Skip to main content
. 2023 Mar 3;13:3595. doi: 10.1038/s41598-023-30480-8

Table 3.

Comparison of the baseline and proposed models on the test sets of the small- and large-scale image datasets in terms of loss and accuracy*.

Datasets Models Loss AS F1
CIFAR-10 Res2Net 1.155 ± 0.073 0.788 ± 0.009 0.760 ± 0.011
LDR 1.694 ± 0.085 0.688 ± 0.013 0.659 ± 0.010
ESM 1.040 ± 0.017 0.775 ± 0.010 0.756 ± 0.007
VIN 2.070 ± 0.123 0.760 ± 0.012 0.715 ± 0.017
ShuffleNetV2 1.220 ± 0.029 0.755 ± 0.015 0.706 ± 0.018
MnasNet 2.588 ± 0.141 0.611 ± 0.034 0.597 ± 0.040
MobileNetV3 1.479 ± 0.053 0.731 ± 0.012 0.692 ± 0.016
Ours 1.146 ± 0.066 0.794 ± 0.023 0.769 ± 0.019
STL-10 Res2Net 1.948 ± 0.069 0.620 ± 0.011 0.600 ± 0.016
LDR 2.001 ± 0.073 0.612 ± 0.019 0.587 ± 0.022
ESM 1.678 ± 0.013 0.658 ± 0.014 0.644 ± 0.010
VIN 1.530 ± 0.093 0.735 ± 0.010 0.716 ± 0.008
ShuffleNetV2 1.895 ± 0.073 0.658 ± 0.007 0.643 ± 0.011
MnasNet 2.163 ± 0.199 0.520 ± 0.018 0.504 ± 0.014
MobileNetV3 1.723 ± 0.036 0.669 ± 0.010 0.661 ± 0.08
Ours 1.137 ± 0.024 0.735 ± 0.007 0.723 ± 0.010
ImageNet-100 Res2Net 0.863 ± 0.083 0.835 ± 0.009 0.757 ± 0.006
LDR 0.896 ± 0.090 0.852 ± 0.011 0.775 ± 0.013
ESM 0.837 ± 0.102 0.874 ± 0.016 0.809 ± 0.018
VIN 0.894 ± 0.067 0.841 ± 0.007 0.781 ± 0.006
ShuffleNetV2 0.902 ± 0.049 0.847 ± 0.010 0.777 ± 0.008
MnasNet 1.431 ± 0.093 0.744 ± 0.014 0.652 ± 0.017
MobileNetV3 1.312 ± 0.048 0.762 ± 0.005 0.654 ± 0.007
Ours 0.852 ± 0.013 0.863 ± 0.012 0.801 ± 0.013

Lower loss and higher AS and F1 scores correspond to better performance of a model. *This information is based on experiments using 32 GB NVIDIA Tesla V100-SXM2 GPU

Significant values are in [bold].