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Abstract
Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic sig-
nalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, 
endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and 
renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic 
nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR 
on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic 
hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid 
body is the most promising novel therapeutic target for hypertension.  A1R,  A2AR,  A2BR, and P2X7R are all related to renal 
autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the 
involvement of purinoceptors in hypertension and therapeutic interventions.
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Introduction

Hypertension is the leading cause of morbidity and mortal-
ity globally among all cardiovascular diseases [1]. In 2020, 
1.28 billion adults reportedly had hypertension, which made 
the health condition an issue of global concern [2, 3]. The 
pathophysiology of hypertension is complex. It involves the 
multi-interaction of the sympathetic nervous system, the 
renin–angiotensin–aldosterone system, sodium homeostasis 
regulation, endothelium, and immune system. The drugs for 

controlling hypertension include β-receptor blocker, angio-
tensin-converting enzyme inhibitor, angiotensin II receptor 
blocker, calcium-channel-blocker, and diuretics. However, 
despite the availability of multiple antihypertensive drugs, 
approximately 1 in 5 adults (21%) with hypertension is out 
of control due to side effects, intolerance, and poor efficacy. 
The poor efficacy might be that not all the pathophysiologi-
cal mechanisms are neutralized by the conventional anti-
hypertensive therapies currently available. Given the large 
population with uncontrolled hypertension and the complex-
ity of pathogenesis, developing new antihypertensive agents 
to provide more choices for those people is vital.

Accumulating evidence indicates that purinergic signal-
ling has shown great therapeutic potential for hypertension. 
Purinergic signalling, that is, ATP acting as an extracellular 
signalling molecule, was proposed as a cotransmitter in sym-
pathetic nerves in 1972 by Dr. Burnstock [1]. It involves the 
activation of cell surface P1 and P2 receptors by extracel-
lular nucleosides and nucleotides [1]. P1 receptors are clas-
sified into 4 subtypes, namely,  A1R,  A2AR,  A2BR, and  A3R, 
which can be activated by adenosine. P2 receptors include 
7 P2X ion channel receptor subtypes (P2X1-7) and 8 P2Y 
G-protein-coupled receptor subtypes (P2Y1, P2Y2, P2Y4, 
P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), which can be 
activated by purine nucleotides (ATP, ADP) [1]. A previous 
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review in 2017 by Dr. Burnstock [4] showed alteration of 
purinergic signalling contributes to hypertension in 6 differ-
ent ways, including sympathetic nerve activities, endothelial 
cells, neurons in the brain stem, carotid body, inflammation, 
and renin-angiotensin system. Sympathetic nerve activities 
[5–7] and the renin-angiotensin system [5, 8, 9] directly con-
trol the BP by acting on peripheral resistance, blood vol-
ume, and cardiac output. Neurons in the brain stem [10] and 
carotid body [11] indirectly regulate the BP by triggering a 
systemic response. Endothelial cells [5] and inflammation 
[12] affect the BP mainly by regulation of peripheral resist-
ance through releasing vasoactive cytokines. Apart from the 
aforementioned mechanisms, emerging evidences showed 
that purinergic signalling mediated hypertension via affect-
ing sodium excretion [13], epithelial sodium channel (ENaC) 
[14] activity, and renal autoregulation [15, 16], which were 
associated with blood volume. This review summarizes 
important aspects of purine nucleotides and their receptors 
in the regulation of BP.

Purines in the regulation of blood pressure

Purines are released from the peripheral nerve fibres, 
endothelium in the local blood vessels, and the central nerv-
ous system (CNS), which play significant roles in the regula-
tion of BP.

Purines in the peripheral nervous system

ATP is released as a cotransmitter from sympathetic nerves 
in the local blood vessels which significantly contributes 
to the constriction of the blood vessels. Under high pres-
sure, ATP is the chief functional sympathetic neurotrans-
mitter [17]. It is released from the vesicles with noradrena-
line [18–21] and neuropeptide Y in peripheral sympathetic 
nerves. ATP binds to P2 receptors (mainly P2X1R, P2X2R, 
P2X4R, P2Y1R, P2Y2R, and P2Y6R) on the smooth muscle 
cells, leading to the constriction of the local blood vessels 
[22–24]. Higher levels of ATP and sympathetic nerve den-
sity were also observed in diet-induced obesity rats, which 
were susceptible to hypertension. This finding hints that 
purinergic hyperactivity is closely associated with hyper-
tension [25]. Besides peripheral sympathetic nerves, ATP 
is also released from perivascular sensory-motor nerves as 
a cotransmitter, which leads to vasoconstriction by target-
ing P2XR. But the main neurotransmitter from perivascular 
sensory-motor nerves is calcitonin gene-related peptide, 
which mediate vasorelaxation. Thus, the vascular tone is an 
interaction between multi-neurotransmitters.

Purines in endothelium cells of blood vessels

ATP is released from endothelium cells besides sympathetic 
nerves and sensory-motor nerves in the local blood vessels. 
In lumen of blood vessels, shear stress- and hypoxia-induced 
ATP is released mainly from the endothelium and erythro-
cytes. ATP acted on P2X4R and P2YR to produce nitric 
oxide (NO) and endothelium-derived hyperpolarizing factor, 
resulting in vasorelaxation [26–28]. This effect was abol-
ished by degradation of ATP by ectonucleotidases. In the 
rat isolated mesenteric arterial bed, ATP acted on P2YR 
evoking the prolonged phase of endothelium-independent 
vasorelaxation and activating Na + /K + -ATPase and KATP 
channels [29]. In endothelial and smooth muscle cell sur-
face, ATP, ADP, and UTP were hydrolyzed by ectonucleo-
side triphosphate diphosphohydrolase, and then ecto-5′-
nucleotidase hydrolyzed AMP into adenosine. Adenosine 
is bound to  A2AR and  A2BR, leading to vasorelaxation [24]. 
At  10−5 mol/kg−1, adenosine could generate NO-dependent 
hypotensive activity [30]. Augmented contractile responses 
to UDP and UTP were seen in femoral arteries of sponta-
neously hypertensive rats (SHR) than in those of Wistar-
Kyoto [31]. The nucleotide uridine adenosine tetraphosphate 
(Up4A) is a dinucleotide comprising purine and pyrimidine 
moieties. It is proposed as a novel endothelium-derived 
vasoconstrictive factor. It binds mainly to P2X1R, and also 
P2Y2R and P2Y4R. Up4A induced hypertension by gen-
erating vasoconstriction and renal dysfunction [32]. The 
circulating level of Up4A was higher in juvenile hyperten-
sives than in controls, thus indicating that Up4A was highly 
implicated with the onset of juvenile hypertension [33]. In 
the deoxycorticosterone acetate (DOCA)-salt rats, Up4A-
induced contraction was enhanced in isolated renal arteries. 
This might be attributed to enhanced P2YR signalling and 
activation of the extracellular regulated protein kinases path-
way [34]. However, different vascular beds responded differ-
ently to Up4A. Up4A-induced contraction was increased in 
renal but not in pulmonary arteries from DOCA-salt hyper-
tensive rats [35]. Also, different concentrations of Up4A 
resulted in different vascular responses. At a low concentra-
tion, Up4A induced vasoconstriction on the mouse aorta, but 
at a high concentration, it led to hypotension and electrolyte 
retention in rats [36]. When Up4A was applied for control-
ling hypertension, region- and concentration-specific effects 
should be cooperated.

Purines in central nervous system

In the CNS, ATP increased the central sympathetic drive, 
causing an increased systemic BP [37–39]. In the process, 
ATP activated the P2 receptors and thus increasing the 
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firing activity of the hypothalamic sympathetic neurons 
[40]. In the commissural nucleus tractus solitarii (NTS), 
simultaneous blockade of ionotropic glutamate receptors 
and P2 receptors caused a remarkable decrease in the pres-
sor and bradycardic responses [41]. In addition, ATP in 
the NTS mediated hindlimb vasodilation in response to 
alerting-defense [42]. These abnormal purinergic neuro-
transmissions and enhanced sympathetic activity are sig-
nificant physiological processes which demonstrate that 
purinergic signalling in the CNS may be a potential target 
for hypertension.

Collectively, the effect of ATP on BP is a complex mech-
anism mainly involving P2XR and P2YR activation on 
peripheral sympathetic systems, CNS, and endothelial and 
smooth muscle cells, in addition, also involving the interac-
tion among them. Similar dual effects on blood vessels are 
observed in ADP, adenosine, UTP, UDP, and Up4A. Region- 
and concentration-specific effects should be coordinated 
when referred to regulate BP. Purines are widely distrib-
uted and multifunctional, making it difficult to manipulate 
to reduce BP in clinical practice.

Purinoceptors in the regulation of blood 
pressure

P1 receptors in the regulation of blood pressure

All P1 purinoceptors, namely,  A1R,  A2AR,  A2BR, and  A3R, 
are found in smooth muscle and endothelial cells of arter-
ies, as well as in the kidney [43–45], of which  A2AR and 
 A2BR are most commonly expressed in smooth muscle and 
endothelial cells [24]. Notably, the distribution of P1 recep-
tors along the arteries varies [46].

P1 purinoceptors play an important role in cardiovascular 
responses [30] and renal sodium homeostasis. The activation 
of peripheral  A1R decreased BP [47].  A1

−/− mice showed 
an elevated BP [48–50], plasma renin [48, 49], and sodium 
excretion [49]. A higher BP in  A1

−/− mice attributed to a 
deficiency of  A1R on the sympathetic innervation, thus caus-
ing more noradrenaline in the synaptic cleft to be released 
[51]. However, on a high-salt diet, the  A1

−/− mice showed a 
lower BP than wild-type (WT) [49, 52, 53]. During chronic 
salt loading,  A1R was downregulated, leading to the insen-
sitivity of the renal arterioles or tubules to adenosine. This 
process facilitated renal sodium and water excretion and 
maintained the fluid volume and arterial pressure [54]. The 
different responses of  A1

−/− mice to different diets could be 
explained by the lack of  A1R on the renal afferent arteriole 
blunted tubuloglomerular feedback responses. Similarly, the 
hypertensive responses to NO inhibition [55] and angioten-
sin II (ANG II) mediated by tubuloglomerular feedback 

responses [55, 56] were blunted in  A1
−/− mice when com-

pared with WT.
A2R include  A2AR and  A2BR subtypes.  A2AR mediated 

vasodilation via producing NO in the endothelium [30, 57, 
58]. Intraperitoneal injections of  A2AR agonists decreased 
the BP in Sprague–Dawley rats [47].  A2A

−/− Dahl salt-sensi-
tive rats had a higher mean BP than WT [59]. Moreover, in 
never-treated essential hypertensive patients, lower affinity, 
higher density, and impaired function of  A2AR were pre-
sented [60]. Besides, activation of  A2AR led to hypotension 
through dilating the preglomerular microvessels mediated 
by epoxyeicosatrienoic acids [61, 62]. Activation of  A2BR 
by adenosine also induced vasodilation, but the extent was 
much greater than  A2AR in mesenteric arteries [50]. Of note, 
 A2BR agonist showed either anti- or pro-hypertensive effects 
based on the various pathogenic mechanisms that induced 
BP. In Dahl salt-sensitive rats, the activation of  A2BR caused 
diuresis and natriuresis. The dysfunctional  A2BR impaired 
sodium excretion and resulted in elevated BP. In contrast, 
Dahl salt-sensitive rats with ANG II-induced hypertension 
activation of  A2BR further released catecholamines. This 
triggered a proinflammatory state within the kidneys and/or 
the vasculature and thus contributing to high BP [63]. It was 
remarkable that  A1

−/− and  A2A
−/− displayed heterogeneity in 

gender.  A1
−/− and  A2A

−/− female rats rather than male rats 
revealed distinct lower BP than WT on a 4% salt diet [59].

A3R is abundantly expressed in afferent arterioles and 
participate in vasodilatation [43]. In the ANG II-supported 
circulation of the pithed rat, activation of  A3R led to hypo-
tension [64]. No BP elevation was observed in  A3

−/− mice, 
after uninephrectomy and chronic HS intake, but high BP 
was detected in WT mice [65]. The mechanism might be 
related to inhibiting  Na+/H+ exchanger-3 by  A3R, contribut-
ing to sodium and fluid balance [66].  A3R was upregulated 
significantly in the renal cortex and medulla in salt-loaded 
rats, which may be an intrarenal adaptive mechanism to 
chronic salt loading [54].

Adenosine receptors have been proven to improve some 
hypertension complications. Activation of  A2AR improved 
cardiac dysfunction and decreased cardiomyocyte hypertro-
phy, cardiac inflammation, and fibrosis, possibly by increas-
ing fibroblast growth factor 21 [67]. It suggests that  A2AR 
may have great therapeutic potential for hypertensive heart 
disease.  A2BR could ameliorate hypertension-induced social 
memory impairment in SHRs [68]. In uninephrectomy and 
chronic HS intake-induced hypertension models, severe 
pathological changes of heart and kidney were observed in 
WT mice, but not in  A3

−/− mice. In addition,  A3R deficiency 
avoided oxidative stress in the renal [65].

Pulmonary arterial hypertension (PAH) is a life-threat-
ening disease characterized by increased pulmonary arterial 
pressure and pulmonary vascular resistance. P1 receptors 
have been demonstrated to be a potential target in PAH. 
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Nonselective P1 receptors antagonist aminophylline could 
attenuate the pulmonary vasodilation to adenosine in lamb 
model with hypoxia [69]. Among P1 receptors,  A2AR is 
a promising target for PAH. In rats with monocrotaline-
induced PAH,  A2AR agonists, LASSBio-1386 [70] and 
LASSBio-1359 [71, 72], improved structural and func-
tional alterations in heart and pulmonary artery, whereas 
 A2A

−/− mice showed PAH, pulmonary vascular constric-
tion, and pulmonary artery remodelling compared to WT 
littermates [73, 74].  A2BR was also involved in the onset of 
pulmonary hypertension. In contrast to  A2AR,  A2BR expres-
sion was upregulated in pulmonary artery smooth muscle 
cells from idiopathic PAH. Activation of  A2BR could aggra-
vate pulmonary vascular remodelling [75].  A2BR antagonist 
GS-6201 and genetic removal  A2BR alleviated bleomycin-
induced pulmonary hypertension and vascular remodelling 
[76]. Currently, information regarding the role of  A1R and 
 A3R in PAH is limited.

P2 receptors in the regulation of blood pressure

P2X4R, P2Y1R, P2Y2R, and P2Y11R are the most 
expressed P2 receptors in endothelial cells [77] mediat-
ing pathways related to vasodilation via releasing NO, 
endothelium-dependent hyperpolarizing factor, and tis-
sue-type plasminogen activator. In addition, P2 receptors, 
including P2X5R, P2Y1R, P2Y4R, P2Y6R, and P2Y14R, 
are responsible for human mesenchymal stem cells differ-
entiation toward endothelial cells [78]. Moreover, P2Y2R 
is demonstrated to be associated with endothelial sprout-
ing, vascular tube formation [79], and regulate shear stress-
induced cytoskeletal alterations in human umbilical vein 
endothelial cells [80]. The dysfunction of above-mentioned 
purinoceptors may lead to abnormal vascular function, 
subsequently increasing the susceptibility to hypertension 
and hypertension-induced vascular damage. What’s more, 
P2XR-mediated neurogenic contractions are the predomi-
nant vasoconstrictor of small and medium arteries, namely, 
resistance artery [81].

P2 receptors play an important role in regulating of BP 
by acting on blood vessels and the CNS and participating 
in renal autoregulation. P2 receptors constricted afferent 
and efferent arterioles in ANG II-dependent hypertension 
[82] and triggered renal inflammation [83]. In inner med-
ullary collecting duct cells, polycystin-2 and P2 recep-
tors in response to flow might produce hypertension via 
 Ca2+-dependent signalling pathways and thereby stimulating 
the synthesis of endothelin-1, an inhibitor of  Na+ and water 
reabsorption [84]. ATP activated both P2XR and P2YR, 
modulating the activity of neurons in the rostral ventrolateral 
medulla (RVLM) [37]. Compared with the normotensive 
Wistar rats, SHRs showed a higher vascular tone of pial ves-
sels on the RVLM region, indicating an augmented activity 

of sympathoexcitatory neurons, and a possible constant 
rise in the BP [85]. Brainstem P2 receptors mediated the 
hypothalamic defense area-NTS-RVLM pathway to regulate 
hindlimb vascular vasodilation. This process was achieved 
through attenuating sympathetic tone and increasing cat-
echolamine release [42]. In addition, P2XR was expressed 
on the ventrolateral medulla projecting paraventricular 
nucleus neuron. These receptors might play a vital role in 
regulating sympathetic outflow [86]. Therefore, purinergic 
receptors may represent new avenues for treating hyperten-
sion resulting from over-activation of the sympathetic nerv-
ous in the CNS.

P2X1 receptors mediate vasoconstriction and renal 
injury

Stimulation of P2X1R mediated vasoconstriction in vascular 
smooth muscle cells (VSMCs) from human gastro-omental 
arteries [87]. In addition, P2X1R is activated by neurally 
released ATP mediated  Ca2+ entering the smooth muscle 
cells, thus inducing the sympathetic neurogenic contraction. 
Arteries from  P2X1−/− mice failed to contractions with the 
administration of P2XR agonist, whereas arteries from WT 
showed strong contractions [88].

Impaired P2X1R resulted in the dysfunction of autoregu-
lation and microvascular reactivity. This impairment would 
lead to hypertension-induced renal injuries [89, 90]. Attenu-
ated afferent arteriolar responses to P2X1R were observed 
in ANG II-infused rats on the HS diet [90]. The activation 
of normalized P2X1R averted lymphocyte infiltration, 
improved autoregulation [91], and protected renal autoreg-
ulation from inflammatory cascades induced by hyperten-
sion in DOCA-salt rats [92]. The plasma level of Up4A was 
elevated in hypertensive patients. Up4A activated P2X1R 
leading to hypertension, hence, the vascular P2X1R activ-
ity rather than plasma Up4A level might determine the role 
of Up4A in hypertension [93]. In summary, P2X1R shows 
great potential in regulating vascular tone in hypertension, 
mediating  Ca2+ influx-caused vasoconstriction in VSMCs, 
and improving hypertension-induced renal injuries.

P2X3 receptors in the carotid body regulate blood 
pressure

The carotid body (CB) [11] is a potential novel target for 
hypertension. As a peripheral chemoreceptor located at 
the bifurcation of carotid arteries, CB is hypersensitive to 
arterial oxygen, carbon dioxide, and blood pH levels. Thus, 
the reflex ventilation, cardiovascular system, and humoral 
response are regulated by CB. Researches during the past 
several decades on CB indicated that peripheral chemore-
flex sensitivity of CB affected sympathetic activity and 
further influenced sympathetic-mediated diseases, such as 
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hypertension. A significant increase of the CB reflex sensi-
tivity was observed in SHRs [94] and hypertension patients 
[95]. Morphologically, CBs grew larger under the condition 
of hypertension in humans and rats [96, 97]. CB denerva-
tion effectively prevented the development and progression 
of hypertension in both hypertensive rats and patients [94, 
95]. A clinical study found that hyperoxia-induced deac-
tivation of CB chemoreceptors acutely lowered the BP in 
hypertensive patients [98]. Moreover, unilateral CB resec-
tion lowered the BP and sympathetic activity in 8 out of 15 
patients with drug-resistant hypertension [99]. Interestingly, 
purinergic signalling is related to the functions of CB. It was 
demonstrated that P2X2R and P2X3R were expressed in pet-
rosal neurons and were involved in ATP-mediated hypoxic 
chemo-transmission of CB in rats [100]. P2X3 mRNA 
expression was upregulated in the chemoreceptive petrosal 
sensory neurons of SHRs. Both tonic drive and hyperreflexia 
were normalized by local administration of a highly selective 
P2X3R antagonist. In conscious SHRs, blockade of P2X3R 
resulted in the reduction of arterial pressure and basal sym-
pathetic activity, and the normalization of CB hyperreflexia. 
But, the P2X3R blocker did not affect normotensive Wistar 
[94]. More recently, canine models with P2X3R deficiency 
on CBs were created. This model showed a decreased BP 
and normalized the sympatho-vagal balance [101], thus sug-
gesting the importance of P2X3R in CBs to control BP and 
sympathetic activity.

Taken together, antagonism of P2X3R in the CB lowers 
BP especially, and non-invasive targeted therapies will be 
more acceptable and needed by patients with neurogenic 
hypertension, refractory hypertension, or drug-resistant 
hypertension. Therefore, further researches should be the 
focus on those therapies.

P2X4 receptors regulate vasodilatation and ENaC 
activity

P2X4R is highly expressed in endothelial cells and VSMCs 
of human resistance arteries [87]. Similarly,  P2X4–/– mice 
presented higher BP than WT mice [102, 103]. A clinical 
study found that the missense Y315C variant (rs28360472) 
in P2X4R was significantly related to increased pulse pres-
sure, which might be attributed to a reduction in P2X4R-
mediated vasodilation [104]. P2X4R has been proposed to 
be involved in lowering BP in two ways. Firstly, P2X4R in 
the endothelium was activated in response to shear stress, 
resulting in  Ca2+ transients, NO formation, and thus induc-
ing vasodilation [102, 103, 105–108]. Secondly, P2X4R was 
regarded as apical  Na+ sensors to control  Na+ balance and 
BP by modulating ENaC activity in the collecting duct [103, 
109]. ENaC is relevant to the  Na+ reabsorption at the distal 
nephron and is of great importance for BP regulation.

P2X7 receptors mediate renal injury 
and inflammation‑related hypertension

A couple of genetic researches have proven that P2X7R is 
linked to night-time diastolic BP [110]. In addition, P2X7 
non-synonymous rs3751143 polymorphism was linked to 
reduced susceptibility to essential hypertension and its esti-
mated haplotypes in Chinese postmenopausal women [111]. 
However, another study revealed that, in untreated newly 
diagnosed essential hypertensive patients, two P2X7 gene 
SNPs 489C > T and 1513A > C were independent of altered 
endothelial function and arterial stiffness [112]. The mech-
anisms underlying the relation between P2X7 gene SNPs 
and hypertension are not fully understood, which deserves 
further investigation.

P2X7R may participate in the vicious cycle of salt-sensi-
tive hypertension and renal injury in the Dahl salt-sensitive 
rats. In vivo, blockade of P2X7R could prevent and improve 
salt-sensitive hypertension and renal injury [113]. Likely, 
blockade and knockdown of P2X7R showed lower BP in 
ANG II-treated and DOCA-salt treatment rats [114]. In 
addition, a lower urinary albumin excretion, but a higher 
creatinine clearance was detected in  P2X7−/− mice, suggest-
ing the additional protective renal function of P2X7R [114]. 
Also, selective inhibitor of P2X7R reduced BP in the nor-
motensive Fischer (F344) rats, which exerted vasodilation 
in renal vascular and a lower pressure diuresis threshold. 
This potent hypotension effect by P2X7R might be associ-
ated with sevenfold increased expression of preglomerular 
vasculature P2X7R gene in F344 rat vs. in Lewis rat in the 
endothelium [115].

Compared with WT mice, P2X7R-deficient mice showed 
lower BP, less renal interstitial fibrosis and infiltration of 
immune cells, and lower levels of interleukin-1 beta. In ren-2 
transgenic hypertension rat model, the expression of P2X7R 
was upregulated in podocytes and endothelial and mesangial 
cells after glomerular injury [116]. This upregulation indi-
cated that P2X7R might be related to renal vasoconstriction 
and tubulointerstitial inflammation [117].

P2X7R is highly expressed in immune cells, includ-
ing antigen-presenting cells (APCs), T cells, mast cells, 
macrophages, and monocytes. Activation of P2X7R led 
to release of interleukin-1 beta and interleukin-18, result-
ing in the inflammatory response [118, 119]. As we know, 
plasma ATP is higher in patients with hypertension than 
in normotensive controls. ATP acted on P2X7R of APCs 
and increased the expression of CD86. The action of ATP 
triggered the hyperactivation of T cells and contributed to 
the immune-mediated pathologic changes associated with 
hypertensive disease. Hydrolyzing ATP or blocking the 
P2X7R eliminated hypertension-induced T cells hyperac-
tivation [120]. In addition, pharmacologic or genetic block-
ade of P2X7R suppressed the progression of hypertension. 
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These findings support that P2X7R on APCs and T cells 
may be a potential target for immune-mediated hypertension.

P2Y2 receptors mediate endothelium‑dependent 
vasorelaxation and suppress ENaC activity

P2Y2R acted on the vasculature and renal  Na+ reabsorption, 
manifesting the great therapeutic potential in hypertension. 
Activation of P2Y2R contributed to an acute NO-independ-
ent reduction in BP and an increase in renal  Na+ excretion 
[121]. P2Y2R was the major subtype leading to vasorelaxa-
tion in human endothelial cells [122]. ATP released from 
the perivascular nerves activated P2Y2-like receptors in the 
endothelium thus eliciting an endothelium-derived hyperpo-
larizing factor in small arteries [123]. P2Y2R and G proteins 
Gq/G11 is a vital endothelial mechano-signalling pathway 
needed for basal endothelial NO formation, vascular tone. 
This pathway mediated fluid shear stress-induced several 
endothelial responses, such as  [Ca2+]i transients, and activa-
tion of the endothelial NO synthase [124]. However, another 
research reported P2Y2R activation resulted in a bipha-
sic BP response mediated not by endothelial NO, but by 
endothelial-derived hyperpolarization, which required func-
tional KCa3.1 (intermediate-conductance calcium-activated 
potassium channels) and connexin 37 [125].

The apical ATP/UTP-P2Y2-receptor system is a sig-
nificant regulator to suppress the ENaC open probability 
in response to an increase in  Na+ intake, thereby regulat-
ing NaCl homeostasis and BP [126–130]. Pharmacogenetic 
technology was used in the renal tubule, as compelling evi-
dence to demonstrate that selective activation of the P2Y2R 
and  Gq signalling was adequate to renal salt excretion in 
principal cells [131]. Hyperactivity of ENaC caused by an 
absence of P2Y2R [109, 126, 128] elicited an increase in 
BP [128].  P2Y2−/− mice showed salt-resistant hyperten-
sion, enhancing renal  Na+ retention and water reabsorption 
[127]. However, the inhibition of ENaC was not mediated 
by P2Y2R in the intact rat [129]. This discrepancy between 
species should be considered.

Interestingly, in the absence of P2Y2R, P2Y2/4R agonist 
resulted in an acute increase in BP. It was possibly attributed 
to vasoconstriction mediated by P2Y4R. There seems to be 
a mutual antagonism of P2Y2R and P2Y4R [121].

Other purinoceptors, including P2Y1, P2Y11, and P2Y12 
receptors, might regulate BP

P2Y1R within the CNS and peripheral nerves were impli-
cated in BP modulation. The inhibition of P2Y1R in C1 
neurons produced a decrease in peripheral chemoreceptor-
mediated activation of phrenic nerve activity, sympathetic 
nerve activity, and BP [132]. In muscle afferents, inhibition 
of P2Y1R prevented increased mean BP induced by forced 

exercise in the ischemic injury mice. This antihypertensive 
effect might involve regulating membrane expression of 
acid-sensing ion channel 3 [133].

P2Y1R and P2Y2R were probably associated with salt-
sensitive hypertension. On the HS diet, P2Y1R and P2Y2R 
in the inner medullary collecting duct cells participated in 
the adaptive mechanism for increasing urinary NaCl excre-
tion [134].

Among the P2YR subtypes, P2Y6R is the highest 
expressed type in mouse resistance arteries [135]. Compared 
with WT,  P2Y6−/− mice had a lower BP. In vitro studies, 
P2Y6R activated by UDP and UTP were responsible for 
arterial contraction in the rat model. P2Y6R also partici-
pated in myogenic tone via an autocrine/paracrine activation 
loop [135]. P2Y11R is closely linked with inflammation and 
may have therapeutic potential in immune system-related 
hypertension. P2Y11R activation improved the vasomotor 
function and decreased hydrogen peroxide release, indicat-
ing a heightened role for P2Y11R in inflammation-related 
endothelial dysfunction [136]. P2Y12R may regulate BP for 
participation in the balance of body fluid. It partly mediated 
ADP-induced antihypertensive effect via decreasing tubular 
water reabsorption and urine concentration [137].

In addition, P2X1R, P2X7R, and AT1R seemed to share 
the same receptor or post-receptor signalling pathways 
[138]. In ANG II-dependent hypertension, P2XR and AT1R 
receptors mediated renal vasoconstriction, but P2XR was 
predominant [138, 139].

Altered P2 signalling also contributed to the devel-
opment of PAH. In PAH, the protein of P2X1R, P2X4R, 
P2Y2R, P2Y11R, and P2Y12R were upregulated. P2X1R 
and P2Y12R mediated ATP-induced vasoconstriction, and 
P2Y6R mediated UDP-induced vasoconstriction in rat 
intrapulmonary arteries [140]. P2YR activated by Up4A 
resulted in pulmonary arteries contraction in rats [141, 142]. 
The P2 receptor-mediated  Ca2+ signalosome of the human 
pulmonary endothelium, which was implications for PAH 
[143]. Shear stress modulated endothelial Kruppel-like fac-
tor 2 (KLF2) through activation of P2X4R [144], and KLF2 
mutation presented heritable PAH in clinical cases [145]. In 
addition, modulation of KLF2 showed therapeutic potential 
for pulmonary hypertension [146]. Thus, targeting P2X4R 
may be an option for modulating KLF2 in the PAH.

In the animal models with PAH, inhibition of P2X7R 
attenuated the inflammation [147, 148], pulmonary arteries 
remodelling [147, 149], and right ventricular function [147, 
148]. The blockade effect of P2X7R on PAH and RV com-
plications differed from current treatment options, where the 
significant improvements in pulmonary pressures ultimately 
do not prevent mortality due to RV failure [148]. Blockade 
of P2Y1R also decreased pulmonary arterial pressure in 
swine with acute hypoxia-induced pulmonary hypertension 
[150].
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Overall, P2X4R and P2X7R may be therapeutic options 
in PAH. More studies are needed further to elucidate the 
involvement of P2X4R and P2X7R in PAH.

Conclusion and perspectives

Endogenous purines function as extracellular signalling 
molecules by activating purinoceptors. Purines and puri-
noceptors play a significant role in the regulation of BP. 
ATP mainly mediates vascular tone through the activation 
of P2X1R and P2X6R on the smooth muscle cells. ATP can 
also mediate vascular tone by activating  A2AR, P2X4R, and 
P2Y2R on endothelial cells, and also by interacting with 
other purinoceptors, thereby showing dual effects. Similar 

dual effects are observed in ADP, adenosine, UTP, UDP, 
and Up4A.

Purinoceptors play a crucial role in hypertension by 
modulating renin release, sodium excretion, ENaC activ-
ity and renal autoregulation, sympathetic nerve system, 
endothelium, CB, and immune system (Fig. 1). P2Y1R is 
demonstrated to be involved in neurogenic hypertension. 
P2X7R and P2Y11R are shown to be potential targets for 
immune-related hypertension. P2X3R located on CB is 
the most promising novel therapeutic target for hyperten-
sion.  A1R,  A2AR,  A2BR, and P2X7R play significant roles 
in mediating renal autoregulation. The dysfunction of renal 
autoregulation eventually leads to renal damage and high BP. 
Purinergic signalling performs other roles which are similar 
to those of classic antihypertensive agents, including  A1R, 
 A2BR,  A3R, P2X4R, P2Y1R, and P2Y2R mediated sodium 
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Carotid body 
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Fig. 1  Purinoceptors in regulation of blood pressure. Activation or 
inhibition of purinoceptors can improve hypertension in 9 different 
ways, including sympathetic nerve activities, endothelial cells, neu-
rons in the brain stem, carotid body, inflammation, renin-angiotensin 
system, sodium excretion, ENaC activity, and renal autoregulation. 
P2Y1R is involved in neurogenic hypertension. P2X3R located on 

the carotid body is the novel therapeutic target for hypertension.  A1R 
activation induces renin release.  A1R,  A2BR,  A3R, P2X4R, P2Y1R, 
and P2Y2R mediate sodium excretion. P2X1R and P2X6R on the 
smooth muscle cells, and  A2AR, P2X4R, and P2Y2R on endothelial 
cells act on vessels to regulate vascular tone
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excretion.  A1R and P2X4R are related to NO formation.  A1R 
activation induces renin release. Though numerous studies 
have demonstrated the effect of purines and purinoceptors on 
BP, none of the pharmacological tools targeting purinocep-
tors has entered clinical trials due to lower efficacy, com-
plex kinetics issues, and adverse effect. Future studies are 
required to pinpoint purinoceptors and evaluate the purines 
and their receptors for potential treatment. More studies are 
needed to evaluate the purines and purinoceptors for the 
treatment of hypertension.

Collectively, there is a complexity of purines- and puri-
noceptor-mediated effects in BP. Many aspects are still not 
fully understood due to many discrepant observations. The 
discrepancy arises from (1) purines concentration vs. puri-
noceptors sensitivity and (2) differences in purinoceptor 
expression and distribution in different blood vessels of dif-
ferent species. A better understanding of these aspects will 
help elucidate the role of purines and purinoceptors in the 
regulation of BP and the development of novel therapeutic 
strategies.

Many questions remain from purinoceptors in the regula-
tion of BP. Firstly, purines and purinoceptors are extensively 
distributed in the body. The BP regulation is a complex 
process mediated by purinoceptors in local blood vessels 
and the CNS. Thus, the assessment of drug safety and side 
effects should be of great concern. Secondly, heterogenei-
ties in species, genders, and vascular beds should be taken 
into account. Lastly, the purinoceptors not mentioned above, 
including P2X2R, P2X5R, P2X6R, P2Y1R, P2Y3R, and 
P2Y13R, might have an impact on the regulation of BP.
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