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Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, 
especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone 
metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the 
relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating 
the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between 
resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. 
Finally, we analyzed potential targets of P2X7R for osteoporosis.
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Abbreviations
ATP	� Adenosine triphosphate
P2X7R	� P2X7 receptor
PMOP	� Postmenopausal osteoporosis
HSCs	� Hematopoietic stem cells
BMSCs	� Bone marrow mesenchymal stem cells
RANKL	� Nuclear transcription factor-κB receptor activa-

tor ligand
IFN-α2	� Interferon alpha 2
ERK	� Extracellular signal-regulated kinase
PKC	� Protein kinase C
NFATc1	� Nuclear factor of activated T cells 1
TNF-α	� Tumor necrosis factor-α
ALP	� Alkaline phosphatase activity
SNPs	� Single-nucleotide polymorphisms

Introduction

Bone mass is gradually lost with age, leading to osteoporo-
sis, which is a systemic skeletal disorder characterized by 
reduced bone mass, increased bone fragility, and fracture 
risk due to the destruction of bone microstructures [1]. It 
is estimated that 25% women over 50 years and 20% men 
over 50 years suffer from osteoporosis. Fractures caused by 
age-related bone loss are the main cause of disability and 
death in elderly patients, seriously affecting the lives of the 
elderly, and bringing a heavy economic burden to patients 
and society [2, 3]. With the aging of the global population, 
aging-related osteoporosis has grown up to be a public 
health problem worldwide.

Osteoporosis is divided into primary osteoporosis (such 
as postmenopausal osteoporosis and senile osteoporosis) 
and secondary osteoporosis(such as disease processes. It is 
now believed that the decline in estrogen levels and bone 
degenerative changes are the main causes of osteoporosis, 
but osteoporosis is a complex multi-factor disease involv-
ing genetic and environmental factors [4]. In recent years, 
clinical studies have found that many inflammatory diseases 
are commonly accompanied by obvious local or systemic 
bone loss, such as glucocorticoids [5], rheumatoid arthritis 
[6], diabetes [7], kidney disease [8], cardiovascular disease 
[9], and so on. These findings suggest that inflammation is 
closely linked to osteoporosis. With more studies carried 
out on animals and humans, the evidence that inflammation 
plays an important role in the occurrence and progression of 
postmenopausal osteoporosis and age-related osteoporosis 
is becoming clearer.

In recent years, the role of adenosine triphosphate (ATP) 
and its associated receptors in the inflammatory process has 
been identified. ATP is a natural ligand for the P2X recep-
tor (the metabotropic receptor family) and its expression on 
all osteoblast types (osteoclasts, osteoblasts, and osteocytes) 

has been demonstrated [10]. There is growing evidence sug-
gesting that purinergic signaling also plays a critical role in 
the physiological regulation of bone metabolism [11–13]. 
Although several reviews on the role of P2X receptors in 
bone biology have been reported, the majority of studies 
were focused on P2X7R. Activation of P2X7R may amelio-
rate osteoporosis by regulating the balance between osteo-
blasts and osteoclasts, and the balance between resorption 
and bone formation by osteoblasts remains essential for 
skeletal homeostasis [14, 15]. Therefore, P2X7R has great 
potential therapeutic targets for inflammatory osteoporosis. 
In this paper, we systematically reviewed the role of P2X7R 
in the dynamic regulation of bone reconstruction and its tar-
geting potential.

Relationship between inflammation 
and osteoporosis

Inflammation and the postmenopausal 
osteoporosis

Decreased ovarian function and decreased estrogen levels 
in postmenopausal women are the main reasons for rapid 
bone loss leading to osteoporosis [16]. However, numerous 
studies have demonstrated that the decline of postmenopau-
sal estrogen levels can increase the inflammatory cytokines 
[17–19]. Early research has shown that serum inflamma-
tory indexes and P2X7R [20, 21] are significantly higher 
in women with postmenopausal osteoporosis (PMOP). The 
T cell activity and nuclear transcription factor-κB receptor 
activator ligand (RANKL) expression increased, as well 
as the various inflammatory cytokines released by T cells 
that promote bone resorption. However, the levels of these 
inflammatory cytokines reduced significantly when given 
estrogen replacement therapy [22]. In addition, early clini-
cal research has aslo found that the interleukin-1 (IL-1) and 
tumor necrosis factor-α (TNF-α) levels in serum were sig-
nificantly increased in women who had undergone surgical 
removal of the ovaries, and reduced to preoperative levels 
after 4 weeks of estrogen replacement therapy [23]. Similar 
research results were also found in animal studies. The num-
ber of thymus, T cells, and the TNF-α released by T cells 
were significantly increased in ovariectomized mice or rats, 
and the bone mass can be close to the pre-ovariectomized 
level after administration of IL-1 receptor antagonist and 
TNF-binding protein, and the therapeutic effect is similar to 
estrogen replacement treatment [24–26]. Further research 
found that the bone loss of ovariectomized TNF−/− mice 
was considerably less than that of wild-type mice. At the 
molecular level, TNF-α and IL-1β are considered to be effec-
tive inflammatory signals, as well as regulators of osteoclast 
formation and activity, which may be partly responsible for 
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the rapid premenopausal bone loss [27, 28]. These studies 
suggested that inflammatory cytokines are essential in the 
occurrence and development of women with PMOP.

Inflamma‑aging and the senile osteoporosis

Inflamma-aging is a progressive chronic pro-inflammatory 
state that appears with aging [29]. It plays key roles in many 
senile diseases, such as Alzheimer, Parkinson, multiple scle-
rosis, atherosclerosis, diabetes, osteoporosis, and so on [30, 
31]. The mechanisms of inflammatory aging are associated 
with inflammatory cytokines, autophagy, oxidative stress, 
and DNA damage [32].

Studies have shown that aging is a key driver of bone 
loss and bone fragility. The bone loss that occurs with aging 
reflects the confluence of various molecular and cellular 
processes. Therefore, similar to the mechanism of PMOP, 
inflammation also plays an important part in senile osteopo-
rosis. The expression levels of inflammatory cytokines such 
as TNF-α, IL-1, IL-6, and IL-17, which are serum markers 
of inflammatory-aging, increased with age [33]. Moreover, 
the increased levels of these inflammatory cytokines pro-
duce a large number of osteoclasts and inhibit the activity 
of osteoblasts [34]. Macrophage colony stimulating factor 
(M-CSF), which plays an important role in the survival and 
proliferation of osteoclasts, is an important cytokine during 
the differentiation of osteoclast precursor cells into mature 
osteoclasts. TNF-α can promote the production of M-CSF 
in a direct or indirect manner. In addition, TNF-α can also 
inhibit the production of osteoblasts, reduce bone matrix 
calcification, and ultimately lead to an imbalance of bone 
formation and bone resorption. IL-1 is another important 
cytokine that affects bone metabolism and bone remodeling 
activities in the bone microenvironment. It can stimulate 
osteoclast production and produce a strong effect on bone 
resorption. Similarly, increased levels of IL-6 can also lead 
to increasing levels of TNF-α and IL-1. These inflamma-
tory cytokines promote bone resorption by enhancing the 
activation and differentiation of osteoclasts, and inhibiting 
the survival of osteoblasts.

Autophagy is the self-protection mechanism of cells, 
which plays an important role in the maintenance of cellular 
homeostasis, proliferation, differentiation, and stress. The 
autophagy level of bone cells gradually decreased with aging, 
which increased the secretion of pro-inflammatory cytokines, 
accelerated bone loss, and then leaded to osteoporosis [35]. 
The ability of cells to be eliminated through autophagy was 
reduced, and mitochondrial dysfunction leaded to protein 
accumulation with aging [36]. As a result, oxidative stress 
and ROS increase, and inflammation occurs, which further 
lead to increased inflammation and accelerated aging [37].

A recent study found that changes in aging skeletal stem 
cells (SSC) may be one of the key factors leading to poor 

fracture healing, osteoporosis, and various blood diseases 
[38, 39]. Aged bone stem cells have lower activity and 
poorer ability to form bones. Further research found that the 
genes expressed by aged bone stem cells are mainly related 
to decreased bone formation and enhanced bone resorption. 
Aged skeletal stem cells affected not only the lower ability to 
form bones, but also the growth of hematopoietic stem/pro-
genitor cells (HSPC), leading to more bone-absorbing cells 
and producing inflammatory cytokines that cause fibrous tissue 
instead of bone growth. This imbalance between bone forma-
tion and bone resorption ultimately leads to osteoporosis [40].

However, there are still few studies on the related mecha-
nisms of inflamma-aging and osteoporosis. We believe that 
there will be more studies in the future to explore the impact 
of the relationship between them on bone metabolism.

P2X7 receptor and ATP‑mediated purinergic 
signaling during inflammation

ATP exists in all cells and has been identified as an extra-
cellular signaling molecule, which is involved in several 
signal pathways in various kinds of cells and diseases. 
ATP is mainly released by immune cells and hematopoi-
etic cells as well as osteoblasts and osteocytes [8,26,]. 
Compared with cytoplasm, the normal ATP concentration 
is relatively low in the extracellular, but the extracellular 
concentration of ATP is usually increased in damaged tis-
sue, tumor, inflammation, or fracture [37, 41]. P2X7R, 
one of the seven receptor subtypes, plays a key role in 
mediating the activation of NLRP3 inflammasomes. The 
non-selective ligand cation channel formed by the acti-
vated P2X7R causes lots of Ca2+ and Na+ influx and 
changes the membrane potential and leads to the efflux 
of K+ through the TWIK2 (the Kcnk6 gene code) chan-
nel. TWIK2 and P2X7R synergistically activate NLRP3 
inflammasomes. Activated NLRP3 inflammasomes medi-
ate the activation of caspase-1 to mature the precursor 
IL-1β and induce the release of mature IL-1β to the cyto-
plasm. In addition, a large amount of Ca2+ influx caused 
by activated P2X7R can activate calmodulin-dependent 
protein kinase II and Ca2 + -dependent phospholipase A2, 
and induce the release of IL-1β [28, 42]. P2X7R can also 
promote the production of reactive oxygen species (ROS) 
by macrophages, which is involved in the activation of the 
p38 and JNK pathways mediated by the nucleotide recep-
tor. However, the activated ROS, p38, and JNK pathways 
all together play a critical role in a variety of immune 
response processes [43]. It can be seen that ATP-P2X7R 
signaling plays an important role in the inflammatory pro-
cess caused by macrophages.

Beyond these, P2X7R is also involved in the activation 
and expression of transcription factors, such as nuclear 
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factor-κB (NF-κB). NF-κB is a nuclear transcription fac-
tor that controls the expression of a variety of inflamma-
tory genes, including TNF-α, COX-2, and IL-1b, increased 
TNF-α and IL-1β can enhance NF-κB activation and fur-
ther exacerbate inflammation in turn. An increasing num-
ber of studies link the pro-inflammatory activity of P2X7R 
to NF-KB nuclear translocation, further confirming the 
P2X7R-dependent activation of NF-KB in microglia, osteo-
clasts, and osteoblasts [28, 42].

Dynamic regulation of P2X7R on bone 
remodeling

P2X7R, as a ligand ion gating system, is widely distributed 
in osteocytes, osteoclasts, and osteoblasts, which plays an 
important role in bone remodelling. Moreover, as a repair 
receptor, P2X7R can promote the repair and calcification 
of small fractures, thereby accelerating bone remodeling 
[44]. A proper balance between osteoclasts and osteoblasts 
is essential for healthy bones [45]. P2X7R may ameliorate 
osteoporosis by maintaining a balance between osteoclast 
and osteoblast activity [46–48].

The effect of ATP and P2X7R on osteoclasts

Osteoclast precursor cells

Osteoclasts, the bone-resorbing cells, are generated from 
mononuclear monocyte-macrophage precursors that derived 
from hematopoietic stem cells (HSCs) in the bone marrow. 
Cells of HSCs lines have also been demonstrated to express 
multiple purine receptors [49, 50]. Extracellular ATP can 
promote the transformation of HSCs to myeloid progenitor/
osteoclast precursor cells. Studies have shown that a high 
concentration of ATP (1 mM) can reduce the number of 
HSCs in mice, while increased in bone marrow cells. HSCs 
have not changed significantly when exposed to low con-
centrations of ATP (less than 1 mM) [51]. These indicated 
that the role of P2X7R in promoting HSCs may be along the 
osteoclast cell line.

Osteoclasts are large multinucleated terminally differenti-
ated cells formed by the fusion of mononuclear hematopoi-
etic precursors, but the fusion of precursor cells to multinu-
cleated osteoblasts is a complex biological behavior that is 
not yet completely understood. Recently, it has been shown 
that osteoclast precursor fusion to form multinucleated 
cells was significantly inhibited by anti-P2X7R antibodies 
or antagonists of oxidized ATP, for example, human blood 
monocyte formation of osteoclast-like cells can be prevented 
by some P2X7R antagonists in vitro [52, 53]. ATP can also 
act on P2X7R promoting the fusion and the differentiation 

of osteoclast precursors, as well as cell apoptosis through 
downstream signaling pathway, such as PKC translocation, 
nuclear localization of NF-κB, and activation of nuclear 
factor of activated T cells 1 (NFATc1) [54]. Beside that, 
extensive internalization of P2X7R induced by prolonged 
exposure to ATP can also block the ability of RAW 264.7 
cells to fuse into multinucleated osteoclast-like cells [55].

Mature osteoclasts

P2X7R is expressed in osteoclasts generated from rodents 
and rabbits in vitro, and differentiation of primary mouse 
osteoclasts is dependent on P2X7R expression [56, 57]. 
P2X7R expression is also present in human monocyte pre-
cursors and throughout osteoclastogenesis in vitro, and the 
expression of mRNA and protein of P2X7R was higher in 
mature resorbing cells compared to their precursors [53, 
58]. Highly expressed R2X7 promotes spontaneous fusion 
of osteoclasts in vitro. Subsequent studies verified that the 
addition and accumulation of ATP promoted osteoclast 
fusion [59]. Therefore, we hypothesized that osteoclast 
fusion requires the release of ATP through the P2X7R 
pore, although this action may indirectly involve other 
purinergic receptors. Interestingly, similar to the HSCs, 
the ATP-mediated P2X7R also has multiple effects on 
osteoclasts. ATP could enhance osteoclast formation and 
resorption when it is at a low concentration (0.2–2 μM). 
However, higher concentrations (20–200 μM) of ATP may 
have an adverse effect on osteoblasts, such as the forma-
tion of lytic pores that leads to apoptosis and persistent 
inflammation [60]. It has been noted that bone resorp-
tion was decreased by extracellular ATP, which was 
likely resulted from cytotoxic effect by activated P2X7R 
on osteoclasts [61]. In summary, activation of P2X7R 
in osteoclasts is essential for cell fusion and is critical 
in determining cell survival time and uptake. It can be 
hypothesized that the formation of osteoclasts and their 
P2X7R functions are regulated by regulating the extracel-
lular ATP concentration.

The effect of ATP and P2X7R on osteoblasts

Osteogenic precursors cells

Osteoblasts are derived from bone marrow mesenchymal 
stem cells (BMSCs) and various purinergic receptors 
which plays an important role in determining the differ-
entiation fate of MSCs. Intracellular ATP releases activate 
P2X7R and drive osteogenic differentiation of MSCs [62, 
63]. That shock wave induces osteogenic differentiation 
of human MSCs through ATP release and activation of 
P2X7R had just demonstrated. The researchers found that 
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shock waves caused ATP to be released from hMSCs and 
led to downstream activation of the 38 MAPK signaling 
pathway, transcription of c-Fos and c-Jun mRNAs, and 
osteogenic differentiation [64]. These downstream events 
were completely abolished when treated with apyrase 
(an enzyme that hydrolyzes extracellular ATP), P2X7R-
siRNA, PPADS (a nonselective P2 antagonist), and KN-62 
(a P2X7R antagonist), which suggests P2X7R-mediated 
these events [64].

In another study, P2X7R was shown to induce zeiosis 
to promote osteogenic differentiation and mineralization 
of BMSCs in postmenopausal women [65]. The authors 
found that BzATP (100 μM) induced the activation of pro-
tein kinase C (PKC) and Rho-related kinase, as well as 
cytoskeletal rearrangement in BMSCs. Basal alkaline phos-
phatase activity (ALP) of BMSCs was significantly delayed 
in postmenopausal women compared to younger women, 
and the results suggest that the osteogenic capacity of aging 
BMSCs in postmenopausal women is impaired, and this 
can be reversed by BzATP. Activation of P2X7R by BzATP 
enhanced ALP activity, expression of transcription factors 
RUNX2 and osterix, mineralized area, and number of bone 
nodules in BMSCs. Collectively, these findings provided 
important information to disclose the role of P2X7R in pro-
moting the differentiation of MSCs into mature osteoblasts.

Mature osteoblasts

P2X7R has now been verified to be expressed in human and 
rodent osteoblast cell lines, such as osteoblast-like cell lines, 
calcareous, and bone-derived primary osteoblasts, whether it 
has a physiological function in osteoblasts has been contro-
versial [46, 66, 67]. It was observed that P2X7R knockdown 
(KO) reduced ALP activity in osteoblasts in vitro, decreased 
periosteal formation in long bones of P2X7R KO mice and 
their osteogenic capacity under mechanical loading, and 
these results were similarly confirmed in human osteoblasts 
[68, 69]. Furthermore, the marked enhancement of miner-
alization in human osteosarcoma cell lines when P2X7RB 
(a truncated P2X7R isoform) was co-expressed with the full 
variant P2X7RA, suggests a positive role of fully functional 
P2X7R in maintaining bone strength [70]. Clearly, func-
tional P2X7R is required during osteogenesis. However, the 
results of some other similar studies are contrary. Activated 
P2X7R induced apoptosis in SaOS-2 osteoblast cell line, 
induced membrane blebbing in mouse calvarial osteoblasts 
and MC3T3-E1 osteoblasts as well as decreased bone min-
eralization and ALP in primary rat osteoblasts [71–73]. 
Interestingly, blockade or deletion of P2X7R inhibited the 
propagation of intercellular calcium signals between osteo-
blasts and osteoclasts in human bone marrow-derived cells, 
and fluid shear stress caused a significant reduction in extra-
cellular signal-regulated kinase (ERK) phosphorylation in 

primary mouse osteoblasts [56, 74]. It is clear that conflict-
ing evidence for the effects of activated P2X7R on osteoblast 
differentiation and matrix mineralization in vitro indicated 
that the underlying mechanisms are not clear. Researchers 
attributed these differences in part to P2 receptor-dependent 
and/or receptor-independent mechanisms via hydrolysis of 
extracellular nucleotides to pyrophosphate (PPi), which is 
known as a mineralization inhibitor. The breakdown of ATP 
by ectonucleotidases can cause high-level PPi [69, 75].

In general, constitutive ATP in osteoblasts is released 
at a low level (approximately 0.5–1 nmol/mL) in a normal 
physiological environment [76]. ATP release triggered by 
mechanical stimulation enhances P2X7R-mediated osteo-
genic function, and agonist-mediated transient activation 
of P2X7R promotes osteoblast differentiation and matrix 
mineralization [77, 78]. Activation of P2X7R is involved in 
downstream LPA synthesis/release, PGE2 synthesis/release, 
and ERK1/2 activation in osteoblasts, thereby enhancing 
osteoblast differentiation and bone formation [38, 63, 67]. 
Yet, high concentrations of ATP(above 1 mM)partially 
inhibit bone formation, especially mineralization [79]. Such 
high concentrations of ATP may only occur with cellular 
damage (including bone tissue microdamage) or macro-
scopic fractures in vivo [28]. Thus, activation of P2X7R 
by ATP in bone may be a warning of danger in tissue or 
cellular damage.

Osteocytes

Osteocytes, the mechanosensors of bone and the primary 
regulator of bone homeostasis, are terminally differenti-
ated osteoblasts. In the adult skeleton, the proportion of 
osteocytes reaches 90–95%, approximately 20 times that 
of osteoblasts. Unlike osteoblasts and osteoclasts, which 
are located on the bone surface, osteocytes grow in the 
bone matrix inside the bone, making it difficult to study 
them [80]. Despite this, the expression and function of 
P2X7R in 13 have caught attention. Evidence suggests that 
BzATP and liquid shear stress can induce MLO-Y4 osteo-
cytes pore formation via P2X7R and lead to the release 
of PGE2, which is normally involved in the activation of 
downstream signals for mechanically induced bone for-
mation [81–83]. However, conflicting evidence indicates 
that shear stress can also induce the release of PGE2 from 
MLO-Y4 osteocytes when P2X7R was inhibited [84]. It has 
been shown that P2X7R is important for the normal ana-
bolic response to physical stimulation of the skeleton, as 
mechanical stimulation causes the release of large amounts 
of ATP from osteocytes, and therefore it can be hypoth-
esized that activated P2X7R has a key role in regulating 
the mechanical load of osteocytes [81]. However, how it is 
involved in the mechanotransduction cascade of osteocytes 
remains unclear.
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P2X7R as the link between the immune 
system and osteoporosis

P2X7R and chronic inflammatory osteoporosis

Both autoimmune and other chronic inflammatory diseases 
are often complicated by osteoporosis and share similar 
mechanisms. As mentioned previously, P2X7R is a key fac-
tor in the inflammatory and many P2X7R-coupled pathways 
are critical in both the inflammatory response and the regula-
tion of bone metabolism.

The release of large amounts of ATP during inflamma-
tion can activate P2X7R on immune cells and the activated 
P2X7R further further promotes the release of inflamma-
tory cytokines, such as IL-6 from mast cells, TNF-α from 
dendritic cells, and PGE2 from macrophages, ultimately 
maintaining and exacerbating the inflammatory [85, 86]. 
Persistent inflammation promotes the release of multiple 
cytokines such as RANKL, IL-1, IL-6, and TNF-α from 
immune cells. Activated P2X7R also leads to intracellular 
K+ efflux and Pannexin-1 activation, which accelerates the 
assembly of NLRP3 inflammasome [87, 88]. Inflammation 
activates caspase-1 precursors to active IL-1β by producing 
IL-1β converting enzyme. IL-1β inhibits osteoblast bone for-
mation by activating the NF-kB signaling pathway, and also 
promotes osteoclast bone resorption by synergistic effects 
with TNF-α. In addition, TNF-α affects the regulation of 
intracellular Ca2+ by stimulating Akt signaling to upregulate 
P2 receptors, which promotes osteoclast differentiation and 
enhances bone resorption and accelerates the osteoporosis 
process [16]. Moreover, as part of the inflammatory process, 
the release of ATP can locally activate osteoclasts because 
the immune system and bone are in close contact with the 
bone marrow. Here, activation of P2X7R in osteoclasts can 
directly activate osteoclast precursors to form mature mult-
inucleate bone resorbing osteoclasts or indirectly activate 
osteoclasts by stimulating P2X7R in osteoblasts and upregu-
lating osteoblast RANKL, thereby inducing osteoclast for-
mation [28]. However, besides the cytokines that trigger 
osteoclast activation (IL-1, IL-6 and TNF-α) in inflamma-
tion, cytokines that inhibit osteoclast differentiation, such 
as IL-12, IL-18, IL-33 and interferon alpha 2 (IFN-α2), are 
also present, which can inhibit bone loss [46, 89]. Thus, 
the composition of cytokines in inflammation is decisive for 
whether inflammation triggers bone loss. Moreover, the skel-
etal effects of the disease are further exacerbated by reduced 
activation of P2X7R in osteoblasts due to reduced mobility 
in patients with primary inflammatory disease (shown in 
Fig. 1).

In summary, P2X7R activation leads to upregulation of 
osteoclast bone resorption and downregulation of osteogen-
esis in osteoblasts, ultimately leading to osteolysis, which 

may be an important cause of osteoporosis during inflamma-
tion and appears to be influenced by high or low ATP levels.

P2X7R and osteoporosis mediated by immune 
system

Immunodeficiency diseases are caused by deficiencies in 
immune function due to underdevelopment or acquired dam-
age to the immune system and are classified as primary or 
secondary [90]. The mechanism by which it causes osteopo-
rosis is similar to that of inflammation-mediated osteoporo-
sis, due to the sustained activation of P2X7R and osteoclast 
to inhibit bone formation [91]. B cells, as the sole producers 
of OPG, play crucial roles in the homeostasis and regulation 
of bone mass. OPG can be produced by co-stimulation of 
CD40 on the surface of B cells and CD40L on the surface 
of T cells [86]. In autoimmune defects, a large number of 
CD4 + cells are functionally impaired and reduced in num-
ber, leading to a diminished effect of this co-stimulation, 
resulting in reduced OPG production, increased RANKL to 
OPG ratio, osteoclast activation, and accelerated bone loss, 
increasing the potential for osteoporosis [92].

P2X7R gene polymorphism and osteoporosis

The gene encoding P2X7R is located on chromosome 12q24 
and is highly polymorphic. More than 1500 single-nucleotide 
polymorphisms (SNPs) are reported in the NCBI SNP data-
base [93, 94]. Multiple single-nucleotide polymorphisms in 
this gene have been demonstrated to affect the function of this 
receptor. Studies have shown a distinct association between 
SNPs in the gene encoding the P2X7R and the development 
of osteoporosis and fracture risk [95]. Studies have shown a 
noticeable association between SNPs in the gene encoding 
the P2X7 receptor and the development of osteoporosis and 
fracture risk [40, 96]. Loss-of-function polymorphisms in the 
P2X7 receptor gene may increase the risk of osteoporosis in 
postmenopausal women, and in a group of Dutch fracture 
patients, P2X7 receptor polymorphisms were associated with 
bone mineral density and risk of osteoporosis [97–99]. Genetic 
abnormalities in P2X7R function lead to reducing BMD and 
increased risk of osteoporosis [80]. Rs3751143 is widely 
regarded as associated with the incidence of osteoporosis [92]. 
It has been reported to be associated with impaired ATP-medi-
ated pore-forming activity, with dominant pure heterozygotes 
having the strongest pore-forming activity, heterozygotes hav-
ing the lowest pore-forming activity, and recessive pure het-
erozygotes losing this function altogether. Rs3751143 impairs 
the opening of ATP-induced cation-selective channels. Based 
on studies, RS3751143-C is significantly associated with the 
development of osteoporosis because carriers carrying the C 
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allele have impaired ATP-induced apoptosis in osteoclasts 
[100–102].

Recently, it was found that P2X4R could co-expresse 
with P2X7R, and a heterotrophic channel could be formed 
between the P2X4R subunit and the P2X7R subunit. If 
this is true in vivo, the P2X4R subunits could theoreti-
cally replace the “defective” subunits in P2X7R to reduce 
the effect of genetic defects in the gene encoding P2X7R. 
Additionally, genes encoding P2X4R are located near and 
downstream of P2X7R on the same chromosome, and the 
polymorphism of the gene encoding P2X7R may be related 
to the polymorphism of the gene encoding P2X4R. So, this 
association could also serve as the result of gain of function 
or loss of function in the genes encoding P2X4R. Hence, it 
seems essential to investigate the association of P2X4 poly-
morphisms with bone status and the interaction between 
P2X4R and P2X7R polymorphisms [74, 103].

The potential therapeutic targets of P2X7R 
for osteoporosis

P2X7R is increasingly recognized as a promising therapeutic 
target associated with inflammatory diseases, and a num-
ber of P2X7R inhibitors have been declared to be applie 

in clinical trials [104]. Many P2X7R antagonists are also 
used for the treatment of osteoporosis, such as A-438079 
for animal studies and A740003, Ly294002, OPG, and BBG 
for in vitro studies [16, 105, 106]. Unfortunately, these stud-
ies have generally shown disappointing results in terms of 
overall disease control [107]. Besides P2X7R antagonists, 
some natural pharmaceutical ingredients have been shown 
or speculated to have positive effects in the treatment of 
osteoporosis by affecting P2X7R.

Puerarin, the main component of Pueraria lobata, is an 
isoflavone. Puerarin has been used in the clinical treatment 
of cardiovascular diseases and cerebral hemorrhage in 
China. The results showed that the neuroprotective effects 
induced by Puerarin were related to the control of inflam-
mation. Nociceptive transmission mediated by P2X3R and 
P2X2R in primary afferent nerve could be antagonized. 
Puerarin also inhibited ATP-dependent IL-1 release and 
maturation by suppressing the expression of P2X7R pro-
tein and mRNA. Although, this result was obtained in a 
burn study, since the mechanism of pain and inflamma-
tion is similar to that of inflammatory osteoporosis. So, 
it can be inferred that geranium could also be utilized as 
a new drug for the treatment of osteoporosis caused by 
inflammation or associated with local inflammation in the 
future [108].

Fig. 1   The role of P2X7R in chronic inflammatory osteoporosis. 
Microdamage in bone tissue or inflammation causes large amounts 
of ATP from immune cells which activate P2X7R, and P2X7R fur-
ther exacerbates the release of inflammatory cytokines from immune 
cells. Inflammatory cytokines (such as IL-1, IL-6, and TNF-α) pro-
mote the fusion of monocytes to osteoclasts through AKT pathway, 

and enhance RANKL expression in osteoblast. RANKL promotes 
osteoclast formation and accelerates bone resorption. Some inflam-
matory cytokines (such as IL-12, IL-18, IL-33) can inhibit osteoclasts 
and promote osteoblast differentiation, thereby inhibiting bone loss. 
Mechanical stimulation can trigger the release of low-level ATP from 
osteoblasts or osteocytes to promote bone formation
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Tanshinone II-A sulfonate (TIIAS), the main compo-
nent of Salvia miltiorrhiza, can completely block P2X7R-
mediated Ca2+ influx at low molar concentrations, thereby 
altering ionic currents, and can treat some P2X7R-related 
diseases. TIIAS are non-competitive inhibitors that interfere 
with ATP-induced gating when they bind to intracellular 
structures of the receptor. Currently, Ca2+-activated potas-
sium channels and phosphatase 2 are two known targets of 
TIIAS. TIIAS can inhibit P2X7R by acting on these two 
targets which in turn greatly inhibit ATP-induced Ca2+ influx 
and Yo-Pro-1 uptake, and counteracts the release and activa-
tion of the pro-inflammatory cytokine IL-1 in macrophages. 
Thus, TIIAS can attenuate the inflammatory response to 
some extent and inhibit inflammation-associated osteopo-
rosis. Epimedoside is one of the main components of Epi-
medium, which was originally used in China to treat repro-
ductive dysfunction. However, recent studies have shown 
that it is an osteogenic potential compound for bone repair 
and bone formation. Epimedoside has potent chondroprotec-
tive effects and may prevent bone degeneration in arthritis 
by preventing chondrocyte destruction. The results suggest 
that epimedoside can induce chondrogenesis by promot-
ing gene expression and extracellular matrix synthesis in 
chondrocytes. Epimedoside could upregulate P2X7R gene 
expression, thereby inhibiting bone resorption, stimulating 
osteoblast differentiation, and increasing mineralization 
[109]. Besides pharmacotherapy, exercise therapy is gaining 
attention in the treatment of osteoporosis, and its mechanism 
of action may be related to involvement of P2X7R in skel-
etal mechanical signal transduction [110]. Previous studies 
have shown that mechanical force plays a crucial role in 
maintaining bone metabolic homeostasis and remodeling. 
Appropriate mechanical loading can effectively promote 
normal bone metabolism and maintain stability and health 
of bone structure and function. Osteoblasts, as the receptor 
cells of mechanical forces, stimulated by certain mechanical 
forces will release ATP extracellularly, which will increase 
the extracellular ATP concentration and stimulate the activa-
tion of P2X7R on the surface of osteoblasts and osteoclasts 
to regulate the bone metabolic process[111, 112]. It was 
demonstrated that fluid shear stress increases the secretion 
of PGE2 from osteoblasts and osteocytes in vitro, and that 
PGE2 has a major anabolic effect on bone formation but not 
P2X7−/−cells [65, 77]. P2X7R mediates ERK1/2 activation 
via fluid shear stress [113]. Activation of P2X7R can lead to 
increasing bone strength through fluid shear stress-mediated 
ERK1/2 activation, stimulation leading to nucleotide release 
and thus activation of P2X7R-mediated apoptosis in osteo-
clasts. P2X7R is associated with the Wnt/b-catenin signaling 
pathway and is involved in mechanical stress-induced bone 
formation in anabolic responses through increased osteogen-
esis in load-bearing bone in response to fluid shear stress, 

and has a central role in the mechanical load-induced bone 
formation and bone scab remodeling [66, 94]. Knockdown 
of P2X7R results in reduced imposed growth of long bones 
and cranial sutures, insufficient periosteal bone formation 
and trabecular bone and excessive trabecular bone resorp-
tion, resulting in reduced sensitivity of the bone to mechani-
cal loading [88, 114]. Studies of two separate populations 
(210 active duty Israeli soldiers and 518 UK and American 
elite athletes) found that the risk of stress fracture injury was 
associated with a loss-of-function single-nucleotide poly-
morphism (rs3751143, Glu496Ala) in the gene encoding the 
P2X7 receptor. A P2X7R gain-of-function SNP (rs1718119, 
Ala348Thr) was associated with decreased incidence of sex-
ual fracture injury [115, 116]. These evidences suggested 
that P2X7R mitigate osteoporosis and reduce fracture risk by 
promoting osteogenesis and mineralization through mechan-
ical transduction of signals to the skeleton.

Summary

P2X7R, as an important signaling molecule, is both a key 
molecule in activating the innate immune response and cen-
tral to the regulation of bone metabolism. ATP-mediated 
purinergic signaling is probably the key to understanding 
inflammation-induced bone loss. Although many studies 
have been conducted on P2X7R-mediated regulation of bone 
metabolism, the full functional role of P2X7R in osteoblasts 
has not been fully elucidated and has been controversial, 
and further elucidation of the association between P2X7R 
function and inflammatory bone loss is therefore needed. 
However, there is little doubt that P2X7R is an emerging and 
important therapeutic target for osteoporosis, especially for 
exercise therapy. Whether it is possible to improve inflam-
mation in vivo through exercise and thus improve the out-
come of osteoporosis treatment needs to be further explored.
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