Table 2.
Author | Classification Task | Data Collection | Test Set | Accuracy | Sensitivity | Specifity | AUC | Precision | F1 score | MCC |
---|---|---|---|---|---|---|---|---|---|---|
Cheng and Lui [9] | AD vs. CN | 339 subjects from ADNI | 10% (10-fold validation) | 0.91 | 0.91 | 0.91 | 0.95 | |||
MCI vs. CN | 0.79 | 0.78 | 0.80 | 0.84 | ||||||
Lu et al. [10] | AD vs. CN | 1051 subjects from ADNI | 10% (10-fold validation) | 0.94 | 0.92 | 0.92 | ||||
Zheng et al. [11] | AD vs. CN | 962 images from ADNI | 20% (5-fold validation) | 0.91 | 0.86 | 0.95 | ||||
Yee et al. [12] | AD vs. CN | 596 subjects from ADNI | 20% (5-fold validation) | 0.93 | 0.92 | 0.94 | 0.98 | |||
Ding et al. [13] | AD vs. all | 2109 images from 1002 subjects | 10% (10-fold validation) | 0.81 | 0.94 | 0.76 | 0.78 | |||
MCI vs. all | 0.54 | 0.68 | 0.55 | 0.55 | ||||||
CN vs. all | 0.59 | 0.75 | 0.60 | 0.59 | ||||||
Tufail et al. [14] | AD vs. all | 90 images (Training + Validation) | 23 images (12 CN, 7 MCI, 4 AD) | 0.80 | 0.71 | 0.84 | 0.78 | 0.68 | 0.70 | 0.55 |
MCI vs. all | 0.60 | 0.35 | 0.72 | 0.53 | 0.38 | 0.36 | 0.68 | |||
CN vs. all | 0.74 | 0.65 | 0.79 | 0.72 | 0.62 | 0.63 | 0.43 | |||
Etminani et al. [15] | AD vs all | 556 subjects from ADNI, 201 subjects from E-DLB | 10% (73 cases) | 0.91 | 0.92 | 0.83 | 0.87 | |||
MCI vs. all | 0.17 | 0.94 | 0.20 | 0.18 | ||||||
DLB vs. all | 0.86 | 1.00 | 1.00 | 0.92 | ||||||
CN vs. all | 0.88 | 0.90 | 0.81 | 0.84 | ||||||
Yiăit et al. [16] | AD vs CN | 985 images from ADNI | 20% (six-fold validation) | 0.72 | ||||||
MCI vs. CN | 0.92 |