn(I) bond in dizincocene (Cp − Zn − Zn − Cp)
emerges as a conventional covalent chemical bond, analogous to
H2. By contrast, the Mn(0)–Mn(0) bond in (CO)5Mn–Mn(CO)5
behaves as a charge-shift bond650 that is more similar to F2 than
to H2. An interesting recent application of the bonded ALMO-
EDA was to investigate the role of kinetic energy lowering in
chemical bond formation.651 The results are controversial because
in contrast to the decrease in kinetic energy upon spin coupling
in H2 (as a result of greater electron delocalization), the bonded
EDA shows that kinetic energy rises upon spin-coupling to make

FIG. 28. Adiabatic EDA (aEDA) for the water dimer. (a) Comparison of aEDA components vs the conventional (vertical) EDA components. (b) Illustration of the water dimer
showing two of the key geometric parameters, whose values at each level of the aEDA are reported in (c). It is striking that linearity of the hydrogen bond is already present
at the frozen energy optimization (i.e., it is not critically dependent on polarization or CT) and also striking that the redshift in the proton donor O–H stretch can be directly
associated with CT.
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FIG. 29. Bond fingerprint in terms of energy components (PREP, FRZ + SC, POL,
CT) for several single bonds, showing the contrast between a conventional cova-
lent bond (H3C–CH3), a polar covalent bond (HCl), the strongest single bond
(F3Si–F), a charge-shift bond (F2), and an ionic bond (LiF). PREP is the gener-
alization of the geometric distortion (GD) energy of Eq. (41) to include electronic
hybridization, while the energy lowering due to spin-coupling (SC) between the two
radical electrons upon bond-formation is grouped with the frozen (FRZ) energy of
Eq. (41).647

covalent single bonds such as H3C–CH3 due to Pauli repulsion with
core electrons.

B. Symmetry-adapted perturbation theory
Symmetry-adapted perturbation theory (SAPT) offers an

alternative kind of EDA for intermolecular interactions, which is
at the same time designed for accurate calculation of interaction
energies.624,652,653 Unlike supramolecular calculations, the interac-
tion energy Eint is not computed by the energy difference [as in
Eq. (40)] and SAPT is therefore free of BSSE. Instead, Eint is
computed directly from perturbation theory, using isolated-
monomer wave functions as an unperturbed basis, in a manner
that naturally partitions into physically meaningful components,
including electrostatics, Pauli repulsion (“exchange”), induction,
and dispersion. Through second order in the perturbation, which
includes both intermolecular Coulomb operators and the antisym-
metrizer that brings in Pauli repulsion, this affords

ESAPT0
int = E(1)elst + E(1)exch + E(2)ind + E(2)exch-ind + E(2)disp + E(2)exch-disp + δEHF.

(44)
Here, δEHF is an optional correction to account for higher-order
induction based on a counterpoise-corrected dimer Hartree–Fock
calculation.652 If Hartree–Fock wave functions are used to describe
the monomers, then this second-order approach is known as
“SAPT0”653 because it is zeroth-order in the Møller–Plesset fluc-
tuation potentials, i.e., it neglects monomer electron correlation
effects. These can be incorporated using perturbation theory, albeit
at rather high cost.652,653 A low-cost alternative is to use Eq. (44) in
conjunction with Kohn–Sham wave functions for the monomers
in a method known as SAPT0(KS), although care must be taken
to use functionals with correct asymptotic behavior, else the
anomalously small Kohn–Sham gaps wreak havoc with second-
order dispersion.654,655 As such, SAPT0(KS) should only be used

in conjunction with tuned LRC functionals.655 In Q-Chem 5,
this tuning can be performed in an automated way during the
SCF calculation via a global density-dependent (GDD) tuning
procedure.135–137

Missing from Eq. (44) is a CT term because CT is con-
tained within the induction energy in the traditional formulation
of SAPT.656,657 The two can be separated, in a manner that is
well-defined and stable, by using constrained DFT (cDFT) to define
CT-free reference states for the monomers.658–661 The SAPT0 induc-
tion energy,

ESAPT0
ind = E(2)ind + E(2)exch−ind + δEHF, (45)

can thereby be separated into a part that represents “pure” or
CT-free polarization, along with a CT energy that is defined as the
energy lowering upon lifting the cDFT charge constraint.

Figure 30 presents an example in which the combined
SAPT/cDFT-EDA is used to understand halide–water hydrogen
bonding.661 Whereas the textbook picture of anion–water interac-
tions imagines a C2v-symmetric structure for X−(H2O),663 with X−

at the positive end of the H2O dipole moment, gas-phase vibrational
spectroscopy convincingly demonstrates the incorrectness of this
picture.662 According to SAPT/cDFT-EDA analysis,661 the existence
of quasi-linear hydrogen bonds is driven primarily by CT, which
turns on sharply in the vicinity of linear X− ⋅ ⋅ ⋅H–O angles but is
negligible at the C2v “dipolar” geometry.

The SAPT interaction formula in Eq. (44) is traditionally
understood to apply to dimers but has been extended to clus-
ters of molecules through a combination with the “XPol” self-
consistent charge embedding scheme,654,664–667 which is used to
capture many-body polarization effects. The combined method,
“XSAPT,”136,624,654,666–672 is a many-body extension of SAPT that

FIG. 30. Total interaction potential (Eint) for F−(H2O) along a relaxed radial scan
of the XOH angle, θ. Also shown is a SAPT/cDFT-EDA decomposition of Eint into
a CT component (ECT) and a CT-free interaction energy, Eint − ECT. As the ion
circumscribes the water molecule, ECT turns on sharply in the vicinity of quasi-
linear hydrogen bonds. Removal of CT stabilization results in a C2v -symmetric
structure, in disagreement with experiment,662 although the “dipolar” C2v structure
can still be found in many undergraduate textbooks, e.g., Ref. 663. Adapted with
permission from J. M. Herbert and K. Carter-Fenk, J. Phys. Chem. A 125, 1243
(2021). Copyright 2021 American Chemical Society.

J. Chem. Phys. 155, 084801 (2021); doi: 10.1063/5.0055522 155, 084801-35

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

is currently available exclusively in Q-Chem for both closed- and
open-shell systems.

Although useful for qualitative and perhaps semiquantita-
tive purposes, second-order SAPT0 is not a benchmark-quality
method,653,669 primarily due to the limitations of second-order
dispersion,

ESAPT0
disp = E(2)disp + E(2)exch−disp. (46)

SAPT0 calculations are often performed using a limited basis set
such as jun-cc-pVDZ673 in order to affect some error cancellation.653

An alternative is to seek replacements for ESAPT0
disp , and two such

methods are available in Q-Chem:

● XSAPT + aiD,136,624,668,669 which adds an ab initio disper-
sion potential in place of ESAPT0

disp . Although similar in form
to “+D” corrections in DFT + D,674 the +aiD correction is
fitted to pure dispersion data from DFT-SAPT, SAPT2+(3),
and SAPT2+3(CCD) calculations, each of which provides
CCSD(T)-quality interaction energies but remains separable
into components.652,653 Taking advantage of the separabil-
ity of the SAPT interaction energy, XSAPT + aiD avoids
the double-counting that is inherent in DFT + D.674 (As a
result, the +D corrections in DFT +D should never be inter-
preted as genuine dispersion.37,659) The third-generation
+ aiD3 correction is the latest and most accurate.624

● XSAPT + MBD,667,672 which incorporates a modified
form672 of the many-body dispersion (MBD) model.72–74

As compared to XSAPT + aiD, this is much closer to a
first-principles model and also more accurate.

Although designed as intermolecular EDAs, XSAPT methods
are also among the most accurate quantum chemistry methods
for predicting intermolecular interaction energies, as demonstrated
by error statistics for the L7 dataset675 [Fig. 31(a)]. MP2-based
methods dramatically overestimate these dispersion-dominated
interaction energies, with the exception of the “attenuated” att-
MP2 method,676 which is also available in Q-Chem. The selec-
tion of DFT methods in Fig. 31(a) is chosen carefully to focus
on those that do well for non-covalent interactions. Hence, it
is impressive that XSAPT + MBD approaches the MAE of the
best density functional tested, B97M-V, and has lower maxi-
mum error. The combination of benchmark-quality energies with
a physically meaningful decomposition is one reason that SAPT-
based methods are used to parameterize physically motivated
force fields.677 These desirable properties have also been used to
make fundamental inquiries regarding the nature of π–π interac-
tions.678,679 The latter studies demonstrate, for example, that the
textbook680 Hunter–Sanders (quadrupolar electrostatic) model of
π-stacking is simply wrong.678 The frequently asked question,681 “is
π-stacking a unique form of dispersion?”, can be answered in the
affirmative using XSAPT + MBD calculations, although a detailed
analysis suggests that stacking is driven by molecular shape rather
than by aromaticity per se, in what has been called the “pizza-π”
model of stacking interactions.679

Notably, XSAPT calculations are considerably less expen-
sive than supramolecular DFT due to the monomer-based nature
of XSAPT. For XSAPT + aiD and XSAPT + MBD, the rate-
limiting step is O(n3

) with respect to the monomer size (n), rather
than the supersystem size. The method can be implemented effi-
ciently in the atomic orbital basis,136 and a new XPol embedding
scheme based on CM5 charges,682 available in Q-Chem 5, offers

FIG. 31. (a) Errors in interaction energies for the L7 set of large dispersion-bound dimers,675 as predicted by a variety of quantum-chemical methods in comparison to
complete-basis set (CBS) CCSD(T) benchmarks. Gray bars indicate maximum errors whereas colored bars indicate mean absolute errors. The latter are color-coded
according to computational cost, with O(Np

) indicating pth-order scaling with respect to the size N of the supramolecular complex, whereas O(n3
) means cubic scaling

with respect to the size n of the largest monomer. These comparisons were originally reported in Ref. 672, but the XSAPT + MBD statistics have been updated to reflect
modifications reported in Ref. 667. (b) Timing breakdown for an XSAPT + aiD calculation of the C60 @ C60H28 “buckycatcher” complex (4592 basis functions) on a single
28-core node. The left bar in each pair uses the original XPol embedding based on ChElPG charges,654 and the right bar is a new implementation based on CM5 charges.
667. Panel (a) is adapted with permission from K. Carter-Fenk, K. U. Lao, K.-Y. Liu, and J. M. Herbert, J. Phys. Chem. Lett. 10, 2706 (2019). Copyright 2019 American
Chemical Society. Panel (b) is reproduced from Liu et al., J. Chem. Phys. 151, 031102 (2019) with the permission of AIP Publishing.
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FIG. 32. Model systems for drug binding: (a) DNA/ellipticine intercalation complex
(157 atoms) and (b) the protease inhibitor molecule indinavir, situated in a model of
HIV-2 protease (323 atoms). The table shows XSAPT + MBD energy components
from Ref. 667.

almost 2× speedup over earlier versions;667 see Fig. 31(b). Cost
savings relative to supramolecular DFT are most pronounced in
systems that can be divided into more than two fragments, such
as the DNA intercalation complex that is shown in Fig. 32(a).
For this system, a counterpoise-corrected interaction energy
calculation at the level of ωB97M-V/def2-TZVPPD (4561 basis
functions) requires 3 × 13 h on a 40-core compute node, i.e., 13 h
for each of the three supramolecular calculations that are needed to
compute Eint = EAB − EA − EB. In contrast, an XSAPT + MBD
calculation using the same basis set requires 7 × 6 h running on the
same hardware.672 Like the fragment methods discussed in Sec. VI E
(of which XSAPT can be considered an example), these seven con-
stituent calculations can be run independently on different compute
nodes.

Figure 32 shows two pharmacologically relevant examples of
ligand–macromolecule binding, along with the XSAPT + MBD
energy decomposition for each.667 One of these is a DNA interca-
lation complex [Fig. 32(a)], emblematic of π-stacking interactions,
but the other does not exhibit any obvious dominant binding motif
yet has a dispersion energy that is almost twice as large as that of
the DNA intercalation complex. In the HIV + indinavir system,
which is considerably larger, dispersion arises from a large number
of small contributions that must be treated carefully. Notably, for
the DNA/ellipticine complex, the XSAPT +MBD interaction energy
(reported as −40.7 or −41.7 kcal/mol, depending on the details of
the charge embedding667) is in better agreement with the complete-
basis CCSD(T) benchmark (−38.6 ± 2.2 kcal/mol683) than an earlier
quantum Monte Carlo estimate (−33.6 ± 0.9 kcal/mol684).

VIII. SOFTWARE ENGINEERING
This article focuses primarily on the diverse scientific advances

made by the research groups that comprise the Q-Chem developer
community. Figure 2 is a convincing demonstration of sustained
energetic growth of the software and the developer community over

the past 10+ years. Despite its age, the Q-Chem software shows no
signs of aging.

As a software development platform, Q-Chem comes with
many challenges for developers and maintainers. Many features are
contributed by novice coders without much prior training for whom
Q-Chem is their first software development project. This is coupled
with an enormous body of computer code that no single person can
fully grasp. Software developed by scientists is often notorious for its
poor quality assurance and software engineering practices,685–688 but
Q-Chem developers benefit from the network effect and the sta-
bility that the Q-Chem platform provides. The Q-Chem core team
and experienced developers provide training and assistance to new
community members. Events such as regular developer workshops
and webinars, visits to the Q-Chem office in California, and a
“Summer at Q-Chem” program facilitate networking, encourage
cross-pollination, and help to integrate new developers.

Below, we describe some of the software engineering prac-
tices that help to maintain productivity with such a large group of
developers.

A. Software development environment
The Q-Chem code began in the early 1990s as a set of indi-

vidual components that communicated through temporary files.
These components were soon linked together for better performance
(by avoiding file-based communication involving large amounts
of data), becoming a monolithic code, but while this new struc-
ture delivered performance gains, it became difficult to read and
maintain over time. The problem is easy to recognize, but the
optimal solution is far from obvious. Should we give up, aban-
don the legacy code, and rewrite the software from scratch? Or
should we continue to develop around the old infrastructure and
simply adjust to its idiosyncrasies? Following a discussion among
the developers, around 2003, a decision was made to pursue slow
modernization: continuous code refactoring, gradual rewriting, and
quick adoption of newly created component replacements. This
strategy has proven to be effective, and Q-Chem’s code has under-
gone significant improvement while continuing to serve the com-
putational chemistry community. One by one, legacy modules are
rewritten and replaced by modern versions with improved perfor-
mance and enhanced capabilities. Importantly, this process simul-
taneously preserves the rich functionality of the software, which is
essential for applications, while providing a platform for developing
new features.

Many Q-Chem developers now choose to begin working on
new capabilities within development packages, i.e., small code-
development environments with a minimal set of components
required to enable a new feature. (The concept is very similar to
package management in the context of software development in
other languages.) Development packages are very quick to com-
pile and link, which cannot be said of Q-Chem as a whole with its
> 106 lines of compilable code. New features are first verified via
unit testing and then, following their integration into the Q-Chem
package, as end-to-end Q-Chem jobs.

B. Infrastructure
A small team of software maintainers at Q-Chem provides a

number of systems for code and documentation version control,
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issue tracking, merge requests, continuous integration, and quality
control. Q-Chem contributors follow the standard workflow of
developing and testing new features, enhancements, and bugfixes on
a branch, followed by submission of a merge request. The automated
code merge procedure incorporates the changes into the main line
of development and executes a suite of pre-commit tests. If any of
the tests fails, the merge is rejected and the developer is requested to
resolve any issues with assistance from the core Q-Chem team when
necessary.

This automated approach provides Q-Chem’s large developer
community with assurance that their features will be rolled into
release versions in a predictable way. Indeed, Q-Chem software is
released on a time-based schedule, with one major release and two
minor releases per year. Beyond automation, the Q-Chem developer
community is encouraged to interact via an online forum, and
typically there is an in-person developer meeting once a year. These
mechanisms help to minimize issues that can arise in a sizable
developer community over overlapping or even duplicative
contributions.

The back-end infrastructure is a complex system that is largely
hidden from the developers. It utilizes a combination of open
source, proprietary, and in-house software running on premises
as well as in the cloud. Continuous integration and deployment
is powered by Jenkins equipped with automated pipelines for
software builds, testing, benchmarking, and other routine tasks.
Version control is provided by Subversion. Software testing and
performance benchmarking is automated using CTest, and the
results can be visualized with specialized tools. Trac is used as a
wiki-based programmer’s reference, issue tracker, and release
planning tool.

C. Third-party components
Q-Chem makes use of several software libraries developed

outside of our own developer community. For example, the
Armadillo C++ library689 provides convenient template-based
C++ application programming interfaces for linear algebra. If
requested by the user, libecpint (a C++ library for the evalua-
tion of effective core potentials,690 based on the Gauss–Chebyshev
quadrature) can be used instead of Q-Chem’s internal algorithms.691

IX. HIGH PERFORMANCE COMPUTING
A. Platforms

Computational quantum chemistry spans a diverse range
of myriad calculation types, ranging from exploratory qualitative
analysis to high-accuracy calculations based on many-body theory,
and furthermore spans a range from large-scale calculations on
hundreds of atoms to high-throughput calculations on thousands of
small molecules. Different researchers may therefore use Q-Chem
in very different modes of operation, and our vision is to provide all
of them with a versatile and flexible software engine that can meet
these needs. Q-Chem runs effectively on a variety of architectures,
from laptops and desktops to leadership-class supercomputers, and
is also now available for cloud computing, for which we provide a
ready-to-deploy machine image for use on Amazon Web Services.
Users can interact with the Cloud via a Linux shell or by using either
IQMOL or WebMO.

To enable this versatility, we rely on a variety of techniques
for reducing the memory footprint of the software using flexible
rebalancing tools for disk vs in-core storage and effective
shared-memory (OpenMP) parallelization of key software elements,
such as integrals and tensors. That said, Q-Chem to date has
focused most performance optimization effort on enabling efficient
use of mid-scale computing resources for a single job. Leadership
computing or supercomputing resources can then be effectively
leveraged via workflows (i.e., job-level parallelism). With this in
mind, Q-Chem has placed emphasis on OpenMP (shared mem-
ory parallel) capabilities and the use of GPU resources associated
with a single node. Below, we discuss some recent advances in these
capabilities and present example timings.

B. Improved OpenMP parallel capabilities
OpenMP is a standard paradigm for shared memory paral-

lel computing. Efficient OpenMP parallelism is thus the key to
enabling significantly reduced time-to-solution for single jobs using
mid-range computing, where the single job can take as much as an
entire single node of a computer cluster or the entire resources of a
workstation. Typical modern compute nodes consist of 16–64 cores,
but nodes with as many as 128 cores are already available. OpenMP
parallel capabilities for DFT calculations were already quite good at
the time of the review article describing Q-Chem 4,20 but progress
since that time has been continuous and significant. Below, some
representative snapshots of current OpenMP parallel capabilities for
DFT and MP2 are reported. Q-Chem also has excellent OpenMP
parallel computing capabilities at the CC/EOM-CC and ADC levels,
which have been documented elsewhere.12,13,215,219

OpenMP parallel speedups for DFT calculations are summa-
rized in Fig. 33. For single-point energy evaluation on naphthalene

FIG. 33. Illustration of OpenMP parallel scaling for DFT calculations. The first
example is a single-point energy evaluation in a large basis set (M06-2X/def2-
QZVPPD, blue diamonds), as might be performed after structure optimization in
a smaller basis set. The other two examples are for the evaluation of the DFT
energy and gradient in a triple-ζ basis, as often used for geometry optimization.
One case is with a semilocal functional (B97M-V/def2-TZVP, orange circles), and
the other uses a hybrid functional (ωB97M-V/def2-TZVP, gray squares). All cal-
culations were performed on a 32 core dual-socket Intel Xeon CPU E5-2697A
server.
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FIG. 34. Illustration of OpenMP parallel scaling for evaluation of the MP2 energy
and gradient for three molecules: dichloromethyl ethene (C3H4Cl2) with aug-
cc-pVQZ,391,392 a hydrogen-bonded complex between adenine and guanine
(C10N10H10O) in the aug-cc-pVTZ basis,391,392 and a circumcoronene complex
with adenine (C59N5H23) in the VDZ basis.692 The calculations were performed
using SCF with exact integrals and MP2 with standard auxiliary (resolution-of-
identity or density fitting) basis sets,693 with a frozen core approximation. All
timings were obtained on a 32 core dual socket Intel Xeon CPU E5-2697A
server.

in a large basis (M06-2X/def2-QZVPPD level of theory), it is
evident that Q-Chem’s parallel efficiency is very high indeed, with
speedups of 16× on 16 cores and 27× on 32 cores. The parallel
efficiency is also very good, although noticeably lower, for the
two energy + gradient examples in the medium-sized def2-TZVP
basis set, performed on the anthracene dimer (C28H20, 988 basis
functions). Using the B97M-V functional, a parallel speedup of
22× is obtained on 32 cores vs 12.7× using 16 cores; the 32-core
calculation requires only 516 s of wall time. Energy and gradi-
ent evaluation at the ωB97M-V/def2-TZVP level of theory exhibits
similar scaling. The overhead associated with RSH functionals is
not excessive for this calculation: the 32-core job requires 787 s,
which is only 50% more than the corresponding pure (semilocal)
functional.

Q-Chem’s new fully object-oriented code for MP2 energies
and gradients (as well as the other advanced methods discussed in
Sec. III A) requires no storage of amplitudes or four-center electron
repulsion integrals and is optimized for OpenMP parallelism. To
illustrate the performance of the code, Fig. 34 shows the parallel
scaling of the MP2 gradient for three different molecules ranging
from 5 to 64 heavy atoms. For all three cases, the results indicate
good OpenMP performance all the way out to 32 cores, with
speedups of ≈ 22× (69% parallel efficiency) on 32 cores and
somewhat higher efficiency (79%) on 24 cores.

C. GPU capabilities
A new capability in Q-Chem 5 is the ability to build and diag-

onalize the Fock matrix using graphics processing units (GPUs).
This is achieved through a partnership with StreamNovation Ltd.,
producers of the BRIANQC module,694 which functions as an add-on

to Q-Chem for the calculation of electron repulsion integrals
(ERIs).

ERI computation in Q-Chem exploits a variety of algorithms
depending on the properties of the Gaussian basis set, such as
the angular momentum classes and the degree of contraction,
with an optimal strategy selected based upon the “PRISM” meta-
algorithm.695 The BRIANQC module implements several standard
ERI algorithms as well, including McMurchie–Davidson,696 Head-
Gordon–Pople,697 Obara–Saika,698,699 and Rys quadrature,700,701 and
these are controlled by a “BRUSH” meta-algorithm that is optimized
for use with GPUs.702

In contrast to PRISM and other approaches that were opti-
mized for central processing units (CPUs), the computational power
of GPUs is often quite different for single-precision vs double-
precision operations, and quantum chemistry integral calculations
often require the latter. For that reason, precision and speed require-
ments are balanced carefully in BRIANQC and integrals are evalu-
ated in single or double precision based on a pre-computed strict
Cauchy upper bound on their magnitude.703 The BRUSH algorithm
automatically determines the best possible approach to compute
each type of ERI, selecting from among various algorithms and
(in the GPU case) between mixed-precision implementations.702,703

Each route to ERIs has been implemented and optimized for each
supported type of GPU using computer algebra to automatically
generate the GPU kernels. (Automatic code generation of this kind is
increasingly popular in GPU-based quantum-chemistry code devel-
opment.704) The BRIANQC system has its own internal representation
for the scalar and tensor expressions that naturally arise in quantum
chemistry calculations.

FIG. 35. Speedup obtained for single-point B3LYP/cc-pVDZ calculations with
BRIANQC for randomly generated branched alkanes. Hardware: Intel(R) Xeon(R)
CPU E5-2620 v4 2.10 GHz (2 × 8 core); NVIDIA GeForce GTX 1080 Ti, 1070,
980 Ti, RTX 2080 Ti, 2070; Micron 9ASF1G72PZ-2G3B1 DDR4 2400 MHz 8 × 8
GB; ASUS Z10PG-D16 Series Motherboard. For the K80 and M60 GPUs, Amazon
Web Service p2.xlarge and g3.4×large instances were used; in the case of P100
and V100 GPUs, Google Cloud instances were used with similar parameters. All
CPU timings were obtained with Q-Chem 5.2.2. All GPU timings were obtained
using BRIANQC 1.0 + Q-Chem 5.2.2.
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FIG. 36. Wall times for DFT (M06-2X/def2-QZVP) energy calculations using Q-Chem with BRIANQC. Hardware details can be found in the caption of Fig. 35.

The BRIANQC GPU-based ERI engine includes the following
features:

● optimization for large molecules;
● support for s, p, d, f , and g basis functions;
● support for all NVIDIA GPU architectures (Kepler,

Maxwell, Pascal, Volta, and Turing);
● support for 64-bit Linux and Windows operating systems;
● mixed-precision implementation with double-precision

accuracy; and
● multi-GPU and supercomputer support.

The BRIANQC module speeds up every Q-Chem calculation
that uses Coulomb and/or exchange integrals and their first
derivatives, including Hartree–Fock and DFT energies and geometry
optimizations for most functionals. Figure 35 shows speedups vs a
CPU-only implementation for B3LYP/cc-pVDZ calculations on a
test set of alkanes, and Fig. 36 presents speedups for M06-2X/def2-
QZVP calculations on a set of organometallic complexes.

X. GRAPHICAL USER INTERFACES
Q-Chem jobs can be set up and deployed by WebMO,705 a

popular web-based interface to quantum chemistry programs, and

Q-Chem results can also be visualized using a variety of third-party
software, including MOLDEN, JMOL, and GABEDIT. In this section, we
focus on two especially fully featured graphical front ends, IQMOL17

and SPARTAN.

A. IQMOL visualizer
IQMOL is an open-source molecular visualization package17 that

has been developed within the Q-Chem community and is designed
to facilitate the Q-Chem workflow: building molecular structures,
generating Q-Chem input files, submitting calculations, and visual-
izing the results.

Molecular structures can be built from the included molecular
library by entering the SMILES ID for simple molecules or by using
the free-form builder. Tools are included that enable structures to
be quickly optimized using molecular mechanics and to symmetrize
geometries to ensure they have the desired point-group symmetry.

Setting up Q-Chem jobs is made easier by an input generator
that is aware of the many Q-Chem options and settings and presents
these in a hierarchical fashion to avoid overwhelming the new user.
Once generated, these inputs can be submitted to either the local
machine, a compute server running scheduling software such as
PBS or SLURM, or to a freely accessible demonstration server. The
latter is a service provided by Q-Chem, Inc. and allows access to
Q-Chem’s full functionality, with only a time restriction. This service
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has been used to great effect in undergraduate and graduate teaching
programs in universities around the world.

Results from the Q-Chem output file and associated format-
ted checkpoint file can be analyzed and visualized in a range of
ways depending on the type of calculation. IQMOL recognizes and
can plot a range of molecular surfaces such as densities and orbitals,
including localized orbitals, NTOs, NBOs, and Dyson orbitals.
Animations can be generated for vibrational frequencies and
pathways, including optimization, intrinsic reaction coordinates,
and ab initio molecular dynamics trajectories. Visual representations
of spectroscopic data are also available, including model spectra for
IR, UV, and NMR.

IQMOL uses OpenGL shaders to provide a range of appealing
and configurable visual effects out of the box, as shown in Fig. 37.
In addition, IQMOL supports the export of cube file data346 and
POV-Ray formatted files for import into third-party software for
complete control over the appearance of molecular structures and
surfaces.

B. Integration into SPARTAN

The SPARTAN program was first introduced in 1991 and since
2000 has provided easy-to-use access to the majority of function-
ality available in Q-Chem. This includes Hartree–Fock as well as
a full range of DFT and wave function-based correlated models,
coupled with a wide selection of basis sets. Molecular mechanics
models (MMFF and Sybyl) and a selection of semi-empirical models
are implemented in SPARTAN as well.

Multiple molecules (or sets of molecules) may be open in
SPARTAN, and multiple molecules may be submitted to Q-Chem from
SPARTAN. Interface operations and compute tasks are independent.
Once a job is “submitted,” either locally or to a remote server, it is

marked as “read only,” and the interface is free to deal with other
molecules. Upon completion, the job is “unlocked.” Queuing logic
allows full control of local and remote resources.

SPARTAN provides 2D sketching and 3D building tools for
organic, organometallic, and inorganic molecules as well as
specialized 3D builders for polypeptides and polynucleotides. It also
accesses a wide selection of 2D and 3D molecular formats. Guesses
for transition states may be obtained with the aid of an internal
database by adding “curly arrows” to reactant or product structures.
Tools are available for generating regio- and stereoisomers, tau-
tomers, and conformers of flexible cyclic and non-cyclic molecules
and for aligning molecules. Job selection (task, method, basis set, and
requests for spectra or other properties) is accomplished via simple
but open-ended dialogs. Composite tasks (for example), required for
the G3 and G4 thermochemical recipes706,707 or for the calculation of
a Boltzmann-averaged NMR spectrum, are available.

Output for SPARTAN includes not only text from the Q-Chem
output file but also an easy-to-read summary of “important” calcu-
lated quantities, e.g., atomic charges and NMR chemical shifts and
J-couplings. IR, Raman, UV/visible, and NMR spectra (both 1- and
2D) may be plotted and visually compared to experimental spectra.
NMR chemical shifts from selected density-functional models may
be empirically corrected.

SPARTAN seamlessly accesses a variety of experimental databases,
including the Cambridge Structural Database (CSD) of over a
million x-ray crystal structures, the NIST thermochemical database,
and the NMR shift database. CSD is under license, while the
latter two are freely available. In addition, SPARTAN accesses the
SPARTAN Structure and Properties database (SSPD), a collection of
300 000 organic and organometallic molecules with ωB97X-V/6-
311+G(2df,2p) energies obtained at ωB97X-D/6-31G∗ equilibrium

FIG. 37. IQMOL a provides a convenient front-end and visualization tool for Q-Chem users.
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geometries and EDF2708/6-31G∗ vibrational frequencies that
facilitate calculation of thermochemical quantities (ΔH,ΔS andΔG).
Proton and 13C NMR spectra computed at the ωB97X-D/6-31G∗

level are included in SSPD as well. A databases of calculated natu-
ral product structures that includes experimental chemical shifts is
also provided.

SPARTAN is released on a two-year schedule with a version
number corresponding to the calendar year. The latest version
is SPARTAN’20. Further details about SPARTAN are available from
Wavefunction, Inc.709

XI. CONCLUSIONS AND OUTLOOK
This article has surveyed the broad range of new capabilities

developed in Q-Chem over the past six years. Both the author
list and the length of this paper itself attest to the strength of the
community that has coalesced around contributions to the code. It
is this community of developers that has enabled the large majority
of the new features and most of the new innovations in methodol-
ogy reported here. At the same time, support for this community
is delivered by a small core group of Q-Chem scientists who
have themselves created and tuned critical features, including the
substantial modernization of the software development infrastruc-
ture to adopt modern best practices of object-oriented program-
ming. This synergy has been critical to the ongoing development
of the code: academic developers of Q-Chem have the advantage
of using a well-supported infrastructure upon which to build new
features, while Q-Chem scientists can focus on commercially
critical developments and optimizations. While open source is a
powerful movement whose value is unquestioned, the idea that the
large community of end users should contribute to the sustain-
ability of the code through a modest purchase price is central to
Q-Chem’s approach. However, there is no boundary between the
two classes of Q-Chem customers—developers and end-users. It
is worth reiterating that anyone or any group that purchases
Q-Chem is eligible to join the developer community and help con-
tribute to future advances. We hope that the recent accomplish-
ments reviewed here will inspire future contributions to the code, as
well as inspiring myriad chemical applications of this full-featured
electronic structure program package.

DEDICATION

We dedicate this paper to Dr. Michael Wormit and Prof. Nick
Besley, whose lives were cut short by tragic accidents in March
2015 and June 2021, respectively. Michael and Nick were dedi-
cated and inspiring members of the Q-Chem family and we remem-
ber them as enthusiastic researchers, inspiring teachers, and good
friends. We celebrate their important contributions to our commu-
nity with annual awards: the existing Michael Wormit Award for an
outstanding young Q-Chem developer and the newly established
Nick Besley Award for contributions to computational spectroscopy
in the Q-Chem community.
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487F. Pavošević, Z. Tao, T. Culpitt, L. Zhao, X. Li, and S. Hammes-Schiffer,
“Frequency and time domain nuclear–electronic orbital equation-of-motion
coupled cluster methods: Combination bands and electronic–protonic double
excitations,” J. Phys. Chem. Lett. 11, 6435–6442 (2020).
488Q. Yu and S. Hammes-Schiffer, “Nuclear-electronic orbital multistate density
functional theory,” J. Phys. Chem. Lett. 11, 10106–10113 (2020).
489P. E. Schneider, Z. Tao, F. Pavošević, E. Epifanovsky, X. Feng, and
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