Skip to main content
. 2023 Mar 3;14:1215. doi: 10.1038/s41467-023-36858-6

Table 3.

Comparative assessment of candidate biomarker multivariate models at a fixed specificity and sensitivity for the diagnosis of liver injury

Metric Model Threshold Confirmatory cohort Replication cohort
Specificity ≥ 0.90 Specificity Sensitivity TN TP FN FP Specificity Sensitivity TN TP FN FP
Logistic regression FBP1 + GSTA1 0.50 0.92 0.31 70 10 22 6 0.90 0.13 37 3 21 4
FBP1 + GSTA1 + LECT2 0.45 0.91 0.56 69 18 14 7 0.83 0.33 34 8 16 7
FBP1 + CES1 + LECT2 0.52 0.91 0.47 69 15 17 7 0.85 0.21 35 5 19 6
Random forest FBP1 + LECT2 0.46 1.00 1.00 76 32 0 0 0.83 0.42 34 10 14 7
FBP1 + LECT2 + CPS1 0.46 1.00 1.00 76 32 0 0 0.76 0.46 31 11 13 10
Sensitivity ≥ 0.90
Logistic regression FBP1 + GSTA1 0.14 0.36 0.91 27 29 3 49 0.29 0.96 12 23 1 29
FBP1 + GSTA1 + LECT2 0.14 0.39 0.91 30 29 3 46 0.46 0.88 19 21 3 22
FBP1 + CES1 + LECT2 0.16 0.41 0.91 31 29 3 45 0.46 0.79 19 19 5 22
Random forest FBP1 + LECT2 0.46 1.00 1.00 76 32 0 0 0.83 0.42 34 10 14 7
FBP1 + LECT2 + CPS1 0.46 1.00 1.00 76 32 0 0 0.76 0.46 31 11 13 10

Each model compared onset non-DILI (NDO) cases versus DILI cases (DO) and was trained using the confirmatory cohort and validated using the replication cohort.

TP true positive, TN true negative, FP false positive, FN false negative.