Table 3.
Comparison of the baseline and proposed models on the test sets of the small- and large-scale image datasets in terms of loss and accuracy*.
| Datasets | Models | Loss | AS | F1 |
|---|---|---|---|---|
| CIFAR-10 | Res2Net | 1.155 ± 0.073 | 0.788 ± 0.009 | 0.760 ± 0.011 |
| LDR | 1.694 ± 0.085 | 0.688 ± 0.013 | 0.659 ± 0.010 | |
| ESM | 1.040 ± 0.017 | 0.775 ± 0.010 | 0.756 ± 0.007 | |
| VIN | 2.070 ± 0.123 | 0.760 ± 0.012 | 0.715 ± 0.017 | |
| ShuffleNetV2 | 1.220 ± 0.029 | 0.755 ± 0.015 | 0.706 ± 0.018 | |
| MnasNet | 2.588 ± 0.141 | 0.611 ± 0.034 | 0.597 ± 0.040 | |
| MobileNetV3 | 1.479 ± 0.053 | 0.731 ± 0.012 | 0.692 ± 0.016 | |
| Ours | 1.146 ± 0.066 | 0.794 ± 0.023 | 0.769 ± 0.019 | |
| STL-10 | Res2Net | 1.948 ± 0.069 | 0.620 ± 0.011 | 0.600 ± 0.016 |
| LDR | 2.001 ± 0.073 | 0.612 ± 0.019 | 0.587 ± 0.022 | |
| ESM | 1.678 ± 0.013 | 0.658 ± 0.014 | 0.644 ± 0.010 | |
| VIN | 1.530 ± 0.093 | 0.735 ± 0.010 | 0.716 ± 0.008 | |
| ShuffleNetV2 | 1.895 ± 0.073 | 0.658 ± 0.007 | 0.643 ± 0.011 | |
| MnasNet | 2.163 ± 0.199 | 0.520 ± 0.018 | 0.504 ± 0.014 | |
| MobileNetV3 | 1.723 ± 0.036 | 0.669 ± 0.010 | 0.661 ± 0.08 | |
| Ours | 1.137 ± 0.024 | 0.735 ± 0.007 | 0.723 ± 0.010 | |
| ImageNet-100 | Res2Net | 0.863 ± 0.083 | 0.835 ± 0.009 | 0.757 ± 0.006 |
| LDR | 0.896 ± 0.090 | 0.852 ± 0.011 | 0.775 ± 0.013 | |
| ESM | 0.837 ± 0.102 | 0.874 ± 0.016 | 0.809 ± 0.018 | |
| VIN | 0.894 ± 0.067 | 0.841 ± 0.007 | 0.781 ± 0.006 | |
| ShuffleNetV2 | 0.902 ± 0.049 | 0.847 ± 0.010 | 0.777 ± 0.008 | |
| MnasNet | 1.431 ± 0.093 | 0.744 ± 0.014 | 0.652 ± 0.017 | |
| MobileNetV3 | 1.312 ± 0.048 | 0.762 ± 0.005 | 0.654 ± 0.007 | |
| Ours | 0.852 ± 0.013 | 0.863 ± 0.012 | 0.801 ± 0.013 |
Lower loss and higher AS and F1 scores correspond to better performance of a model. *This information is based on experiments using 32 GB NVIDIA Tesla V100-SXM2 GPU
Significant values are in [bold].