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Abstract
Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a 
rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal trans-
duction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial 
ischemia–reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversi-
fied pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory 
immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing 
evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic condition-
ing, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling 
mediates the complex processes of MIRI which shows its promising application and prospecting in the future.

Keywords Myocardial ischemia–reperfusion injury · Purinergic signaling · Pathological processes · Cardioprotective 
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Introduction

As the most frequently occurring cardiovascular disease, 
myocardial ischemia poses a serious threat to human health 
owing to its high morbidity and mortality [1]. Therefore, it 
has been a pressing issue to the prevention and treatment 
of myocardial ischemia effectively. Currently, the main 
treatment for acute myocardial infarction (AMI) includes 
drug therapy, surgical coronary artery bypass grafting, and 
percutaneous coronary intervention (PCI). Bypass sur-
gery and PCI are used to eliminate vascular blockage and 
restore normal vascular perfusion, which can greatly reduce 

the mortality of AMI. However, cardiac tissue damage is 
aggravated after reperfusion, which is called myocardial 
ischemia–reperfusion injury (MIRI) [2, 3]. This phenom-
enon also can be observed in other cardiac surgeries, such 
as valve replacement, heart transplantation, and surgery 
for congenital heart disease. Undoubtedly, further cardiac 
dysfunctions will be induced by this type of injury, such 
as myocardial stunning, reperfusion arrhythmia, myocyte 
death, and endothelial and microvascular dysfunction, 
including the no-reflow phenomenon and inflammatory 
response [4]. Moreover, it was reported that lethal reperfu-
sion injury accounts for up to 50% of the final myocardial 
infarct size [5]. Consequently, MIRI is a grave, unsolved 
problem that hinders AMI patients from obtaining the best 
curative treatment.

Accumulating evidence indicates that purinergic signal-
ing has great therapeutic potential against MIRI. Puriner-
gic signaling involves purines and their derivatives, most 
notably adenosine and ATP, which were first considered 
as a class of extracellular signaling molecules by Geoffrey 
Burnstock in 1972 [6]. They are quite different from clas-
sic adrenergic and cholinergic neurotransmitters. By 1978, 
Burnstock proposed two separate families of receptors for 
purines, named P1 and P2 receptors [7]. P1 receptors are 
mainly activated by adenosine (ADO), while P2 receptors 
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are activated by adenosine 5’-triphosphate (ATP) and adeno-
sine 5’-diphosphate (ADP), uridine triphosphate (UTP), and 
uridine diphosphate (UDP). This theory has not been widely 
accepted until most purinergic receptors were cloned and 
characterized in the early 1990s [8]. To date, there have been 
four G protein-coupled subtypes of P1 receptors (A1, A2A, 
A2B, and A3), which are related to intracellular levels of 
cyclic adenosine monophosphate (cAMP). The four recep-
tors are different from each other. The A1 and A3 signaling 
pathways are linked to inhibitory G proteins to downregu-
late cAMP, while the A2A and A2B signaling pathways are 
linked to stimulatory G proteins to upregulate cAMP. A1 
and A2A have the highest affinity to ADO, and A3 and A2B 
have the lowest affinity to ADO [9]. Their activation depends 
on ADO concentration. The P2 receptors are a little more 
complicated and contain seven ion channel subtypes of P2X 
receptors (P2X1-7) and eight G protein-coupled subtypes of 
P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, 
P2Y13, and P2Y). They are diffusely expressed in almost 
every system in the human body, which mediates multiple 
intracellular signal transduction pathways and triggers vari-
ous cell behaviors since the abnormal purinergic signaling 
will result in a wide range of diseases, like neurological, 
rheumatic, cardiovascular, and cancer diseases [10]. In 
MIRI, as soon as the cardiac tissue is subjected to ischemic 
injury, intracellular ATP is released from the affected cells 
and gradually breaks down to ADP, adenosine 5’-monophos-
phate (AMP), and ADO. These endogenous ligands bind to 
and act on purinergic receptors in the cardiovascular system 
and associated circulating cells, thereby participating in the 
complicated pathological processes of MIRI. In this review, 
we will examine the role of purinergic signaling in MIRI and 
its application in clinical.

Expression of purinergic receptors 
in the cardiovascular system and associated 
immune cells

Since the first report on the effects of adenine compounds 
on disturbed cardiac rhythm was published in 1929 [11], 
thousands of articles on purinergic signaling in the cardio-
vascular system have emerged. Scientists have found that 
numerous cells in the heart and blood vessels can express 
one or more subtypes of purine receptors that affect heart 
function modulation, vascular tone, angiogenesis, and 
inflammation. Existing evidence has shown that the four P1 
subtypes are differentially expressed in cardiomyocytes, car-
diac fibroblasts, coronary vascular, and inflammatory cells, 
which mediate a range of generally beneficial actions [12]. 
Specifically, cardiomyocytes, endothelial cells, and vascular 
smooth muscle cells express all four P1 subtypes. Cardiac 
fibroblasts express the A2A and A2B subtypes; however, 

pericytes express the A1 and A2A subtypes. As for inflam-
matory cells, polymorphonuclear leukocytes express all four 
P1 subtypes, but mast cells and macrophages only express 
the A2A and A3 subtypes. They usually play a vasodilatory 
and cardioprotective role inside the body. Some studies sug-
gest that almost all subtypes of P2X receptors are expressed 
in cardiomyocytes [13]. Furthermore, P2X1, P2X2, and 
P2X4 are expressed in vascular smooth muscle cells and 
endothelial cells, which contribute significantly to vascular 
contraction and relaxation responses, respectively [14]. The 
distribution of P2Y receptors is similar to that of P2X recep-
tors. Some reviews reveal that many P2Y subtypes are also 
expressed in cardiomyocytes, including P2Y1, P2Y2, P2Y4, 
P2Y6, and P2Y11 [13, 15]. It is interesting to note that 
P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 are expressed in the 
vascular endothelium [14, 16], while P2Y2, P2Y4, P2Y6, 
and P2Y14 are expressed in the vascular smooth muscle 
[13, 17, 18]. All of the aforementioned P2Y subtypes par-
ticipate in vascular contraction and relaxation. Furthermore, 
P2 receptors are expressed in erythrocytes, platelets, and 
immune cells, which play a major role in multiple physiolog-
ical and pathological changes associated with cardiovascular 
diseases [13, 19]. The expression of purinergic receptors in 
the cardiovascular system cells and associated immune cells 
is summarized in Fig. 1.

Purinergic signaling in pathological 
processes of MIRI

The microcirculation disturbance and surrounding tissue 
injury caused by myocardial ischemia–reperfusion cover 
the ischemic period, acute and subacute periods during 
reperfusion, and the chronic injury period after reper-
fusion. The disorder of energy metabolism initiates the 
pathological process of MIRI and results in the reduction 
of ATP synthesis furtherly in the ischemic period. In addi-
tion, the accelerating ATP deficiency in the intravascular 
and perivascular tissues, which, due to the continuous con-
sumption of ATP by blood vessels and surrounding tissues, 
induces serious cytoskeleton depolymerization and cell 
necrosis. After the blocked blood vessels are recanalized, 
the injury enters the early stage of reperfusion. During this 
period, the supply of oxygen and nutrients is restored, and 
peroxide is produced in excess which acts in two aspects. 
On one side, the DNA and membrane structure of car-
diac cells suffer great damage owing to lipid peroxida-
tion. On the other side, peroxide triggers the release of 
inflammatory factors and increases the expression of adhe-
sion molecules, which induce acute pathological changes, 
such as exudation, bleeding, thrombosis, and cell apopto-
sis. Within 24 h to 7 days after reperfusion, the damaged 
vascular endothelial cells and perivascular tissues release 
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multiple chemokines and transforming growth factors. 
These substances induce collagen deposition by acting 
on fibroblasts and trigger the remodeling of perivascular 
tissue, which leads to the induction of a subacute patho-
logical process dominated by organ fibrosis. After 7 days 
of reperfusion, some lymphocytes swim out of the blood 
vessels and contribute to the perivascular chronic inflam-
matory process. Based on the aforementioned results, it 

can be suggested that the complex pathological processes 
of MIRI can be roughly divided into the following catego-
ries: energy metabolism disorder, oxidative stress injury, 
calcium overload, inflammatory immune response, plate-
let aggregation, coronary vascular dysfunction, and cell 
necrosis and apoptosis. In this review, we will focus on the 
role of purinergic signaling in the aforementioned MIRI 
pathological processes, as it may reveal great therapeutic 
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Fig. 1  Expression of purinergic receptors in the cardiovascular system and associated immune cells

Fig. 2  Purinergic signaling in 
pathological processes of MIRI
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potential and help develop new therapeutic agents for 
MIRI (Fig. 2).

Energy metabolism disorder

As previously described, the energy metabolism disorder is 
the initial contributing factor to MIRI [20]. The normal func-
tion of cardiomyocytes is inextricably linked to the energy 
provided by ATP. During the ischemic period, the energy 
metabolism of the ischemic myocardium will change from 
aerobic oxidation to anaerobic glycolysis when the coronary 
blood flow decreases to a certain extent, which reduces ATP 
production and energy supply. In this situation, the cardio-
myocytes are in a state of energy starvation, thus induc-
ing serious cardiac dysfunction. Simultaneously, anaerobic 
glycolysis results in a great increase in intracellular lactic 
acid levels, which leads to a decrease in pH and accelerates 
the acidosis of cardiomyocytes. No doubt, those trigger a 
series of pathological changes. It is worth noting that the 
energy metabolism disorder also occurs throughout the rep-
erfusion period owing to the mitochondrial damage caused 
by ischemia. Therefore, the timely treatment of the myocar-
dial energy metabolism disorder is an important method to 
alleviate MIRI. As early as the 1980s, scientists found that 
the administration of exogenous ADO could increase ATP 
levels in the post-ischemic myocardium [21], a phenomenon 
that could not be replicated in in vivo models [22]. Moreo-
ver, ADO could also stimulate myocardial glycolysis, which 
maintains cell viability by increasing the cellular uptake of 
glucose [23, 24]. This protective effect may be mediated by 
the P1 receptor. For example, some studies have found that 
the overexpression of the A1 receptor can reduce ATP loss 
and improve the bioenergetic state during severe ischemic 
insult and reperfusion, which may contribute to improved 
functional tolerance [25]. This protective effect of the A1 
receptor may be mediated by the activation of the intrinsic 
mitochondrial  KATP channel, which is a core link of energy 
metabolism in cardiomyocytes [26–28]. A recent study sug-
gested that the remote cardioprotective effect of the trans-
fer of coronary effluent from an ischemic preconditioned 
heart is mediated by P1 receptor activation, which preserves 
mitochondrial integrity and function in cardiomyocytes [29]. 
Therefore, purinergic signaling may be a potential target for 
alleviating energy metabolism disorders in MIRI.

Oxidative stress injury

Reactive oxygen species (ROS) incur important pathologi-
cal changes in two aspects in MIRI. On the one hand, ROS 
can reduce the activities of Na/K ATPase and  Ca2+ ATPase 
and cause lipid peroxidation, which damages the cell mem-
brane directly and destroys the integrity of the cardiomyo-
cytes causing myocardial necrosis and apoptosis. On the 

other hand, ROS initiate the expression of inflammatory 
mediators, resulting in neutrophil infiltration and capillary 
injury. This excessive inflammatory reaction is another sig-
nificant pathological change that aggravates the myocardial 
injury. Furthermore, ROS can create a dissipation of the 
mitochondrial membrane potential and induce long-term 
opening of the mitochondrial permeability transition pore 
(mPTP), which inevitably leads to cell energy metabolism 
disorder. Thus, based on this point, it is believed that the 
inhibition of excessive oxidative stress is a vital strategy 
for MIRI prevention and treatment. A large amount of stud-
ies show that overexpressing the A1 receptor can preserve 
mitochondrial function and salvage cardiomyocytes from 
cell death by inhibiting the opening of mPTP and modulat-
ing  KATP channels in MIRI [30, 31]. Similarly, the activa-
tion of A3 receptor activation can regulate  KATP channels 
to attenuate post-ischemic dysfunction and provide cardi-
oprotection [32, 33], which may involve the activation of 
the NF-κB, transcription of iNOS, and synthesis of NO in 
the heart [34, 35]. In addition to the P1 receptor, P2 sub-
types also contribute to oxidative stress injury in MIRI. For 
example, one study showed that extracellular ATP addition 
at the reoxygenation stage confers a cardioprotective effect 
against hypoxia/reoxygenation injury, which is mediated by 
the P2Y11 receptor in human cardiomyocytes via reduc-
ing mitochondrial ROS production and activating the PKCε 
signaling pathway [36]. In addition, the pannexin-1/P2X7 
compound can be activated in MIRI, which promotes the 
release of endogenous cardioprotectants, such as adenosine 
and sphingosine 1-phosphate. These substances can trigger 
a protective effect through the PI3k/Akt survival pathway to 
delay mPTP opening and reduce myocardial apoptosis [37]. 
Thus, purinergic signaling plays a major role in oxidative 
stress injury in MIRI.

Calcium overload

Changes in intracellular calcium homeostasis play an impor-
tant role in MIRI. Under physiological conditions, the con-
centrations of intracellular and extracellular calcium ions 
are relatively stable. Once myocardial cells are ischemic 
and hypoxic, metabolism shifts from cellular respiration to 
anaerobic glycolysis, causing a transmembrane pH gradient 
change. Abundant sodium ions flow into the cells. When 
the reperfusion stage occurs, the energy supply is restored, 
and the pH gradient returns to normal. This recovery pro-
motes the transmembrane exchange of sodium and calcium 
ions. Finally, the influx of extracellular calcium into cells 
results in calcium overload This is a potential mechanism 
for oxygen-free radical and neutrophil infiltration, which is 
also closely related to cardiac purinergic signaling. Some 
studies have revealed that cardiac A1 receptor overexpres-
sion is associated with a decreased rate of active calcium 
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transport into the sarcoplasmic reticulum [38]. This reduc-
tion in active calcium uptake can contribute to increased 
myocardial resistance to ischemia. Interestingly, the A3 
receptor has a similar modulation effect on calcium channels 
in the sarcoplasmic reticulum, thereby exerting a myocardial 
protection effect against MIRI [39]. Purinergic signaling is 
a conventional therapeutic target for intracellular calcium 
homeostasis in MIRI.

Inflammatory immune response

The activation of inflammatory immune response is another 
crucial pathological change during MIRI; in the early stage 
of reperfusion, injured cardiomyocytes activate the innate 
immune response, which induces various inflammatory fac-
tors and chemokines releasing, and creating a pro-inflam-
matory environment finally. Some circulating inflammatory 
cells, such as neutrophils, macrophages, and lymphocytes, 
are recruited at the site of the injured myocardium both 
directly and indirectly. This infiltration aggravates and 
spreads the inflammatory response. Approximately 4 days 
later, the injured cardiomyocytes exhibit anti-inflammatory 
and restorative properties. During this pathological change, 
multiple anti-inflammatory and immunosuppressive factors 
are released which promote vascular regeneration and myo-
cardial tissue repair. In this long and complicated period, 
purinergic signaling plays both a positive and negative regu-
latory role via selective receptor activation. However, there 
are controversies among studies about the role of purinergic 
signaling. For example, some studies have suggested that the 
activation of the  A1 receptor can stimulate neutrophil chem-
otaxis [40], which promotes a pro-inflammatory immune 
response in MIRI. However, other studies have shown that 
the overexpression of the A1 receptor can lower the lev-
els of tissue myeloperoxidase activity, an index of neutro-
phil accumulation, thus resulting in smaller infarct size in 
MIRI [41]. Moreover, the result of one study has verified 
that  A3 receptor activation can attenuate MIRI by decreas-
ing neutrophil-endothelial cell interactions [42]; however, 
the results of other studies suggest that the activation of the 
A3 receptor leads to pro-inflammatory activity and con-
tributes to MIRI [43, 44]. A2 receptor subtypes are con-
sidered more involved in inflammatory immune responses 
in ischemia–reperfusion injury. CD73 on T cell-derived 
adenosine acts on A2A and A2B receptors in an autocrine 
and paracrine manner [45]. The activation of A2A and 
A2B receptors can inhibit the release of pro-inflammatory 
cytokines, including TNF-α, INF-γ, IL-1α, IL-1β, IL-2, and 
IL-6. In contrast, some anti-inflammatory cytokines, such as 
IL-10, are secreted via the stimulation of the A2A receptor 
[46, 47]. Furthermore, P2 receptors are also important play-
ers in this pathological change. For instance, some studies 
have reported that pro-inflammatory factors, such as IL-1β, 

IL-18, and ROS, can be secreted excessively via the P2X7 
receptor [48–50]. The potential mechanism may be the  K+ 
efflux and  Ca2+ influx induced by the openness of the P2X7 
receptor, which triggers NLRP3 inflammasome assembly 
and then converts pro-caspase-1 into active caspase-1. This 
inflammatory response of the P2X7 receptor contributes to 
myocardial injury and myocardial fibrosis, which results in 
decreased cardiac function [51]. Paradoxically, some other 
studies revealed that P2X7/pannexin-1 pore mediated the 
cardiac protective effect of conditioning intervention; thus, 
the inhibition of pannexin-1 or P2X7 could abrogate the 
protective effect of ischemia–reperfusion conditioning and 
result in increased infarct sizes [52–54]. Furthermore, the 
P2Y11 receptor in human dendritic cells also plays a piv-
otal role in mediating the inflammatory response following 
ischemia–reperfusion injury, which could be beneficial in 
AMI [55]. The stimulation of this subtype could also modu-
late the secretome of cardiac fibroblasts, regulate inflamma-
tory immune reactions, and reduce hypoxia/reoxygenation 
injury [56]. Another important purinergic receptor is P2Y12. 
One study verified that P2Y12 inhibition in macrophages 
can attenuate inflammation and cardiac remodeling induced 
by MIRI [57]. Based on the aforementioned, the knowledge 
between purinergic signaling and multiple inflammatory 
immune cells needs to be furtherly explored to understand 
their roles and mechanisms.

Platelet aggregation

Platelet aggregation has recently emerged as a popular 
pathological symptom of MIRI. Activated platelets may 
aggregate and form microthrombi in small cardiac ves-
sels and capillaries, leading to cardiac tissue damage. 
Activated platelets also contribute to reperfusion injury 
by enhancing platelet-leucocyte aggregation, the release 
of potent vasoconstrictors, and the secretion of pro-
inflammatory molecules [58]. So far, three subtypes of 
P2 receptors in platelets have been recognized, including 
two receptors of ADP (P2Y1 and P2Y12) and one of ATP 
(P2X1), which are all involved in platelet aggregation. 
Therefore, the pharmacological inhibition of platelets is 
considered a standard treatment for AMI patients, espe-
cially by P2Y12 receptor inhibitors. Among these inhibi-
tors, clopidogrel is the most commonly used drug in clin-
ics, which effectively reduces coronary occlusion without 
thrombus formation and is recommended by many clinical 
guidelines [59]. Scientists have found that a few newly 
discovered P2Y12 inhibitors, such as prasugrel [60], can-
grelor [61, 62], and ticagrelor [63], exhibit great ability to 
ameliorate myocardial damage beyond their well-studied 
anti-thrombotic effects. However, it does not mean that 
clopidogrel can be replaced completely. Recent trials have 
shown that in patients aged 70 years or older who suffered 
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high bleeding risk, clopidogrel is a favorable alternative 
to ticagrelor and prasugrel as it leads to fewer bleeding 
events without an increase in the combined endpoint of 
all-cause death, myocardial infarction, stroke, and bleed-
ing [64–66]. However, the potential mechanism of action 
of clopidogrel, which seems to extend beyond platelet 
inhibition, has not yet been fully explored. Some studies 
have reported that the cardioprotective effect of cangrelor 
is dependent on platelets, sphingosine phosphorylation, 
and certain other blood components [67, 68]. Prasugrel 
can reduce ischemia-induced ventricular arrhythmias via 
PI3k/Akt signaling pathways [69]. Ticagrelor can block 
the adenosine re-uptake transporter ENT1, thereby rais-
ing tissue adenosine levels to reduce cardiac injury [70, 
71]. Therefore, it is worthwhile to pay more attention 
to purinergic signaling in platelet function during MIRI.

Coronary vascular dysfunction

Previous studies have verified that ischemia–reperfusion 
can generate substantial coronary vascular events, such 
as vasospasm, thrombosis or re-stenosis, and endothelial 
injury. These dysfunctions contribute significantly to myo-
cardial depression and impaired cardiac reflow, which are 
the key determinants of infarct size in MIRI. Given the 
specific vascular protective effect of ADO, scientists have 
attempted to explore the relevance of purinergic signaling 
in coronary vascular dysfunction. In the case of the P1 
receptor, some studies have shown that vascular injury is 
intrinsically limited by the endogenous activation of the 
A1 receptor, while the exogenous A3 receptor activation 
further limits post-ischemic dysfunction [72]. Thus, the 
pretreatment with an agonist of the A1 receptor can alter 
the spatial distribution of myocardial blood flow, which 
might reflect a downregulation of metabolic state, thereby 
contributing to cardioprotective effects [73]. Even more, 
the coronary microvascular tone can also be activated by 
receptors of A2A and A2B. Adenosine-mediated. Previous 
research revealed that ischemia–reperfusion can attenuate 
coronary vasodilatation induced by the A2A agonist in the 
dog [74]. What is more, A2B-mediated relaxation in iso-
lated coronary small arteries can also be blunted in swine 
with myocardial infarction [75]. The downstream targets 
of P1 receptors are  H2O2,  KATP,  KV, and  KCa2+ channels 
[76]. Besides, the increased extracellular ATP level after 
the ischemic injury can also protect heart endothelial 
cells against acute reperfusion injury [77]. Another study 
has suggested that the coronary endothelium-dependent 
relaxation may be partly mediated by P2 receptors after 
ischemia–reperfusion [78]. For example, the P2Y2 recep-
tor on the coronary artery can be reduced to minimize 

coronary contraction following ischemia–reperfusion 
injury [79]. Therefore, purinergic receptors may repre-
sent new avenues for the treatment of MIRI resulting from 
coronary vascular dysfunction.

Cell necrosis and apoptosis

Cell necrosis and apoptosis are the most direct pathologi-
cal manifestations of MIRI. Both terms describe different 
types of cardiac cell death. Cell necrosis refers to passive 
death caused by physical or chemical damage injuries, such 
as hypoxia and malnutrition. Cell apoptosis is also known 
as programmed cell death, refers to cell death controlled 
by apoptosis genes activated by certain conditions, and is 
a useful strategy for better adaptation to the living environ-
ment. These pathological processes can be modulated by 
purinergic signaling. Numerous clinical trials have verified 
that ADO infusion can result in a significant reduction in 
infarct size [80, 81]. This cardioprotective effect is mainly 
mediated by P1 receptors. For example, some studies have 
reported that the stimulation of the A1 receptor can reduce 
necrosis and infarct size in MIRI [41, 82] and inhibit cardiac 
cell apoptosis by regulating the expression of Bcl-2/Bax and 
caspase 3 and their activity [83–85]. In addition, P2 recep-
tors are also involved in cell death in MIRI. For example, 
P2X7 plays a role in myocardial impairment by increasing 
apoptosis, while the administration of a specific P2X7 recep-
tor antagonist can reduce the HSP70 protein levels in car-
diac cells [86]. In contrast, the P2Y2 receptor may exert a 
protective effect against MIRI. A treatment with a specific 
P2Y2 receptor agonist reduces cell death and increases the 
expression of the anti-apoptotic protein Bcl-2 [86]. These 
two regulatory agents can decrease the pro-apoptotic protein 
caspase-8 levels [86]. A recent study revealed that the stimu-
lation of the P2Y11 receptor can also reduce the apoptotic 
markers after cardiac transplantation, such as the Bax/Bcl-2 
ratio, which results in significantly prolonged cardiac allo-
graft survival [87]. All these results suggest that purinergic 
signaling is closely related to cell necrosis and apoptosis, 
which are the last, but not least, pathological links to MIRI.

Purinergic signaling in cardioprotective 
interventions for MIRI

Purine signaling has become a potential target for the pre-
vention and treatment of MIRI, owing to its involvement in 
the multiple pathological manifestations of MIRI. Thus far, 
we reviewed the various interventions reported and found 
that many of them employ purinergic signaling as action 
mechanisms (Table 1).

234 Purinergic Signalling (2023) 19:229–243



1 3

Ischemic conditioning

Ischemic conditioning is a crucial intervention in MIRI, 
including ischemic preconditioning, ischemic postcondi-
tioning, and remote ischemic conditioning (pre and post). 
Each preconditioning has its own merits. Ischemic pre-
conditioning was first discovered in 1986 [88, 89]. Some 
physicians have discovered that preconditioning the 
myocardium using short episodes of sublethal ischemia 
could delay the onset of necrosis during a subsequent 
lethal ischemic insult. Since then, scientists have been 
trying hard to explore the underlying mechanism of this 
endogenous myocardial protection effect. To date, they 
have reached the following consensus: the protective 
effect produced by ischemic preconditioning includes 
early preconditioning and the second window of protec-
tion. Early preconditioning refers to infarction delayed by 
1–2 h after the first ischemic stimulation, while the sec-
ond window of protection refers to a protective effect that 
lasts 12–72 h [90]. ADO is considered a classic trigger 
and mediator [91] that is involved in the preconditioning 
of rabbit [92], dog [93], pig [94], and human myocardia 
[95]. This cardioprotective effect of ADO in precondition-
ing is related to all P1 receptor subtypes. Among them, 
A1 and A3 receptors can not only modulate the activa-
tion of the mitochondrial  KATP channel and the opening of 
mPTP in cardiomyocytes [96, 97], but also activate phos-
pholipase C or protein kinase C (PKC) directly [98–100]. 
However, some researchers still claim that the  A3 receptor 
is not necessary for ischemic preconditioning, as it may 
incur injury in MIRI; thus this requires more in-depth 
research in the future [101]. The myocardial protective 
mechanisms of A2A and A2B receptors are completely 
different. Some researchers have suggested that A2A 
may inhibit endothelial-neutrophil interactions in MIRI 
[102], while A2B activation reduces MIRI by promot-
ing anti-inflammatory macrophage differentiation via the 
PI3K/Akt pathway [103, 104]. Subcellular ERK isoform 
signaling is also involved in P1 receptor preconditioning 
to reduce myocardial infarct size, especially via the A1 
and A2A receptors [105]. In 1993, researchers confirmed 
that ischemic preconditioning and its protective effect can 
occur between different parts of the same organ or between 
different organs, which was proposed as remote ischemic 
conditioning [106]. In 2003, it was shown that brief cycles 
of coronary occlusion during the early minutes of reperfu-
sion can reduce the infarct size, which becomes equivalent 
to that seen after ischemic preconditioning [107]. These 
two interventions have emerged as novel therapeutic strat-
egies for MIRI, but the underlying mechanisms remain 
unclear. Some studies have shown that this cardioprotec-
tive effect is associated with the activation of the PI3K/
Akt pathway and the prevention of mPTP formation via the Ta
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A2B receptor during reperfusion [108, 109]. Furthermore, 
the pre- and postconditioning of P2X7 receptor agonists 
can protect the heart against ischemia–reperfusion injury 
by opening pannexin-1/P2X7 channels [53].

Pharmacological intervention

The development of pharmacology has enhanced the exploi-
tation of many adjuvant drugs for purinergic receptors. The 
emergence of these drugs is not only convenient for labora-
tory research, but also is the potential to play a role in clini-
cal application against MIRI, especially in terms of selective 
agonists and antagonists acting on various receptor subtypes. 
The most well known are P2Y12 inhibitors, such as clopi-
dogrel [110], prasugrel [69], cangrelor [68], and ticagrelor 
[63], which have been discussed in detail in a previous sec-
tion of this review. It is worth noting that purines coexist 
with other classical transmitters, thereby purinergic recep-
tors have multiple cross-talk with other signaling pathways. 
In other words, some non-purinergic molecules can also 
activate purinergic receptors and exert the same cardiopro-
tective effect against MIRI. For instance, neutrophil-derived 
netrin-1 attenuates MIRI through myeloid adenosine A2B 
signaling [111]. The same cardioprotective effect has been 
observed in the dipeptidyl peptidase 4 inhibitor, alogliptin, 
which suppresses MIRI via the A1-PKC-CREB signaling 
pathways [112]. P2Y11 and P2Y6 receptors are candi-
date receptors of cardiac pharmacological preconditioning 
induced by vitamin B6 and its metabolite, pyridoxal 5-phos-
phate [113], which may be associated with the reduction of 
sarcoplasmic reticulum  Ca2+ transport activities [114].

Additionally, one recent study affirmed that some circu-
lating micro-RNAs, such as miR-150, protect the heart from 
ischemic injury by regulating cell death through the direct 
repression of pro-inflammatory P2X7 in cardiomyocytes 
[115].

Therefore, purinergic signaling may be a potential mecha-
nism of some pharmacological interventions. Metformin, a 
beneficial medicine for diabetes, can preserve myocardial 
function after ischemia and reduce infarct size. However, 
this effect could be completely abolished by a P1 receptor 
antagonist, which verifies the critical dependence of met-
formin on the stimulation of the P1 receptor [116]. Cilosta-
zol, an anticoagulant drug, can reduce the myocardial infarct 
size by increasing ADO and NOx levels, attenuating super-
oxide production, and opening the mitochondrial  KATP chan-
nels [117]. A clinically usable nucleoside transport inhibi-
tor, dipyridamole, exerts a sustained cardioprotective effect 
via A1 receptor signaling during ischemia [118]. Moreo-
ver, opioid receptors interact closely with P1 receptors. For 
example, intrathecal morphine preconditioning can be used 
to reduce the infarct size in MIRI, but the cardioprotective 
effect can be reversed by the intravenous and intrathecal 

administration of a P1 receptor antagonist [119]. In induced 
postconditioning, an ultra-short-acting opioid receptor ago-
nist, remifentanil has cross-talk with the P1 receptor [120]; 
both of these conditioning types depend on mitochondrial 
 KATP and ROS in MIRI [121].

In light of these converging pathways between puriner-
gic signaling and other pathways, the coadministration of 
multiple drugs will undoubtedly enhance the cardiopro-
tective effect against MIRI. One study revealed that there 
is an additive effect on local myocardial adenosine levels 
in ischemia–reperfusion injury when ticagrelor and rosu-
vastatin are coadministered, which may be mediated by 
adenosine-induced effects, including the downregulation 
of pro-inflammatory mediators and upregulation of anti-
inflammatory ones [122]. Another study reported that the 
caspase-1 inhibitor VX-765 combined with the P2Y12 
receptor antagonist cangrelor, both administered at the rep-
erfusion stage in MIRI, can preserve cardiac function and 
reduce infarct size after reperfusion [123]. The pre-ischemic 
coadministration of the sodium–hydrogen exchanger inhibi-
tor cariporide and the adenosine agonist AMP579 can act 
additively to reduce the myocardial infarct size [124]. In 
addition, triple combining interventions by cangrelor, cari-
poride, and cooling can increase greatly myocardial salvage 
with an infarct size of only 3%, which is much better than 
the effect of two drugs used alone [125].

Other therapies

Beside the traditional ischemic conditioning and pharma-
cological intervention against MIRI, some novel therapies 
have been developed in recent years, which often exhibit 
significant cardioprotective effects; however, their underly-
ing mechanisms have not been fully explored and explained. 
Fortunately, purinergic signaling may provide a novel refer-
ence for their interpretation. For instance, the mycelia of cul-
tured Cordyceps sinensis, which is a Chinese herb frequently 
used, have a suppressive effect on ischemic contracture. 
Additionally, they provide cardioprotection through enhanc-
ing P1 receptor activation in MIRI [126]. Furthermore, res-
veratrol (a polyphenol produced in grapes and present in 
wine) can protect the heart from MIRI in the long term, by 
stimulating the production of ADO and activating A1 and 
A3 receptors [127].

It is worth noting that the cardioprotective effect of 
purinergic signaling also can be influenced by other active 
ingredients. One study showed that caffeinated coffee can 
abrogate the infarct size limiting effect of atorvastatin by 
blocking the P1 receptors and preventing the phosphoryl-
ation of Akt. However, caffeinated coffee does not affect 
the infarct size of rats not treated with atorvastatin [128]. 
A previous research suggests that alcohol consumption can 
mimic the cardioprotective effect of preconditioning by the 
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A1 receptor [129]; this effect warrants reconsideration and 
further research.

Purinergic signaling is also involved in other comple-
mentary therapies. As early as the 1990s, researchers found 
that ADO can affect coronary vasodilation during exercise 
[130]. Recent studies have shown that aerobic exercise can 
reverse cardiac remodeling by reducing inflammation, fibro-
sis, and apoptosis, thereby partly inhibiting P2X7 receptor 
expression in cardiomyocytes [131]. Acupuncture precon-
ditioning has been verified as a potential therapy for MIRI, 
owing to its popularity in Asian countries [132, 133]. This 
potential mechanism of treatment requires further explora-
tion. Purinergic signaling has been considered the initia-
tion pathway in acupuncture therapy since 2009 [134–136]. 
Many researchers believe that purinergic signaling may be 
the regulatory target of acupuncture preconditioning for 
MIRI [137, 138], and electro-acupuncture may achieve a 
cardioprotective effect by modulating the expression of A2A 
and A2B receptors in myocardial tissue [139].

Reflection and prospect of purinergic 
signaling against MIRI

Based on this review, it can be suggested that puriner-
gic signaling plays various roles in the pathophysiology 
of MIRI. ATP is released from ischemic cardiomyocytes 
in the form of autocrine or paracrine messengers, then 
activates P1 and P2 receptors, and mediates a series of 
pathological reactions. By the mutual promotion and 
inhibition in the corresponding relationships in different 
stages, these reactions are not isolated. They promote and 
inhibit each other and then play a corresponding role in 
different stages. During the ischemic phase, continuous 
local ischemia and hypoxia weaken the level of cellular 
oxidative phosphorylation and lead to energy exhaustion, 
due to which cellular energy demands remain unmet. At 
the same time, intracellular anaerobic glycolysis increases 
significantly to maintain ATP levels, thereby resulting in 
lactic acid accumulation and cell solute acidification. The 
activity of sodium-hydrogen exchange, sodium-calcium 
exchange, and calcium channels in the sarcoplasmic 
reticulum decreases, which leads to intracellular calcium 
overload. Subsequently, the cardiac cytoskeleton is depo-
lymerized, and apoptosis and necrosis pathways are acti-
vated. All these activities result in metabolic collapse and 
myocardial cell death. Although the supply of oxygen and 
nutrients is restored during the reperfusion stage, a second 
wave of damage is induced. On the one hand, large num-
bers of peroxides are produced to damage the DNA and 
membrane structure through lipid peroxidation. They also 
initiate a variety of intracellular signal transduction path-
ways and induce the release of pro-inflammatory factors. 

On the other hand, persistent calcium overload activates 
the opening of the mPTP, again affecting energy produc-
tion. This results in either apoptotic or necrotic cell death 
being induced. After 4 days of reperfusion, the damaged 
vascular endothelial cells release multiple chemokines, 
which cooperate with inflammatory factors and immune 
cells. These substances act on fibroblasts to initiate tissue 
remodeling and promote cardiac function recovery. Dur-
ing this complicated process, scientists first concerned the 
function of P1 receptors, which may be due to the modu-
lative effect of ADO has been observed as early as the 
1920s. Compared to ATP and ADP, the molecular struc-
ture of ADO is more stable. The mechanism of the A1 
subtype is clearly demonstrated, which reveals that it is 
involved in many critical pathological links in MIRI, espe-
cially calcium overload, oxidative stress injury, and the 
opening of mPTP. Intracellular signaling pathways include 
PKC, PI3 kinase, and MAPKs. However, other subtypes of 
P1 receptors are involved in the inflammatory and immune 
pathways in MIRI. In particular, the  A2b receptor, which 
can only be activated under hypoxic conditions, shows 
a strong cardioprotective effect in MIRI. P2 receptors, 
such as P2X4, P2X7, P2Y2, P2Y11, and P2Y12 also play 
important roles in MIRI. They express in different cells 
and affect almost all the pathological links in MIRI. To 
some extent, regulating the activity of these P2 receptors 
to some extent can have a beneficial effect on ischemic car-
diomyocytes. These compounds seem to constitute a class 
of promising therapeutic targets for MIRI. For example, 
targeting the P2Y12 receptor with clopidogrel, prasugrel, 
or ticagrelor is the most successful strategy to date.

Nevertheless, many aspects of purinergic signaling in 
regulating MIRI are still not fully understood due to a 
number of discrepant observations, which are as follows: 
(1) The essential function of purinergic signaling requires 
further accurate verification, in terms of the pathological 
link it acts on, the signaling pathway it is involved in, 
the species it works on, etc. These aspects should be con-
ducted inspections in the future. (2) The MIRI is a com-
plex process that lasts for a long time, including aggravat-
ing injury, self-healing, and recovery period, respectively. 
Thus, one receptor may play different roles at different 
stages in MIRI. Temporal changes of purinergic signal-
ing require additional attention. (3) Purinergic signaling 
cross-talks with other signaling pathways. For example, 
several studies have reported the cardioprotective proper-
ties of P2Y12 receptor inhibitors, irrespective of their anti-
thrombotic activity. The interaction effect among signaling 
pathways is also very important and can help predict the 
therapeutic potential and possible side effects. (4) Some 
non-drug interventions, such as ischemic conditioning, 
exercise, and acupuncture, are with powerful cardiopro-
tective effects mediated by purinergic signaling. This 
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may depend on the integrative effect of multiple receptors 
expressed both in the cardiovascular and nervous systems; 
this needs to be researched further and verified clinically.
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