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Background. To assess the accuracy of fully automated deep learning (DL) based coronary
artery calcium scoring (CACS) from non-contrast computed tomography (CT) as acquired for
attenuation correction (AC) of cardiac single-photon-emission computed tomography
myocardial perfusion imaging (SPECT-MPI).

Methods and Results. Patients were enrolled in this study as part of a larger prospective
study (NCT03637231). In this study, 56 Patients who underwent cardiac SPECT-MPI due to
suspected coronary artery disease (CAD) were prospectively enrolled. All patients underwent
non-contrast CT for AC of SPECT-MPI twice. CACS was manually assessed (serving as
standard of reference) on both CT datasets (n = 112) and by a cloud-based DL tool. The
agreement in CAC scores and CAC score risk categories was quantified. For the 112 scans
included in the analysis, interscore agreement between the CAC scores of the standard of
reference and the DL tool was 0.986. The agreement in risk categories was 0.977 with a
reclassification rate of 3.6%. Heart rate, image noise, body mass index (BMI), and scan did not
significantly impact (p=0.09 - p=0.76) absolute percentage difference in CAC scores.

Conclusion. A DL tool enables a fully automated and accurate estimation of CAC scores in
patients undergoing non-contrast CT for AC of SPECT-MPI. (J Nucl Cardiol 2023;30:313–20.)
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Abbreviations
SPECT-

MPI

Single-photon-emission computed

tomography myocardial perfusion

imaging

CAD Coronary artery disease

AC Attenuation correction

CAC Coronary artery calcium

CACS Coronary artery calcium scoring

DL Deep learning

BMI Body mass index

BPM Beats per minute

ROI Region of interest

ICC Intraclass correlation coefficient

GLM Generalized linear model

LM Left main coronary artery

LAD Left anterior descending coronary

artery

LCX Left circumflex coronary artery

RCA Right coronary artery

CCTA Coronary computed tomography

angiography

MACE Major adverse cardiac events

INTRODUCTION

Single-photon-emission computed tomography

myocardial perfusion imaging (SPECT-MPI) is a well-

established cardiac imaging modality that provides

diagnostic and prognostic information in patients with

known or suspected coronary artery disease (CAD).1–5

In SPECT-MPI, stress-induced perfusion abnormalities

are visualized and quantified. Thus, the extent and

severity of ischemia, scar burden and left ventricular

systolic function and volume can be assessed.6

As SPECT-MPI is susceptible to soft-tissue atten-

uation, potentially compromising its diagnostic value,1

international guidelines recommend the use of an

attenuation correction (AC) method. Non-contrast com-

puted tomography is commonly used for AC as it

provides further clinically relevant image information.

Moreover, non-contrast CT enables the visualization of

calcifications which can be leveraged to quantify coro-

nary artery calcium (CAC).6 The latter is considered an

important biomarker and independent predictor of car-

diovascular mortality and all-cause mortality in patients

with CAD. Importantly, patients’ risk is stratified

according to categories, with CAC scores [ 400, for

example, implying substantial risk of cardiovascular

disease events and mortality.7–10

However, the quantitative assessment of CAC (so-

called calcium scoring, CACS) is a time-consuming and

tedious manual task.11–13 Nevertheless, performing

CACS in patients undergoing SPECT-MPI is clinically

valuable, and as previous studies have shown, CACS

provides additional complementary and prognostically

relevant information to SPECT-MPI findings.6,14,15

With recent advances in the field of artificial

intelligence for medical imaging,11–13,16,17 deep learning

(DL) based CACS has become feasible. Such tools

enable the automatic quantification of CAC, thus alle-

viating the need to perform CACS manually.11–13,17

Thus, a DL-based CACS approach may enable the

extraction of potentially valuable data from non-contrast

CT scans as performed for AC of SPECT-MPI without

having to allocate time and effort to perform CACS

manually.

Accordingly, we sought to test the feasibility of

performing automated DL-based CACS on non-contrast

CT scans for AC of myocardial SPECT-MPI. We

hypothesized that a DL tool would provide accurate

CACS results in a fully automated manner relative to

manual measurements as the standard of reference.

MATERIALS AND METHODS

Study Subjects

In this single-center, institutional review board-

approved intra-individual comparative study, we identi-

fied and enrolled 56 patients (46 male (82%), age: 63 ± 9

years, body mass index (BMI): 28 ± 5 kg/m2) who

underwent clinically indicated SPECT-MPI on a CZT

technology-based camera and non-contrast CT based

AC for the exclusion of CAD (Table 1). Some of the

patients in the current investigation have been included

in previous studies.1,8 All patients were part of a

prospective study cohort in which two non-contrast CT

scans for AC were acquired per patient (NCT03637231):

The first scan was acquired prior to pharmacological

heart rate control. The second scan was acquired after

pharmacological heart rate control to achieve a target

heart rate of below 65 beats per minute (BPM). For each

patient, both scans were analyzed to quantify scan-

rescan reproducibility and variability of CAC scores.

Cardiac SPECT-MPI and CACS Imaging

All patients underwent a 1-day 99mTc-tetrofosmin

stress-rest myocardial perfusion imaging (MPI) protocol

in accordance with current guidelines18. Exercise bicy-

cle stress test was performed according to a modified

Bruce protocol, and pharmacological stress was induced

by intravenous regadenoson, adenosine, or dobutamine

infusion. At peak stress (i.e., after 3 minutes of induced

stress by adenosine or after reaching 85% of the

See related editorial, pp. 321–323
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patient’s predicted maximum heart rate), a weight-

adjusted dose of 99mTc-tetrofosmin was injected. Elec-

trocardiogram (ECG)-gated stress images were acquired

on a gamma camera with CZT-based detectors (Dis-

covery 530 NMc, GE Healthcare, Milwaukee, WI, USA)

60-90 minutes after the isotope injection. Thereafter, a

tracer dose three times the stress dose was administered

at rest, followed by image acquisition with the same

protocol as for stress. Patients with a BMI\35 kg�m-2

received approximately 130 megabecquerel (MBq) for

stress and 390 MBq for rest acquisition, whereas

patients with a BMI C 35 kg�m-2 received 180 MBq

for stress and 540 MBq for rest acquisition.

Additionally, all patients underwent a non-contrast

CT on a newest-generation 256-slice CT scanner

(Revolution CT, GE Healthcare) for the creation of

attenuation maps of the chest. All scans were performed

in cranio-caudal direction during inspiratory breath-hold

with prospective ECG-triggering as reported previ-

ously.19 In each patient, two separate scans (tube

current 440.5 ± 96 milliampers and tube voltage 120

kilovolts) were acquired: The first one prior to pharma-

cological heart rate control and the second one after the

application of metoprolol to decrease heart rate below

65 BPM. For each acquisition, the following scan

parameters were chosen: collimation of 256 9

0.625 mm, z-coverage of 12-16 cm, field of view of

25 cm, and gantry rotation time of 280 milliseconds. As

recommended elsewhere, images were reconstructed

using filtered back projection (FBP).20,21 Effective

radiation dose as quantified by the dose length product

(DLP) multiplied with a conversion factor

(0.014 mSv 9 mGy-1 9 cm-1)22 was 0.6 ± 0.3 mSv.

Manual Calcium Scoring

Images were transferred to a dedicated workstation

(Advantage AW 4.4, GE Healthcare) with a dedicated

CACS software (SmartScore 4.0, GE Healthcare). All

pixels with an attenuation equal or above the lowest

threshold (e.g., C 130 HU for 120-kV scans) having an

area C 1 mm2 are automatically color marked, and

lesions are manually selected by creating a region of

interest around all lesions found in a coronary artery.

The software then calculates the CAC score, as previ-

ously described.20 In brief, a score for each region of

interest is calculated by multiplying the density score

(i.e., the thresholds) and the area of calcifications. A

total CAC score is then determined by adding up the

scores for each CT slice. Importantly, the software

computes an overall CAC score and vessel-wise CAC

scores. Of note, the thresholds for CACS are only

applied to pixels with a density equal or larger than the

lowest threshold and an area of C 1 mm2. This

eliminates single pixels with a density above the

thresholds due to noise. All datasets were analyzed by

two experienced readers in random order, and measure-

ments from both readers were averaged.8 CAC risk

categories were defined according to the following CAC

score boundaries: 0, 1-100, 101-400,[ 400.

Deep Learning Calcium Scoring

CAC scoring was performed by a fully automated

DL-based CAC scoring tool (AVIEW CAC, Coreline

Soft, access via https://cloud.corelinesoft.eu/login). In

brief, the tool was trained on a 3-dimensional U-net

architecture using non-enhanced cardiac CT scans

acquired from multiple vendors and scanners as input

data. No specific training data were included in this

current study. A detailed description of this DL tool can

be found elsewhere.11,23 In short, the network makes

predictions with patches, and the segmentation mask is

reconstructed with output patches. After reconstruction,

only the coronary artery areas (i.e., left main coronary

artery [LM], left anterior descending coronary artery

[LAD], left circumflex coronary artery [LCX], and right

coronary artery [RCA]) near the heart are filtered using

the predicted Ventricle area. A multi-branch network is

used consisting of the same features for coronary arteries

and other coronary structures. It is based on U-Net (see

Table 1. Demographics of study patients (n =
56)

Number of patients 56

Male patients, n (%) 46 (82%)

Age, years 63 ± 9

Height, cm 174.6 ± 9.7

BMI, kg/m2 28 ± 5

Cardiovascular risk factors, n (%)

Smoking 17 (30%)

Diabetes mellitus 6 (11%)

Hypertension 32 (57%)

Dyslipidemia 29 (52%)

Cardiac history, n (%)

Previous MI 0 (0%)

Previous ICA 1 (0%)

Previous CABG 0 (0%)

Symptoms, n (%)

Asymptomatic 12 (21%)

Typical angina pectoris 6 (11%)

Atypical chest pain 21 (37%)

Dyspnea 14 (25%)

Values given are mean±standard deviation or absolute
numbers and percentages in brackets
BMI Body mass index; CABG coronary artery bypass grafting;
ICA invasive coronary angiography; MI myocardial infarction
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also https://arxiv.org/abs/1505.04597) with residual

units (see also https://arxiv.org/abs/1603.05027) in the

feature extractors, and the input layers have shape 64 9

64 9 64 9 1 (3D patch with single channel). The output

layers of two networks have shape 64 9 64 9 64 9

channels. One branch has the last layer with 5 channels

(with background) for coronary arteries, the other has

the last layer with 8 channels (with background) for

other coronary structures.

Image Analysis

To quantify image noise, one reader (A.G.G., with 7

years of experience in cardio-thoracic imaging) placed

region of interests (ROI) on three consecutive CT image

slices in the left ventricle. The standard deviation of

values in each ROI was considered as image noise. The

values from the three measurements were averaged and

were then considered representative for further analyses.

Statistical Analysis

Descriptive statistics including mean ± standard

deviation, counts, and percentages were used to present

the results. To quantify the agreement of CAC scores,

linear regression models were fitted, Bland-Altman anal-

ysis was performed, and two-way intraclass correlation

coefficients (ICC) were computed. To quantify the

agreement of CAC risk categories, weighted Kappa

analysis was performed. The following scale was used

to classify correlation coefficients: values of less than 0.20

were indicative of poor agreement; 0.21-0.40, fair agree-

ment; 0.41-0.60, moderate agreement; 0.61-0.80, good

agreement; and 0.81-1.00, excellent agreement. To com-

pare values stratified by groups (such as CAC scores or

heart rate), paired t-tests or wilcoxon signed-rank tests

were used. Potential differences in reclassification rates of

CAC score categories, paired z-tests of proportions were
used. Lastly, a generalized linear model (GLM) using

iteratively reweighted least squares to find the maximum

likelihood estimates was fitted. The absolute percentage

difference in CAC scores between the standard of

reference and the DL tool was implemented as dependent

variable and heart rate, image noise, BMI, and scan were

considered as predictors. Two-tailed p-values\0.05were

considered significant. All statistical analyses were per-

formed in the R programming language (version 4.0.2; R

Foundation for Statistical Computing, Vienna, Austria, h

ttps://www.R-project.org).

RESULTS

Overall Accuracy of DL-CACS

A visual representation of the study results is

provided in Figure 1. An overview of the data is

provided in Table 2. For the overall analysis, each scan

was considered for statistical analysis. Thus, 112 scans

from 56 patients were considered. The DL tool success-

fully managed to automatically perform CAC scoring in

all cases within 63 ± 48 s. The overall CAC score was

352.6 ± 491 for the standard of reference and 352.1 ±

461 for the DL tool. The regression model using CAC

scores of the standard of reference as dependent variable

and the CAC scores of the DL tool as predictor (R2 =

0.98, p \ 0.001), exhibited a slope of 1.1 and an

intercept of -18. Bland-Altman analysis (Fig. 1) revealed

a bias of 0.44, a lower limit of agreement of - 156.8,

and an upper limit of agreement of 157.7. Interscore

agreement (ICC) between the CAC scores of the

standard of reference and the DL tool was 0.986

(95%CI 0.979, 0.99).

In terms of CAC risk categories, a reclassification

rate of 3.6% (4 of 112 cases) was found between the

standard of reference and the DL tool. In all 4 cases,

reclassification was only by one category. Specifically,

the DL tool falsely increased the class by one category

in 3 cases and falsely decreased the class by one

category in 1 case. Interclass agreement was 0.977 as

determined by weighted Kappa analysis. Reasons for

CAC score reclassification (i.e., under- or overestima-

tion) of the DL tool in the 4 cases are provided in

Table 3.

The generalized model with heart rate, image noise,

BMI, and scan (i.e., scan 1 or 2) as predictors revealed

no significant impact of all variables (p = 0.09 – p =

0.76) on absolute percentage difference in CAC scores

between the DL tool and the standard of reference.

Per Vessel Analysis of DL-CACS

On a per-vessel basis, interscore agreement (ICC)

between the standard of reference and the DL tool was

0.635 (95%CI 0.511, 0.734), 0.95 (95%CI 0.928, 0.965),

0.928 (95%CI 0.897, 0.95), and 0.991 (95%CI 0.988,

0.994) for LM, LAD, LCX, and RCA, respectively.

Specifically, the CAC scores (standard of reference / DL

tool) were 13.9 ± 32.1 / 29.9 ± 50.2 for LM, 174 ± 260.7

/ 152.6 ± 212.2 for LAD, 54.5 ± 101.3 / 53.2 ± 106.2 for

LCX, and finally 110.1 ± 194.6 / 116.4 ± 198.6 for RCA.
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Scan-Rescan Reproducibility and Variability

Heart rate was 65.7 ± 13.4 BPM for the first scan

and 58.9 ± 6.4 BPM for the second scan (p\0.001). An

average CAC score variability of 6.7 ± 64.7 and 13.6 ±

57.6 between both scans was observed for the standard

of reference and the DL tool, respectively, without

significant differences between both methods (p = 0.45).

Interscore agreement between both scans as quantified

by ICC was 0.991 (95%CI 0.985, 0.995) and 0.992

(95%CI 0.987, 0.995) for the standard of reference and

the DL tool, respectively.

In terms of quantification accuracy of the DL tool

relative to manual measurements as the standard of

reference, ICC of CAC scores was 0.984 (95%CI 0.973,

0.991) for the first scan and 0.988 (95%CI 0.979, 0.993)

for the second scan. Reclassification rate for CAC risk

categories was 1.8% for the first scan and 5.4% for the

second scan (p\ 0.001). Interclass agreement of CAC

risk categories was 0.988 and 0.966 for the first and

second scan, respectively, as determined by weighted

Kappa analysis.

A representative case of the DL-CACS tool cor-

rectly identifying the coronary calcium burden in a

patient is presented in Fig. 2.

DISCUSSION

In this single-center, prospective, intra-individual

comparative study, we compared the quantitative accu-

racy of CACS as performed fully automatically on non-

contrast CT acquired for AC of SPECT-MPI by a DL

tool relative to manual measurements as the standard of

reference.

Our data indicate that the accuracy of the DL tool is

very high, with interscore agreement of CAC scores and

interclass agreement of CAC risk categories being

excellent as well. Furthermore, the scan-rescan evalua-

tion confirmed quantification stability and robustness of

the DL tool on par with that of manual measurements.

Further, quantitative accuracy was not significantly

influenced by heart rate, image noise or BMI, thus

confirming the overall validity and value of the DL tool.

Given these results, our study suggests that a DL tool

may derive accurate CAC scores from non-contrast CT

scans as acquired for AC of SPECT-MPI in a fully

automated manner.

The use of AI-based solutions for automated CACS

has only gained traction recently. Notably, Van Velzen

et al. developed a DL-backed CACS approach that

achieved ICC scores of as high as 0.99 and risk category

reclassification rates of as low as 3% when using

calcium scans from CCTA as input data.12 Vonder et al.

showed that a DL-CACS tool achieved an ICC score of

0.96 and a risk category reclassification rate of 2%

relative to manual measurements in a cohort of 997

patients who underwent calcium scans of CCTA.11 To

the best of our knowledge, this is the first study

systematically assessing the validity of a DL approach

for CACS on CT data as acquired for SPECT-MPI.

Here, we achieved a similarly high performance as

reported in previous studies with an ICC score as high as

0.986 and risk category reclassification rates of 3.6%

between the DL tool and manual measurements.

Notably, while the overall agreement of CAC scores

was very high (ICC: 0.986), we observed differences

between the various coronary arteries. Specifically, for

the LM artery, the interscore agreement of CAC scores

Figure 1. Visual representation of the study data including the data of all scans (n = 112): Linear
regression model (A), Bland-Altman analysis (B), as well as CAC scores stratified by risk
categories (C) of the manual coronary artery calcium scoring (i.e., standard of reference) and fully
automated DL-CACS.
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was lower (ICC: 0.635) than that of the other coronary

arteries (ICC ranging from 0.928 to 0.991). On average,

the LM artery exhibited less CAC than the other vessels.

Even small deviations in CAC scores between the

reference standard and the DL tool may thus have

caused considerable reductions in the the ICC. Further-

more, it should ne noted that the DL tools allocation of

CAC to the various vessels may have differed slightly

from that of the expert readers. Thus, in some cases the

DL tool may have accurately recognized CAC but may

have falsely allocated it to a different vessel which

would then have resulted in lower ICC values for a

given vessel.

On another note, it should be mentioned that our

reclassification rates were slightly higher than those of

previous studies. The reason is, firstly, that at least

compared to Vonder et al. we had more and narrower

risk categories.11 Secondly, our data correspond to a real

validation set. That is, the DL tool was not retrained and

optimized with data from our study cohort and institu-

tion. In contrast, Van Velzen et al. implemented

additional protocol-specific training to further optimize

the performance of their DL tool.12 Furthermore, it

should be noted that the study cohort may have differed

between ours and previous studies. In our study, nearly

all patients presented with CAC as our patients all had a

moderate to high pre-test probability of CAD, as can be

expected form patients referred for SPECT-MPI. In

contrast, in patients undergoing CCTA, the pre-test

probability of CAD is lower. Notably, Vonder et al. used

patient data from a population-based cardiovascular

screening trial.11 In such a cohort, the proportion of

patients with very little to no calcium is probably much

higher than in our cohort.

Lastly, we would like to highlight the value of

CACS in patients undergoing SPECT-MPI. Chang et al.

followed up a cohort of 1126 generally asymptomatic

patients without previous CAD who had undergone

SPECT-MPI and CACS within a close period of time.

The authors concluded that at a median follow-up of 6.9

years, CACS and SPECT-MPI results provided both

independent and complementary prognostic information

for total cardiac events and all-cause death/myocardial

infarction.14 Furthermore, Engbers et al. showed that in

a cohort of 4897 symptomatic patients, CACS and

SPECT-MPI findings were independent predictors of

Table 2. Confusion matrices of risk categories between DL-CACS and manual CACS. Weighted kappa
value was 0.977

Manual
CACS

DL-CACS

Totala Underestimationb Overestimationb Concordanceb0
1-
100

101-
400

>
400

0 0 1 0 0 1 0 (0%) 1 (100%) 0 (0%)

1-100 0 49 0 0 49 0 (0%) 0 (0%) 49 (100%)

101-400 0 1 23 2 26 1 (3.8%) 2 (7.7%) 23 (88.5%)

[400 0 0 0 36 36 0 (0%) 0 (0%) 36 (100%)

CACS coronary artery calcium scoring; DL deep learning
an = 112 scans from 56 patients
b i.e., manual coronary artery calcium scoring as standard of reference

Table 3. Cases (4/112) of patients where DL-CACS led to reclassification of coronary risk

N Age Manual-CACSa DL-CACS DL-Classification
Reason for wrong classification

of DL tool

1 75 174 90 Underestimated Missed calcification in LCX

2 66 315 551 Overestimated Aortic valve calcification falsely rated as CAC

3 66 315 575 Overestimated Aortic valve calcification falsely rated as CAC

4 55 0 3 Overestimated Image noise falsely rated as CAC

CACS coronary artery calcium scoring; DL deep learning; LCX left circumflex artery
i.e., manual coronary artery calcium scoring as standard of reference

318 Sartoretti et al. Journal of Nuclear Cardiology�
Deep Learning Powered CACS in cardiac SPECT January/February 2023



major adverse cardiac events (MACE). The authors thus

recommended routinely performing CACS in adjunct to

SPECT-MPI in patients suspected of CAD in an effort to

further improve risk prediction during follow-up.15

In addition, it should be mentioned that besides the

prognostic and diagnostic value of CACS, it is also

otherwise useful to extract the maximum information

from the data acquired as part of an examination.

Especially when considering that a SPECT-MPI exam-

ination involves radiation exposure, one should strive to

maximize the information content and diagnostic value

of the examination.24 Due to the fact that DL-based

CACS does not require any further time investment, the

use of such a tool is particularly useful and desirable in

this context. Importantly, it should be considered that

the results of this study carry implications for a wide

range of diagnostic imaging modalities in nuclear

cardiology. Specifically, the DL tool presented in this

study may also be deployed for other imaging modalities

such as hybrid cardiac PET/CT examinations.

Our study has the following limitations: First, this

was a single-center study with a limited number of

subjects. Secondly, all images were acquired on a single

scanner with a single imaging protocol. We acknowl-

edge that varying scan parameters may influence the

results. Thirdly, we acknowledge that quantification

accuracy may depend on the study cohort examined.

Future studies should assess the quantification accuracy

of the DL tool in patients with no or very high CAC.

NEW KNOWLEDGE GAINED

A deep learning powered approach can fully auto-

matically and accurately perform coronary artery

calcium scoring from non-contrast computed tomogra-

phy images as acquired for attenuation correction of

single-photon-emission computed tomography myocar-

dial perfusion imaging. This approach allows for the

opportunistic and effortless extraction of coronary artery

calcium scores in patients undergoing single-photon-

emission computed tomography myocardial perfusion

imaging.

CONCLUSION

Our study shows that a DL tool enables a fully

automated and accurate estimation of CAC scores in

patients undergoing SPECT-MPI. Thus, DL-based

CACS may facilitate the further implementation of

CAC scores as a routine imaging marker determined

during the workup of SPECT-MPI examinations.

Figure 2. Representative CT images of a 64-year-old woman with a body mass index of 22.9 kg/
m2 with severe coronary artery calcifications. Images from gated non-contrast CT scanner for the
creation of attenuation maps is presented in the upper row and fully automated deep learning
coronary artery calcium scoring (DL-CACS) is presented in lower row. Coronary calcifications in
the left main (LM), left anterior descending (LAD), left circumflex artery (LCX), and right
coronary artery (RCA), were correctly marked by the DL-CACS tool resulting in a total score of
894. The score from manual readout of CAC scan was 871.
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