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Abstract

Extracellular vesicles (EVs), secreted membranous nano-sized particles, are critical intercellular 

messengers participating in nervous system homeostasis, while recent evidence implicates EVs 

in Alzheimer’s disease (AD) pathogenesis. Specifically, small EVs have been shown to spread 

toxic proteins, induce neuronal loss, and contribute to neuroinflammation and AD progression. On 

the other hand, EVs can reduce amyloid-beta deposition and transfer neuroprotective substances 

between cells, mitigating disease mechanisms. In addition to their roles in AD pathogenesis, EVs 

also exhibit great potential for the diagnosis and treatment of other brain disorders, representing 

an advantageous tool for Precision Medicine. Herein, we summarize the contribution of small EVs 
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to AD-related mechanisms and disease progression, as well as their potential as diagnostic and 

therapeutic agents for AD.
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1. Introduction

After two decades of failed therapeutic trials and one of the lowest success rates for 

drug development in the entire field of medicine, the Alzheimer’s disease (AD) scientific 

community has been increasingly focusing on the early stages of AD and the long pre-

symptomatic phase of the disorder to prevent or attenuate brain and synaptic damage before 

it becomes irreversible. During the long pre-symptomatic phase of AD, which may last up to 

20 years (Dubois et al., 2016), different pathogenic processes and factors such as genetics, 

inflammation, lifetime stress, insulin resistance, and co-morbidities may influence disease 

progression and related brain damage (Golde, 2022). The emerging view of Precision 

Medicine suggests that AD should not be approached as a unitary biologic entity; instead, 

efforts should focus on a better understanding of variables that affect AD initiation and 

progression, which will improve our comprehension of the disease etiopathogenesis and 

pathophysiology (Berkowitz et al., 2018). This may lead to the identification of AD sub-

types and the development of tailored novel treatments, as well as preventive interventions. 

In this context, extracellular vesicles (EVs), a class of nanosized secreted membranous 

particles that includes exosomes and microvesicles, are increasingly shown to play important 

roles in AD pathomechanisms and contribute to the propagation of AD pathology across the 

brain. Moreover, their ability to cross the blood-brain barrier (Chen et al., 2016; Saint-Pol 

et al., 2020), coupled with their cargo-protecting capacity and molecular signature similar to 

that of their originating cell, make exosomes and other small EVs unique biomarker tools 

in the new era of Precision Medicine that is considered to stimulate the development of 1) 

prognostic tests to implement therapies at the pre-symptomatic phase; 2) diagnostic tools 

with increased discrimination between neurological disorders; 3) cell-specific drug delivery 

systems for a personalized approach to complex disorders such as AD.

2. The biogenesis and secretion of EVs

Under healthy conditions, the nervous system and, more specifically, the brain is 

characterized by coordinated responses and homeostatic balance generated by proper 

communication between various cell types. Cells coordinate their actions by communicating 

with one another to maintain brain homeostasis. Conversely, if any of the processes 

underlying brain homeostasis is dysregulated, pathology can ensue.

In the past, intercellular communication in the nervous system was thought to be mediated 

mainly through synapses, specialized structures where cellular appendices of one cell 

lie in close proximity to their functional counterparts on another cell. Now, cell-to-cell 

communication is known to also occur through a variety of additional mechanisms: 
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paracrine transmission of hormones and neurotransmitters (Barker and Smith, 1980); gap 

junctions that connect the cytoplasm of neighboring cells; tunneling nanotubes that join 

distanced cells; and most recently, extracellular vesicles (EVs), which are nanosized cargo-

loaded vesicles released from cells. The first description of such vesicles occurred in 

the 1960s when Bonucci observed that chondrocytes secret small vesicles of 100 nm in 

size (Bonucci, 1967), and Wolf showed that platelets release EVs with clotting activity 

(Wolf, 1967), which confirmed previous suggestions of their existence (Chargaff and West, 

1946; Hougie, 1955; O’Brien, 1955). Later, in the 1980s, studies on reticulocyte transferrin 

receptor turnover established that exosome biogenesis is essential for membrane-quality 

control (Pan and Johnstone, 1983; Harding and Stahl, 1983). Finally, at the turning of the 

millennium, Amigorena’s group first proposed a role for exosomes in the communication 

between cells of the immune system, thus making their debut as mediators of cell-cell 

communication (Zitvogel et al., 1998).

According to their biogenesis, extracellular vesicles were originally classified into 

three categories: microvesicles, apoptotic bodies, and exosomes (see Fig. 1). Briefly, 

exosomes derive from the endolysosomal pathway and the fusion of multivesicular bodies 

(MVBs) with the plasma membrane, while microvesicles and apoptotic bodies arise from 

plasma membrane budding and blebbing, respectively. However, as current isolation and 

characterization methods are not able to separate and distinguish between EVs based on 

their biogenesis, the International Society of Extracellular Vesicles released the “Minimal 

information for studies of extracellular vesicles 2018” (MISEV2018) guidelines, suggesting 

a different categorization of EVs based on physical characteristics (size or density), 

biochemical composition or cell of origin (Théry et al., 2018). Recently, a novel non-

membranous nanovesicle, termed exomere, was reported. The isolation of these smaller 

than 50 nm nanovesicles was possible by applying asymmetric-flow field-flow fractionation 

(AF4), and their proteomic characterization revealed proteins associated with hypoxia, 

coagulation and metabolism, microtubule-associated proteins, and proteins related to mTOR 

signaling and glycolysis (Zhang et al., 2018).

EV biogenesis processes have often been categorized as ESCRT-dependent or ESCRT-

independent, based on the contribution of the endosomal sorting complex required for 

transport (ESCRT) proteins. However, studies have shown that these systems may work 

synergistically to regulate exosome biogenesis (Babst, 2011; Gurunathan et al., 2021). 

For instance, different EV subpopulations might derive from different cellular pathways, 

while the cell type and its homeostatic state could also determine which cellular pathway 

is used for EV production. By far, the ESCRT-dependent mechanisms are the most 

extensively studied (Colombo et al., 2013; Katzmann et al., 2001), with ESCRT-independent 

mechanisms recently gaining attention after recent reports showed that lipids such as 

ceramide, as well as tetraspanins and heat shock proteins, can contribute to EV biogenesis 

(Stuffers et al., 2009; Matsuo, 2004). The fusion of MVBs with the plasma membrane to 

release exosomes is a complex process involving cytoskeletal proteins, molecular motors 

and switches, and fusion machinery (Hessvik and Llorente, 2018; Raposo and Stoorvogel, 

2013).
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3. Sorting of cargo into EVs

EV cargo is composed of bioactive molecules of great biological significance (e.g., proteins, 

lipids, nucleic acids) that have the capacity to influence the recipient cell. In addition, 

their composition greatly depends on the type and conditions of the parental cell and 

thus, reflects the proteomic, genomic, and homeostatic identity of that cell. The processes 

that govern protein or miRNA recruitment into exosomes are still poorly understood. It 

has been suggested that their cargo is passively accrued; however, recent studies have 

demonstrated multiple sorting systems that actively load molecules into exosomes (Fu et 

al., 2020). Protein loading into EVs uses different cellular mechanisms, including ESCRT 

components, ceramide, tetraspanins, and heat-shock proteins. ESCRT machinery recognizes 

ubiquitinylated proteins and is considered a crucial transporter of proteins to exosomes 

(Fu et al., 2020). Interestingly, recent evidence suggests a more prominent role of ESCRT-

independent mechanism for cargo sorting. For instance, studies have suggested a mechanism 

of lateral cargo segregation dependent on lipid raft microdomains and lipids such as 

ceramide (Zhang et al., 2019). Similarly, tetraspanin-enriched microdomains containing 

CD81 were also shown to play a role in receptor sorting into small EVs (Perez-Hernandez et 

al., 2013). Furthermore, miRNAs loading into EVs may follow multiple sorting mechanisms 

(Janas et al., 2015). Similar to protein loading, miRNA sorting may be dependent on 

ESCRT-machinery (Gibbings et al., 2009). For instance, it has been described that miRNAs 

sequence motifs target them to exosomes. Indeed, heterogeneous nuclear ribonucleoprotein 

A2B1 (hnRNPA2B1) recognizes these motifs and controls exosomal loading (Villarroya-

Beltri et al., 2013), thus mutations on these motifs or changes in the sumoylation levels of 

hnRNPA2B1 protein affect miRNA sorting to exosomes. In addition, the 3′-end miRNA 

sequence was also suggested to contribute to this sorting (Koppers-Lalic et al., 2014). 

Another identified pathway is related to ceramide and neural sphingomyelinase 2, as 

expression of this enzyme relates to miRNA exosomal content (Kosaka et al., 2013). In 

addition, RNA-binding proteins, Ago2, miRNA induced silencing complex (miRISC) were 

shown to interact with miRNA and contribute to its differential sorting into exosomes (van 

Niel et al., 2018).

Similarly, the sorting of DNA and nuclear proteins into exosomes is a matter of intensive 

research and remains largely unclarified. It was recently described a role for micronuclei 

(markers of genomic instability) for nuclear content loading into EVs by interacting with 

MVBs precursors and tetraspanins (Yokoi et al., 2019). Thus, although the mechanisms 

involved in cargo sorting into EVs require further exploration, it is evident that EVs’ cargo 

packaging occurs both randomly and selectively. Our understanding of these mechanisms 

may enable the curated target of EV loading processe for future patient-tailored therapeutic 

approaches.

4. EV uptake

Following their secretion, EVs facilitate intercellular communication locally and 

systemically. This message-relaying system occurs through different mechanisms (see Fig. 

1). First of all, there is tropism between donor and recipient cells, where a conserved cellular 

signature acts as a recognition motif for the uptake by the same cell type (Sancho-Albero et 
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al., 2019). Moreover, EVs can carry membrane-specific motifs that enable their recognition 

in distant locations. Upon reaching the cell of interest, EVs may interact with cell surface 

receptors, activating intracellular signaling cascades. Alternatively, they might be uptaken 

by the recipient cell through macropinocytosis, endocytosis, membrane fusion, or receptor-

ligand mediated interactions (McKelvey et al., 2015). As will be discussed below, EVs 

are suggested to be involved in the propagation of disease pathology between synaptically-

connected cells and brain areas in different brain pathologies. Thus, understanding the 

mechanisms of secretion and uptake of EVs may contribute to the understanding of the 

initiation of neurodegenerative and neurological disorders towards the identification of novel 

therapeutic targets that may slow down or halt disease progression. On the other hand, a 

better understanding of exosome uptake mechanisms may aid in the development of more 

reliable and targeted exosome delivery for therapeutic purpose as their ability to cross 

the blood-brain barrier, together with their reduced immunogenicity and cargo-transport 

properties, make EVs promising “tools” for efficient and biocompatible drug delivery 

(Whitford and Guterstam, 2019; Schiffelers et al., 2012).

5. EVs in Alzheimer’s disease brain pathology

AD constitutes a worldwide public health crisis with a significant societal and financial 

burden. Indeed, it is estimated that approx. 50 million people worldwide suffer from AD 

and other types of dementia; this number will double by 2030 and surge to more than 115 

million by 2050 (Prince et al., 2013). Moreover, it is estimated that the worldwide costs 

of dementia were US$818 billion in 2015, with 86% being spent in high-income countries 

(Wimo et al., 2017). Nowadays, AD is widely accepted as a multifactorial neurodegenerative 

disorder characterized by progressive cognitive impairment, including memory loss and 

behavioral changes. Among several non-modifiable risk factors for AD, age is the most 

significant, while certain genetic factors cause an autosomal-dominant form of early-onset 

AD (e.g., APP and presenilin mutations) and other non-deterministic genetic factors increase 

the risk for late-onset/sporadic disease (e.g., APOE) (Querfurth and LaFerla, 2010; Reiman 

et al., 2005). Education level is the most prominent among the modifiable risk factors, with 

years of education contributing to cognitive reserve and resilience to AD (Stern, 2012), 

probably by modulating synaptic density. Moreover, lifetime chronic stress and elevated 

glucocorticoids appear to increase the risk for AD (Rasmuson et al., 2001; O’Brien et al., 

1996), with GC levels correlating with the rate of cognitive decline (Lucassen et al., 2014; 

Lupien et al., 1998) and influencing AD pathogenic mechanisms (Sotiropoulos et al., 2019; 

Justice, 2018; Mohammadi et al., 2021).

AD histopathological hallmarks include extracellular senile plaques of amyloid β (Aβ) 

and intracellular neurofibrillary tangles of insoluble hyperphosphorylated Tau aggregates. 

In addition, synaptic loss is a major feature of this disease and the most significant 

correlate of cognitive decline. Similarly, Tau pathology degree and spatial distribution also 

correlate with disease severity and AD symptoms (Bejanin et al., 2017; Ossenkoppele et 

al., 2016). A recent human study has provided insight into the association between human 

Tau pathology and synaptic loss and altered synaptic function (Coomans et al., 2021), as 

it had previously been found in murine AD models (Lasagna-Reeves et al., 2011; Zhou et 

al., 2017). AD pathology is suggested to initiate at the entorhinal cortex, propagating to the 

Gomes et al. Page 5

Exp Neurol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hippocampus and eventually to the rest of the neocortex in a prion-like spreading pattern 

through mechanisms not yet fully understood. However, several studies have demonstrated 

the seeding potential of both free and exosomal Aβ and Tau, which play a role in the 

propagation of AD brain pathology (McAllister et al., 2020; Thompson et al., 2016). 

Different mechanisms are suggested to be involved in AD brain pathology, namely the 

disruption of cellular proteostasis (Labbadia and Morimoto, 2015), including protein folding 

and clearance mechanisms (Iliff et al., 2014; Tarasoff-Conway et al., 2015), astrogliosis, and 

inflammation. Below, we will focus on the relationship of EVs with these disrupted cellular 

processes (see Fig. 3), as well as their involvement in the propagation of Tau and Aβ (see 

Fig. 2).

5.1. Disruption of protein homeostasis and EVs

The main routes for cellular protein degradation are the ubiquitinproteasome system 

(UPS), the endolysosomal pathway, and autophagy (Cuervo et al., 2010). Proteasomes are 

protein complexes wherein misfolded proteins are degraded following their targeting by 

ubiquitination (Tanaka, 2009). The endolysosomal pathway engulfs cytosolic and membrane 

content targeting it to multivesicular bodies (MVBs), which may fuse with lysosomes 

for content degradation. Lysosomes, the terminal compartments of the endolysosomal and 

autophagy pathways, have an acidic lumen for the degradative activity of hydrolases. 

Finally, autophagy, activated by cellular stress (e.g., starvation, accumulation of misfolded 

proteins), is responsible for the degradation of macromolecules and organelles.

Neuronal endosomal traffic jams were first described in AD when abnormal early endosomal 

enlargement was detected at near-diagnostic precision (Cataldo et al., 2000). Since then, 

abnormalities of the endolysosomal pathway have been commonly reported, even before 

protein aggregation is observed, suggesting a key etiopathogenic role of degradative 

compartments in the downstream molecular alterations leading to neurodegeneration (Nixon 

et al., 2008). It’s interesting to note that chronic stress, a risk factor for AD, was shown to 

impair these degradative pathways contributing to the accumulation of hyperphosphorylated 

Tau and facilitating its aggregation (Vaz-Silva et al., 2018; Silva et al., 2019). Interestingly, 

exosomes derive from the endolysosomal pathway and represent an alternative pathway for 

the disposal of unwanted molecules besides lysosomal degradation. Indeed, EV secretion is 

enhanced when neuronal lysosomes are impaired (Guix et al., 2017; Miranda et al., 2018), 

which, in turn, may contribute to the release of toxic Aβ species and the formation of Aβ 
plaques (Eitan et al., 2016). Supporting this concept, inhibition of neutral sphingomyelinase 

2, an enzyme required for exosome biogenesis, has been shown to decrease amyloid 

deposition (Dinkins et al., 2016). Recently, brains of patients with the ApoE ε4 allele 

were shown to have reduced levels of TSG101 and Rab35, molecules involved in the 

ESCRT pathway (part of the endolysosomal mechanism of degradation) and also implicated 

in exosome biogenesis and secretion. These findings suggest that the ApoE ε4 genotype 

may predispose to decreased exosome release, in turn inducing endolysosomal damage and 

leading to neuronal vulnerability and a higher risk of AD (Peng et al., 2019). On the other 

hand, the EV-delivery of toxic Tau species also contributes to the malfunction of degradative 

organelles, further contributing to Tau accumulation (Pedrioli et al., 2021).
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5.2. EVs in Aβ and Tau propagation

The abovementioned studies show a clear role for the endolysosomal and other degradative 

pathways in AD pathology, supporting a potential role for exosomes and other EVs in the 

spreading of toxic forms of Aβ and Tau. Accumulating evidence suggests that Tau spreading 

in the brain occurs via prion-like mechanisms between synaptically-connected brain regions 

(Clavaguera et al., 2009; Clavaguera et al., 2020), e.g., from the entorhinal cortex to the 

hippocampus and then to the neocortex (Wang et al., 2020). The specific mechanisms 

underlying the propagation of pathological Tau remain unclear; however, Tau secretion 

from neurons has been described to occur through different routes, i.e., free secretion, or 

through nanotubes or inside EVs (Zhang et al., 2021). Indeed, there is ample evidence of 

the presence of Tau in EVs and its ability to induce Tau aggregation in recipient cells. 

For instance, plasma neuronal-derived EVs from AD patients have been shown to seed 

Tau aggregation and induce AD-like neuropathology in wild-type mouse brains (Winston 

et al., 2016). Recently, brain-derived EVs of AD patients were also shown to induce Tau 

lesions in vivo, supporting the hypothesis that brain derived-EVs participate in the prion-like 

propagation of Tau pathology (Leroux et al., 2022). Moreover, EVs isolated from the brains 

of Tau transgenic mice or cultured primary neurons expressing mutant Tau can stimulate 

the aggregation of Tau in recipient cells and increase Tau phosphorylation and soluble Tau 

oligomer formation (Baker et al., 2016; Polanco et al., 2016; Wang et al., 2017a). Recent 

proteomic evidence further consolidated our knowledge of the involvement of different 

cell types in AD pathology (Bai et al., 2021), which is mimicked by brain-derived EVs 

multi-omic analysis (Muraoka et al., 2021; You et al., 2022; Cohn et al., 2021). Indeed, 

not only neuronal EVs but also microglial or astrocytic EVs have been shown to drive Tau 

pathology propagation. For instance, overexpression of BIN1, the second most statistically-

significant locus associated with late-onset AD, promoted Tau release via microglial EVs 

and exacerbation of Tau pathology in P301S-Tau transgenic (Tg) mice (Crotti et al., 2019). 

Recently, it was also shown that plaque-associated microglia hyper-secrete EVs, contributing 

to Tau propagation in a humanized AD mouse model (Clayton et al., 2021). Moreover, 

inhibition of P2X purinoceptor 7 (P2RX7), an ATP-evoked Na+/Ca2+channel predominantly 

expressed in microglia, suppresses disease phenotypes in the P301S-Tau Tg mice, probably 

by decreasing the release of microglial EVs (Ruan et al., 2020). Moreover, Asai and 

colleagues showed that microglia phagocyte and release Tau via EVs, while inhibition 

of either microglia function or exosome biogenesis was shown to halt Tau pathology 

propagation in P301S-Tau Tg mice (Asai et al., 2015).

Similarly, EVs derived from AD patients’ brain that contained Aβ oligomers were found 

to transfer such toxic Aβ species to recipient neurons in culture-inducing toxicity (Sardar 

Sinha et al., 2018). Concerning the role of astrocyte-derived EVs, recent evidence showed 

that, after engulfing Aβ fibrils resistant to lysosomal degradation (Söllvander et al., 2016), 

astrocytes caused neurotoxicity by releasing EVs that contained an N-terminus-truncated 

form of Aβ42, which is even more resistant to degradation, more prone to aggregation and 

more toxic (De Kimpe et al., 2013). Moreover, microglial EVs can also contain toxic forms 

of Aβ1–42 and Aβ1–40, supporting a detrimental role for microglia in AD, which can 

mediate the spreading of neurotoxic Aβ species throughout the brain (Joshi et al., 2014). 

Moreover, it is important to note that Aβ spreading is also dependent on neuronal EVs that 
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appear to accelerate Aβ amyloidogenesis (Yuyama et al., 2012). On the other side, neuronal 

EVs were also shown to exhibit a protective role by inhibiting Aβ oligomerization and 

enhancing microglia-mediated Aβ clearance in vitro (Yuyama et al., 2012). By trapping Aβ 
through membrane glycosphingolipids and then transporting it into microglia, neuronal EVs 

were also shown to decrease Aβ pathology (Yuyama et al., 2014).

Although the vast majority of evidence monitoring the transmission of protein aggregates 

in neurodegenerative disorders focuses on the brain, studies have also described this 

transmission from the periphery to the central nervous system. For example, intraperitoneal 

administration of brain extracts containing Aβ or Tau triggers their accumulation in 

the brain, while parabiosis between Aβ transgenic and wild-type mice results in Aβ 
accumulation in the brain of wild-type animals suggesting that Аβ or Tau circulating in 

the blood can enter the central nervous system (Peng et al., 2020). However, the role of EVs 

in this periphery-to-central nervous system propagation remains unclear.

5.3. Exosomes and neuronal stem cells in brain homeostasis

Emerging evidence suggests a role for EVs and exosomes originated from neuronal 

stem cells (NSCs) as possible players of brain homeostasis. NSCs are multipotent cells 

characterized by self-renewal, paracrine transmission, and inducible differentiation into three 

cell lineages of the central nervous system: neurons, astrocytes, and oligodendrocytes (Ling 

et al., 2020).

NSCs-derived EVs appear as key “players” in the EVs-based cross-talk among the different 

adult neurogenic niches such as the hypothalamus, hippocampal subgranular zone, and 

sub-ventricular zone (SVZ) of the lateral ventricles (Sardar Sinha et al., 2018). A recent 

study supports the essential role of NSC-derived EVs in regulating the transition of NSCs 

from the quiescence to proliferation by regulating protein translation related to the cell cycle. 

In addition, proteomic analysis of the cargo of NSCs-derived EVs revealed that they are 

enriched in growth-factor proteins, while treatment of neuronal progenitor cells (NPCs) with 

NSC-derived EVs promotes NPC proliferation (Ma et al., 2019).

Despite their participation in paracrine communication, EVs from NSCs are also proposed 

as promising “actors” under pathological conditions with therapeutic potential (Lee et al., 

2018a). An increasing number of studies show that NSC-derived EVs carrying a “pallet” 

of proteins and miRNAs are involved in biological processes necessary for maintaining 

brain homeostases, such as inflammation, oxidation, and apoptosis (Upadhya et al., 2020a). 

For instance, SVZ NSC-derived EVs have immunomodulatory and inflammatory properties 

acting as microglia morphogens, e.g., activating the STAT1 pathway in target cells (Ruan et 

al., 2021). Moreover, NSC-derived EVs were also shown to have a neuroprotective effect in 

vitro against Parkinson’s disease (Lee et al., 2022).

5.4. EVs role in synaptic plasticity and neuronal function

Complex behavioral responses, such as learning and memory, require the dynamic 

refinement of synaptic connections by eliminating specific synapses in a process known 

as synaptic pruning (Goda and Davis, 2003). Glial cells have been shown to play an 

important role in this process (Eroglu and Barres, 2010) in a complement-dependent 
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manner and are triggered by neuronal activity (Hong et al., 2016; Schafer et al., 2012). 

Indeed, neuronal EVs secreted by depolarized PC12 cells increased the expression of C3 

(complement system protein of immune response) in microglial cells, resulting in enhanced 

clearance of neurites (Bahrini et al., 2015). Moreover, neuronal exosomes carrying PRR7 (a 

transmembrane protein) were shown to contribute to the elimination of excitatory synapses 

in neighboring neurons by i) blocking the secretion of Wnt via exosomes (secreted Wnt 

plays a critical role in synapse formation and maintenance) and ii) promoting proteasomal 

degradation of post-synaptic density (PSD) proteins (Lee et al., 2018b). Also, astrocytic EVs 

regulate neuronal protein expression and dendritic complexity by delivering several miRNAs 

(miR-26a-5p, miR-29c, miR-130a) to neurons (Lafourcade et al., 2016; Zou et al., 2015; 

Zhang et al., 2016). In addition, in response to ATP and IL-10 (anti-inflammatory cytokine), 

astrocytic EVs are thought to exhibit a role in neuronal plasticity as they are enriched 

in proteins involved in neurite outgrowth, axonal guidance, synaptogenesis, and long-term 

synaptic potentiation regulating gap junction, and CREB signaling (Datta Chaudhuri et al., 

2020; Patel and Weaver, 2021; Peng et al., 2022). Besides being involved in the regulation 

of synapse pruning and maintenance, EVs also influence synaptic transmission. Different 

studies have shown a role for EVs in regulating postsynaptic retrograde signaling (Korkut 

et al., 2013) and presynaptic modulation. Furthermore, microglial EVs have been shown 

to increase neurotransmitter release, enhance excitatory neuro-transmission by transferring 

endocannabinoids to neurons, and promote sphingolipid metabolism (Antonucci et al., 2012; 

Gabrielli et al., 2015). EVs also play a role in the “tripartite synapse”, in which neuronal 

EVs transfer miR124-3p to astrocytes, thereby inactivating other miRNAs and increasing the 

expression of astrocytic GLT1 transporter (Morel et al., 2013; Men et al., 2019), which, in 

turn, favorites for glutamate uptake from the synaptic cleft. Noteworthy, EV release itself is 

stimulated by synaptic activity and glutamate in neurons and oligodendrocytes (Lachenal et 

al., 2011) and by ATP or inflammatory stimulus in other glial cells.

In addition to regulating synaptic transmission, EVs also regulate cellular mechanisms 

involved in neuroprotection and myelination. For example, it is shown that astrocytic EVs 

facilitate neuroprotection (Upadhya et al., 2020b; Guitart et al., 2016; Pascua-Maestro 

et al., 2019) by transferring neuroglobin (Venturini et al., 2019) and synapsin-1 (Wang 

et al., 2011) to neurons that contribute to neurite outgrowth and neuronal survival. 

Microglial and astrocytic EVs were also found to promote (re)myelination by stimulating 

oligodendrocyte precursor cell migration and differentiation (Lombardi et al., 2019; Willis 

et al., 2020). In addition, oligodendroglial EVs protect neurons from stress conditions, 

supporting higher metabolic activity and axonal transport (Frühbeis et al., 2013; Frühbeis 

et al., 2020; Mukherjee et al., 2020; Krämer-Albers et al., 2007; Fröhlich et al., 2014). 

Moreover, oligodendroglial EVs communicate with other glial cells for clearance and 

immune surveillance of the microenvironment. Indeed, microglia cells are the scavengers 

of the nervous system, phagocyting toxic substances, and EVs. While the uptake of 

neuronal EVs loaded with misfolded proteins may activate microglial cells, glioma EVs 

and oligodendroglial EVs are shown to maintain microglia in an immunologically silent 

state (Paolicelli et al., 2019; Fitzner et al., 2011; Abels et al., 2019; Maas et al., 2020). 

Microglial EVs have also been shown to contribute to the metabolic support of neurons, 

providing supplementary energy substrates during synaptic activity (Potolicchio et al., 
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2005). In addition, under several conditions, EVs from microglia were shown to contribute 

to neuronal survival by transferring miR-124, which induces neurite outgrowth (Song et al., 

2019; Huang et al., 2018; Li et al., 2019).

As mentioned previously, one of the hallmarks of AD is synaptic loss and impaired synaptic 

homeostasis. The mechanisms that lead to this dysfunction have yet to be understood. Aβ 
oligomers and plaques are known to disrupt synaptic function (Laurén et al., 2009; Walsh 

et al., 2002; Shankar et al., 2008), and some studies indicate that EVs neutralize these 

effects (Yuyama et al., 2012; Bulloj et al., 2010; An et al., 2013), while others suggest that 

they have a role in mediating Aβ neurotoxicity (Elsherbini et al., 2020a; Elsherbini et al., 

2020b). Indeed, Aβ in astrocytic EVs is internalized by neurons and was shown to induce 

mitochondrial clustering and dysfunction, increasing DRP1 levels and activating caspases, 

ultimately leading to neuronal death (Elsherbini et al., 2020a; Elsherbini et al., 2020b).

5.5. EVs and brain inflammation

Genome-wide association studies of AD patients have reported that more than 2/3 of single 

nucleotide polymorphisms occur in genes that encode proteins expressed in microglia and 

are related to inflammation, endosomal pathways, and cholesterol metabolism (ElAli and 

Rivest, 2016). Indeed, AD has been associated with chronic innate inflammation in the 

CNS, where activated microglia and reactive astrocytes increase the production of cytokines 

and chemokines and lead to the infiltration of immune cells, culminating in secondary 

neurodegeneration (Calsolaro and Edison, 2016; Czirr and Wyss-Coray, 2012). Although 

the initial activation of microglia is beneficial for clearing toxic Aβ from the AD brain, 

over time, the chronic stimulation of microglia by Aβ may also be deleterious, leading to 

prolonged inflammation, excessive Aβ deposition, and acceleration of the neurodegenerative 

process (Sala Frigerio et al., 2019; Hickman et al., 2008). Astrocytic EV release is 

promoted by pro-inflammatory cytokines (Wang et al., 2017b), which recruits peripheral 

leukocytes (Dickens et al., 2017), indicating a role for astrocytic EVs in the modulation of 

neuroinflammation. Astrocytic EVs containing miR-138 can activate microglia via TLR7 

signaling (Liao et al., 2020), while those enriched in miR-873a-5p or miR-9 have been 

shown to attenuate microglia-mediated neuroinflammation (Long et al., 2020; Yang et al., 

2018a). In addition, exosomes from reactive astrocytes are enriched in miRNAs that target 

neurogenesis and synaptogenesis (Datta Chaudhuri et al., 2020; Chaudhuri et al., 2018), 

increasing neuronal uptake and reducing neurite outgrowth, branching, and neuronal firing 

(You et al., 2020), as well as having axonotrophic effects following spinal cord injury (Adolf 

et al., 2019). These findings suggest a beneficial role for astrocytic EVs in neuronal function 

under inflammatory conditions. Microglial EVs and their cargo reflect the phenotype of 

the parent cells and may promote inflammation under some circumstances (depending 

on cytokine cargo, e.g., IL1-β, TNF-α) (Yang et al., 2018b). Previous studies have 

demonstrated that abnormal elevation of glutaminase 1 in microglia promotes their switch 

to a pro-inflammatory phenotype and exosome release in an AD mouse model (Gao et al., 

2019). In addition, active microglia deliver EV-associated microRNA 146-a-5p to neurons 

promoting synaptic weakening (Prada et al., 2018) and neuronal death (Beneventano et 

al., 2017; Tang et al., 2016). On the other hand, neuron-derived EVs with high levels of 

miR-21-5p trigger neuroinflammation by activating microglia (Yin et al., 2020). Recently, 
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EVs from mesechrymal stem cells (MSC-EVs) were also shown to inhibit glial activation 

through miRNAs, reversing brain inflammation (Markoutsa et al., 2022; Losurdo et al., 

2020). In summary, neuroinflammation is an important aspect of AD pathogenesis, and 

whether exosomes promote or inhibit inflammatory responses depends on their cargoes and 

the cellular conditions under which they are released. Clearly, the mechanisms underlying 

beneficial and detrimental effects of EVs on inflammation in the context of Alzheimer’s 

disease need further investigation.

5.6. Neurovascular homeostasis and EVs

The neurovascular unit (NVU) is an anatomical structure composed of neurons, glial cells, 

brain endothelial cells, pericytes, and smooth muscle cells. Its function is to promote an 

effective cerebral blood flow, maintaining neuronal metabolic activity and a functional 

blood-brain barrier (BBB) (Soto-Rojas et al., 2021). Dysfunction of the NVU is an early 

event in AD and a reliable predictor of cognitive deficits (Thal et al., 2003; Nation et al., 

2019; van de Haar et al., 2016). Aβ deposits have been associated with deterioration of 

the NVU, decreased cerebral lymphatic and blood flow, leading to reduced Aβ clearance 

(Bakker et al., 2016; Kimbrough et al., 2015). Similarly, Tau perivascular deposits have 

also been reported with Tau-mediating vascular defects preceding neuronal loss (Canepa and 

Fossati, 2021). Little is known about the role of EVs in NVU homeostasis, although there 

are reports that EVs contribute to neurovascular repair processes (Zhang et al., 2015; Dong 

et al., 2022). In addition, EV-associated miR-132 from neurons has been shown to regulate 

endothelial cadherin and maintain vascular integrity (Xu et al., 2017). Recently, astrocytic-

EVs derived from AD brains were shown to impair neuroglial and vascular components 

(González-Molina et al., 2021). A deeper understanding of the crosstalk between NVU 

elements and the role of EVs in NVU homeostasis could promote novel interventions to halt 

or slow disease progression.

6. Technical difficulties related to the isolation and study of brain EVs

The literature shows that neuronal and glial EVs impact brain homeostasis and function. 

The seemingly contradictory roles of EVs in these processes derive from the fact that it 

is challenging to study exosomes secreted by neurons or glial cells in vivo. Therefore, 

most of the studies to date have taken in vitro approaches to explore the role of EVs in 

AD pathomechanisms, which may not fully recapitulate the endogenous mechanisms in the 

brain. In addition, the conditions in which EVs are collected and isolated greatly influence 

their content and biological function (Moloudizargari et al., 2021). Therefore, the collection 

and characterization of physiologically relevant exosomes are of the utmost importance. 

However, it is still challenging to identify, isolate and quantify exosomes efficiently, 

accurately, and selectively. For instance, the first protocol for brain exosome isolation 

proposed in 2012 (Perez-Gonzalez et al., 2012), and its following adaptations (Vella et 

al., 2017), rely on tissue digestion. Although it has provided invaluable insight into the role 

of EVs and, particularly, exosomes in brain pathology, this method of exosome isolation is 

based on brain tissue digestion which may contaminate the exosome fraction by cellular 

disruption/damage; here, intracellular components (e.g., immature vesicles intraluminal 

vesicles (ILVs) that could otherwise be targeted for degradation instead of exocytosis – 
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see Fig. 1) and artificially produced vesicles may be isolated together with EVs/exosome 

fraction (Vella et al., 2017). As it is not possible to discriminate between ILVs that would 

be secreted (exosomes) from those that would be degraded, tissue dissociation approaches 

may lead to less pure or contaminated EVs yield, leading to the conflicting, incongruent, 

or inaccurate characterization of exosomes profile. Our team has recently developed a novel 

protocol for the purification of small EVs that are spontaneously released by brain tissue. 

This novel protocol allows for the isolation of small EVs from different brain areas in both 

mouse and human, avoiding the mechanical disruption and subsequent enzymatic digestion 

required for the current method of EV isolation from brain tissue, which may contaminate 

the EV fraction with immature vesicles and influence EV cargo.

Moreover, the seemingly opposing roles for EVs described above may be due to the fact 

that these effects are mediated by a different sub-population of EVs. Thus, great efforts are 

being undertaken to provide novel tools for the study of such subpopulations of vesicles. 

Novel techniques such as asymmetric-flow field-flow fractionation allow for differential 

isolation of subpopulations of small vesicles (Zhang et al., 2018), and a new commercial 

device, ExoView, allows for the study of specific subpopulations based on their membrane 

proteins – e.g., tetraspanin-specific, neuronal or microglial specific (Silva et al., 2021). In 

addition, novel “exosome reporter” mice have enabled the isolation and characterization 

of cell type-specific EVs in vivo (McCann et al., 2020), the temporal and spatial labeling 

of exosomes (Luo et al., 2020), and the study of neuron-glia communication (Men et al., 

2019). Moreover, in vivo tracking of EVs has enabled the dissection of their trafficking 

and communication routes – indeed, several labeling methods have been developed for this 

purpose (Gangadaran et al., 2018; Carpintero-Fernández et al., 2017). Another particularly 

interesting technique is immunoprecipitation, which takes advantage of the membranous 

content of EVs to capture specific populations; for instance, it is common to use L1CAM 

or NCAM to immunoprecipitate neuron-derived EVs, while astrocytic EVs precipitate with 

GLAST. This is essential to study the role of specific EV populations in a given biological 

process, including brain pathology, and their particular contribution to AD biomarker 

discovery (Delgado-Peraza et al., 2021).

7. EVs as a tool for clinical studies and medical practice

Due to their small size, EVs are able to cross the blood-brain barrier and the CSF-brain 

barrier, although unequivocal demonstration of this crossing under healthy conditions 

is largely lacking (Chen et al., 2016; Haqqani et al., 2013; Matsumoto et al., 2017). 

Nevertheless, EVs with brain cell cargos have been found in several biofluids (e.g., CSF, 

plasma, urine, saliva). This feature provides a unique opportunity for biomarker research, as 

we can easily access brain-derived EVs, which may mirror brain pathology in the periphery, 

e.g., peripheral blood (Delgado-Peraza et al., 2021). In addition, their low immunogenicity 

also makes them perfect candidates for customized drug delivery systems.

EV cargo with biomarker potential for Alzheimer’s disease diagnosis spans multiple 

biomolecules, i.e., proteins, miRNA, mRNA, and crDNA, reflecting the biological processes 

associated with AD brain pathology. Due to their cargo-protecting abilities, EV-related 

proteins have been studied for their diagnostic potential (Arioz et al., 2021) as well as 
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their capacity to distinguish pathologies or offer a prognosis for dementia (Jia et al., 2021). 

Therefore, small EVs, such as exosomes, represent a form of liquid biopsy that seems to be 

a powerful tool in the new era of Precision Medicine (Hampel et al., 2019) and of particular 

importance for the early detection of AD. Moreover, as described above, EVs seems to 

participate in disease progression and may also be promising candidates for novel therapies 

as will be discussed below.

8. The biomarker potential of EV miRNAs

miRNAs are small non-coding RNAs that modulate RNA expression. Recently, the 

dysregulation of miRNA has been associated with AD pathological status (Olsson et al., 

2016), and while they may be found freely in body fluids, they are significantly more stable 

in small EVs, such as exosomes (Cheng et al., 2014; Kim et al., 2017). Thus, a growing 

number of studies have looked at the exosomal miRNA potential for diagnosis (Xing et al., 

2021; He et al., 2021; Dong et al., 2021; Dong et al., 2020). Interestingly, the delivery of 

some miRNA via exosomes has also been studied with promising therapeutic results and 

without short-term side effects (He et al., 2021).

So far, exosomal miRNA studies in AD have been cross-sectional, focusing on plasma, 

serum, and CSF exosomes allowing the distinction of AD from other neurodegenerative 

disorders (e.g., Parkinson’s disease [PD], Dementia with Lewis Bodies [DLB]), and 

healthy conditions. Indeed, Nie et al. (Nie et al., 2020) identified eight miRNA that 

were differently expressed in AD patients, with let-7e-5p and miR-548 being differently 

expressed in comparison with PD patients and thus, being potential differencing markers. 

Similarly, Gámez-Valero et al. (Gámez-Valero et al., 2019) have identified two miRNAs 

that differentiate AD from DLB patients (miR-451a and miR-21-5p), while four miRNAs 

are downregulated in AD patients compared to healthy controls. Interestingly, miR-23a-3p 

is downregulated in this study, while others (Nie et al., 2020; Serpente et al., 2020) have 

shown its upregulation in AD patients. These incongruencies may be due to the different 

isolation methods used and miRNA sequencing techniques (SEC and NGS (Gámez-Valero 

et al., 2019) vs. Exosome isolation Kit and small RNA seq (Nie et al., 2020)). Furthermore, 

a study by Lugli et al. (Lugli et al., 2015) proposes a panel of 7 miRNAs for the diagnosis 

of AD with an accuracy near 90%. Serpente et al. and Cha et al. (Serpente et al., 2020; 

Cha et al., 2019) have isolated neuronal-derived EVs from the plasma, identifying that 

miR-23a-3p, miR-223-3p, miR-190a-5p were upregulated in AD subjects, while miR-132 

was able to distinguish AD patients from controls but not MCI-AD from healthy subjects. 

This may suggest that different miRNAs would be altered in different stages of dementia. 

Briefly, serum-derived exosomal miRNA have also demonstrated diagnostic potential with 

Cheng et al., proposing a model with miRNAs and other serum factors with 87% sensitivity 

and 77% specificity (Cheng et al., 2015). Similarly, Barbagallo et al. created a model 

to discriminate among different neurodegenerative processes using a panel of exosomal 

miRNAs (Barbagallo et al., 2020). Furthermore, Li et al. generated a model, including 

miRNAs and pSer396-Tau, that was able to distinguish AD from vascular dementia and 

MCI (Li et al., 2020). Another study by Yang et al. demonstrated the ability of miR-200b 

to distinguish between MCI and AD, while it provided novel evidence of the importance of 

miR-135a, miR-200a, and miR-42a in AD progression. Moreover, plasma EVs miR-233 in 
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AD patients are shown to be correlated with cognitive scores of the patients (Mini-Mental 

State Examination and Clinical Dementia Rate scores) (Wei et al., 2018). Lastly, the most 

common biofluid used in AD diagnosis is CSF, from which exosomes have also been 

isolated and studied. Based on CSF exosome analysis, Riancho et al. identified exosomal 

miR-9-5p and miR-598 as potential AD diagnostic markers (Riancho et al., 2017), while 

another study by McKeever et al. provided evidence of miRNAs biomarkers in early- and 

late-onset AD patients (McKeever et al., 2018). A summary of the studies that identified 

exosomal miRNAs in AD patients is provided in Table 1.

9. EVs proteins as potential biomarkers for AD

Similar to exosomal miRNA content, the protein load of brain-derived exosomes constitutes 

a promising pool of molecules with great biomarker potential for AD (see Table 2 and 

Fig. 4). These EVs proteins include Aβ and Tau, synaptic proteins, lysosomal function, 

inflammation, transcription, and other processes (Kim et al., 2021). Besides their diagnostic 

value in the clinical phase, it is of extreme importance to uncover biomarkers for the early 

detection of AD. Thus, several groups have undertaken longitudinal studies that unraveled 

some potential markers for early detection of AD, namely lysosomal proteins (Goetzl et 

al., 2015), synaptic proteins (Jia et al., 2021), and others, including Aβ42, phosphorylated 

Tau, total Tau, that have prognostic value with a lead time of 10 years (Fiandaca et 

al., 2015; Kapogiannis et al., 2015; Eren et al., 2020; Kapogiannis et al., 2019). In line 

with the idea for better AD biomarkers for disease progression and treatment-response, 

synaptic proteins in exosomes are shown to decline as the disease progresses (Goetzl et al., 

2018a; Chanteloup et al., 2019). Moreover, complement protein levels in astrocyte-derived 

exosomes may predict conversion from MCI to AD (Winston et al., 2019). Interestingly, Tau 

protein in neuron-derived EVs accompanies the changes in the scores of cognitive function 

and depression in AD patients (Mini-Mental State Examination and Geriatric Depression 

Scale, respectively (Nam et al., 2020). Changes in the levels of the above exosomal proteins 

upon treatment are promising game-changers in clinical trials for new drugs for Alzheimer’s 

disease.

10. EVs as AD drug targets and therapy delivery systems

Since EVs seem to play a role in disease propagation and progression, they may also be 

good candidates for novel therapeutic interventions. Indeed, genetic ablation or chemical 

inhibition of neutral sphingomyelinase 2 (nSMase2), an enzyme involved in EVs biogenesis, 

was found to reduce Aβ and Tau deposits, slowing down disease progression (Dinkins et 

al., 2016; Asai et al., 2015). Moreover, repetitive treatment with nSMase2 inhibitor GW4869 

provided protection against behavioral and neuropathological deficits following immune 

system activation in AD preclinical studies (Sobue et al., 2018). In addition, knocking 

down ESCRT proteins involved in MVB biogenesis, TSG101, and VPS4A were found 

to reduce both the spread of Aβ oligomers and the downstream cellular toxicity (Sardar 

Sinha et al., 2018). Another study showed that inhibition of P2RX7 in microglial cells 

hindered exosome release and offered protection against Tau pathology (Ruan et al., 2020). 

Recently, dual nSMase2/Acetylcholinesterase Inhibitors were developed with promising 

results for the treatment of AD (Bilousova et al., 2020). For targeting disease-promoting 
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EVs, potential points for intervention could include: 1) exosome biogenesis, 2) their release 

from parent cells, and 3) exosome uptake by recipient cells. In the cancer field, which has 

generated critical discoveries in the EVs field, several attempts have already been made or 

are ongoing in order to target the above steps involved in exosome biogenesis and spreading 

(Moloudizargari et al., 2021).

Moreover, EVs have also garnered interest as drug delivery agents for personalized medicine 

since their discovery. For instance, intracerebrally administered EVs can act as potent Aβ 
scavengers by trapping Aβ and promoting its degradation by microglia, representing a 

novel therapeutic intervention for AD (Yuyama et al., 2014). Moreover, their ability to 

carry bioactive molecules, to circulate in body fluids, and cross physiological barriers (e.g., 

BBB), as well as their low immunogenicity, make them appropriate tools to deliver chemical 

or biological compounds. So far, EVs have been engineered to carry chemotherapeutic 

agents, siRNAs, miRNAs, Cas9 protein, and other compounds. These processes involve 

medium conditioning with drugs of interest or techniques like electroporation, saponin 

permeabilization, hypotonic dialysis, and passive incubation (Rufino-Ramos et al., 2017; 

Sutaria et al., 2017). For instance, delivery of EVs derived from curcumin-treated cells 

can ameliorate AD neuropathology and memory impairment in an AD mouse model 

by inhibiting Tau hyperphosphorylation and neuronal death (Wang et al., 2019). Given 

the critical role of neuroinflammation in AD, the EV-based delivery of compounds that 

modulate brain inflammation but could not necessarily cross the BBB (such as curcumin) 

was a major breakthrough in the research field of AD (Zhuang et al., 2011). In addition, 

current efforts focus on the delivery of RNA species inside small EVs (Iranifar et al., 

2019). For instance, a recent study showed that microglia-derived exosomes that function 

as a vehicle to deliver Tetraspanin 2 siRNA across the BBB are able to modulate the 

neuroinflammatory response (Reynolds and Mahajan, 2020). Moreover, the use of EVs as 

drug delivery tool is also focusing on their delivery to specific cell types. For instance, the 

exosomal delivery of BACE-1 siRNA to neurons, microglia, and oligodendrocytes leads to a 

55% reduction of Aβ levels in the mouse brain (Alvarez-Erviti et al., 2011).

Another aspect of the therapeutical potential of EVs relies on the use of EVs from 

mesenchymal and adipocyte stem cells which have also exhibited beneficial effects for the 

treatment of AD (Hao et al., 2014; Perets et al., 2019; Liew et al., 2017). Mesenchymal stem 

cells (MSC) possess immunomodulatory and tissue regenerative properties and, therefore, 

have been suggested as therapeutic tools (Pittenger et al., 2019). MSC-derived exosomes 

have been shown to decrease Aβ levels but also inhibit the Aβ-driven downregulation of 

synaptic plasticity-related genes (Chen et al., 2021) or microglial activation (Kaniowska et 

al., 2022). Other studies have also shown that MSC-derived EVs have beneficial effects in in 
vitro AD models by protecting neurons from oxidative stress and synaptic damage induced 

by Aβ oligomers (Bodart-Santos et al., 2019; de Godoy et al., 2018). EVs from adipose stem 

cells (ADSCs-derived EVs) have also been shown to alleviate neuronal damage and promote 

neurogenesis in an AD mouse model (Ma et al., 2020). Moreover, ADSC-derived EVs were 

shown to carry enzymatically active Neprilysin (NEP), an Aβ-degrading enzyme that was 

proven to decrease levels of Aβ in the brain of an AD model, reducing cell apoptosis (Lee 

et al., 2018a; Katsuda et al., 2013). Lastly, EVs derived from stem cells of other origins, 

e.g., human umbilical cord MSCs (hUMSCs) and bone marrow mesenchymal stem cells 
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(BM-MSC), were recently shown to exhibit beneficial effects against Aβ (Yang et al., 2020; 

Jeong et al., 2021).

Despite the above important advances in the field, EV-based therapies still have a long 

way to go, as many therapeutic approaches fail in clinical trials. For instance, while 

autologous injection of EVs leads to very low immunogenicity, EVs produced by cell 

lines or genetically distinct individuals may induce immune responses. As mentioned in 

the section “Technical difficulties related to the isolation and study of brain EVs,” our 

characterization methods have profiled a heterogeneous population of small EVs of similar 

size, including microvesicles and exosomes, and thus it remains to be identified specific 

(surface or cargo) content that can help us discriminate these two EV subpopulations which 

could, in turn, improve our engineering strategies for the production and therapeutic delivery 

of EVs. Another significant hurdle is the scalability of EVs production for treatment in large 

cohorts of AD patients, as we lack an efficient isolation method to obtain large quantities of 

pure EVs (e.g., from cell cultures or biofluid free of molecular and cellular contaminants). 

Moreover, there is an ongoing debate, in the clinical context, related to the optimal dosage 

(whether the EV number or content in EVs) and the route of EVs administration, as well 

as the timeframe for EVs treatment which is critical to define the most efficient therapeutic 

scheme (Lv et al., 2017). In addition, the long-term biological safety of EVs still needs 

to be assessed in order to investigate their potential adverse effects and efficacy of the 

administration in AD patients.

11. Conclusion

EVs represent an important vehicle for intercellular messaging in the brain. while emerging 

evidence suggest that EVs regulate multiple physiological processes that are impaired in the 

AD brain. Cell-type-specific EVs have differential effects on the progression of the disease, 

with some ameliorating and others worsening it. the development of novel EV-related tools 

and animal models will advance our EV studies in vivo, improving our understanding of 

how EVs contribute to both physiological and pathological mechanisms of the brain. Thus, 

a better understanding of EVs biogenesis and spreading, as well as cargo sorting, will help 

our research efforts to regulate and engineer EVs against AD neurodegeneration, as well as 

facilitate the discovery of specific and accurate biomarkers for early detection of AD and 

dementia-precipitating processes, representing a valuable tool in the new era of Precision 

Medicine.
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Fig. 1. 
Extracellular vesicle life cycle. Extracellular vesicles (EVs) are membranous nano-sized 

particles released from the cell and are classically classified into exosomes, microvesicles, 

and apoptotic bodies. On the donor cell, exosomes derive from the endolysosomal pathway. 

Following endocytosis, early endosomes are generated and mature into late endosomes that 

will suffer further internal invagination to form intraluminal vesicles (ILVs). The MVBs 

fuse with the plasma membrane to release ILVs into the extracellular space as exosomes. 

Microvesicles are released through membrane budding, while apoptotic bodies are released 

by dying cells through the blebbing of the plasma membrane. Exomeres are a novel entity 

whose biogenesis is still being uncovered. Upon EVs release (the majority of studies have 

focused on small EVs – a mixture of exosomes and microvesicles), they are internalized by 

the recipient cell through several pathways such as receptor-mediated endocytosis (Dubois 
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et al., 2016), macropinocytosis (Golde, 2022), phagocytosis (Berkowitz et al., 2018) and 

membrane fusion (Chen et al., 2016). Following their uptake by the recipient cell, EV cargo 

may undergo clearance or induce a cellular response.
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Fig. 2. 
EVs interplay with different cellular mechanisms found to be disrupted in AD. 1) 

Protein degradation - The dysregulation of protein homeostasis due to impaired lysosome 

degradation may increase MVBs number in cells which may lead to an increase of EVs 

secretion, which in turn contributes to the enhanced Aβ deposition; 2) Neuroinflammation 
- Inflammatory activation associated with cytokines release leads to EVs secretion from 

astrocytes (astro-EVs) which, in this turn, will activate microglia contributing further to 

the pro-inflammatory state and ultimately to neurodegeneration. 3) Neurovascular unit 
homeostasis - blood-brain barrier dysfunction and increased permeability is found in AD, 

probably due to damage of the neurovascular unit. While the role of EVs in neurovascular 

dyshomeostasis in AD is under intense investigation, recent evidence suggests that neuron-

derived EVs (neuro-EVs) carrying specific miRNAs (e.g., miR-132) are able to regulate 

endothelial integrity. 4) Synaptic plasticity and homeostasis – EVs are important cell-to-cell 

messengers, and emerging evidence suggests that EVs secreted by neurons, astrocytes, 
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and microglia have been shown to regulate different levels of synaptic homeostasis, 

including synaptic pruning and maintenance, neurotransmitter release and reuptake, proteins 

of postsynaptic density; all important components of learning and memory that are 

damaged in AD. 5) Neuroprotection - Glial cells contribute to neuronal homeostasis and 

may tip the balance towards neuronal malfunction under pathological conditions. For 

instance, astrocyte-derived EVs (astro-EVs) transfer synapsin and neuroglobin to neurons, 

contributing to neurite growth. Moreover, microglia-derived EVs (micro-EVs) and astro-EVs 

are also shown to stimulate oligodendrocyte precursor cells, promoting (re)myelination. In 

their turn, oligodendrocytes-derived EVs (Oligo-EVs) and micro-EVs may support neuronal 

metabolic activity and axonal transport, providing different ways through which EVs are 

involved in neuroprotection and neurodegeneration.
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Fig. 3. 
Role of extracellular vesicles in the spreading of Аβ and Tau pathology. Due to their 

endocytic nature, extracellular vesicles (EVs) reflect the genomic and proteomic status of 

the parental cell. For this reason, neuron-derived EVs (neuro-EVs) and glia-derived EVs 

(glia-EVs) may contain pathological forms of Tau and Aβ, which are capable of triggering 

AD pathology in the recipient cells. Besides proteins, EVs carry miRNAs and mRNAs 

that will also induce a cellular response into the recipient cell. The spreading of EVs can 

be released from the diseased neuron (donor cell) and be uptaken by the healthy neuron 

(recipient cell). Alternatively, glia cells can also uptake neuro-EVs and, in their turn, can 

secrete exosomes (glia-EVs) which will be uptaken by neurons. In addition, as EVs can 

cross the blood-brain barrier, both neuro- and glia-EVs are found in the peripheral blood, 

where they can be differentially isolated using immunoprecipitation for specific cell-specific 

transmembrane markers, e.g., L1CAM for neuro-EVs.
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Fig. 4. 
EVs proteins in AD diagnostics. Retrospective and cross-sectional studies of human cohorts 

have revealed the potential of EV contents as diagnostic and prognostic tools. While the 

AD biomarker potential of miRNA in EVs has recently started to be investigated, EV 

protein content has been assessed under multiple clinical conditions and tasks, including 

their diagnostic and prognostic potential. Based on previous clinical studies (see also 

Table 2), one group of EVs proteins was detected to be increased as dementia progresses 

(e.g., total Tau, specific Tau phospho-epitopes, Aβ, ubiquitinylated proteins) while another 

group of EVs proteins, mostly synapse-related proteins, are found to be decreased in AD. 

Further longitudinal studies of large and polycentric cohorts of healthy and AD patients are 

necessary in order to clarify the protein and miRNA cargo of EVs along the progress of AD 

and identify specific target or groups of targets of protein and/or miRNA EVs cargo with 

high biomarker value for AD.
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Table 1

Exosomal miRNAs as biomarkers for AD.

Study Source Down-regulated 
miRNAs

Up-regulated 
miRNAs

Known target genes 
(relevant to AD 
pathogenesis)

Riancho et al., 2017 CSF miR-9-5p

CSF miR-16-2

McKeever et al., 2018 CSF miR-16-5p ADAM10; APH1A; APP; 
MME; CDK5R1

Gui et al., 2015 CSF miR-29c BACE1; GAPDH; LPL; 
CASP7; GSK3β

McKeever et al., 2018 CSF miR-125-5p APP

Gui et al., 2015 CSF miR-132-5p

McKeever et al., 2018 CSF miR-125b-5p

Gui et al., 2015 CSF miR-136-3p

Liu et al., 2014 CSF miR-193b

Gui et al., 2015 CSF miR-331-5p

McKeever et al., 2018 CSF miR-451a

Gui et al., 2015 CSF miR-485-5p

Riancho et al., 2017 CSF miR-598

McKeever et al., 2018 CSF miR-605-5p

Nie et al., 2020 Plasma let-7e-5p

Gámez-Valero et al., 2019 Plasma let-7i-5p APH1A; IDE; LRP1; 
CASP3

Nie et al., 2020Serpente et al., 2020Gámez-Valero et al., 
2019

Plasma miR-23a-3p miR-23a-3p ADAM10; PSEN1; 
NCSTN; APH1A; CASP3; 
CASP7

Lugli et al., 2015 Plasma miR-23b-3p ADAM10; APH1A; 
GAPDH; NCSTN; PSEN1; 
ASP3; CASP7

Lugli et al., 2015 Plasma miR-24-3p APH1A; NCSTN; CAPN1; 
GSK3β

Lugli et al., 2015 Plasma miR-29b-3p BACE1; GAPDH; LPL; 
CASP7; GSK3β

Serpente et al., 2020 Plasma miR-100-3p

Nie et al., 2020 Plasma miR-125a-5p

Lugli et al., 2015 Plasma miR-125b-5p APP

Gámez-Valero et al., 2019 Plasma miR-126-3p CAPN1

Cha et al., 2019 Plasma miR-132 APH1A; CAPN2; CASP7; 
GSK3β

Lugli et al., 2015 Plasma miR-138-5p

Lugli et al., 2015 Plasma miR-139-5p

Lugli et al., 2015 Plasma miR-141-3p APH1B; GAPDH; PSEN1

Lugli et al., 2015 Plasma miR-150-5p

Gámez-Valero et al., 2019 Plasma miR-151a-3p GAPDH; APH1A

Lugli et al., 2015 Plasma miR-152-3p

Lugli et al., 2015 Plasma miR-185-5p BACE2; GAPDH; LPL; 
MME; GSK3β
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Study Source Down-regulated 
miRNAs

Up-regulated 
miRNAs

Known target genes 
(relevant to AD 
pathogenesis)

Serpente et al., 2020 Plasma miR-190a-5p

Nie et al., 2020 Plasma miR-204-5p

Cha et al., 2019 Plasma miR-212 CAPN2; GSK3β

Serpente et al., 2020 Plasma miR-223-3p

Lugli et al., 2015 Plasma miR-338-3p

Lugli et al., 2015 Plasma miR-342-3p APH1B; MME; LPL; 
GSK3β

Lugli et al., 2015 Plasma miR-342-5p GAPDH; LRP1

Nie et al., 2020 Plasma miR-369-5p

Nie et al., 2020 Plasma miR-375

Nie et al., 2020 Plasma miR-423-5p

Lugli et al., 2015 Plasma miR-659-5p

Nie et al., 2020 Plasma miR-1468-5p

Lugli et al., 2015 Plasma miR-3065-5p

Lugli et al., 2015 Plasma miR-3613-3p

Lugli et al., 2015 Plasma miR-3916

Lugli et al., 2015 Plasma miR-4772-3p

Lugli et al., 2015 Plasma miR-5001-3p

Li et al., 2020Cheng et al., 2015 Serum miR-15a-5p ADAM10; APH1A; APP; 
BACE1; MME; CDK5R1

Li et al., 2020Cheng et al., 2015 Serum miR-15b-3p

Li et al., 2020Cheng et al., 2015 Serum miR-18b-5p APH1B; GAPDH

Cheng et al., 2020Li et al., 2020Cheng et al., 2015 Serum miR-20a-5p APP

Barbagallo et al., 2020 Serum miR-29a APH1A; GAPDH; BACE1; 
BACE2; LPL; GSK3β; 
CASP7

Li et al., 2020Cheng et al., 2015 Serum miR-30e-5p APP; NAE1; CASP3

Cheng et al., 2020 Serum miR-32-5p

Barbagallo et al., 2020 Serum miR-34b

Li et al., 2020Cheng et al., 2015 Serum miR-93-5p APP; GAPDH; LRP1; 
GSK3β

Li et al., 2020Cheng et al., 2015 Serum miR-101-3p ADAM10; APP; PSEN1; 
CAPN2; CASP3; GSK3β

Li et al., 2020Cheng et al., 2015 Serum miR-106a-5p APP; ADAM17; CAPN2

Li et al., 2020Cheng et al., 2015 Serum miR-106b-5p APP; CASP7

Yang et al., 2018c Serum miR-135a

Li et al., 2020Cheng et al., 2015 Serum miR-143-3p ADAM10; LRP1

Yang et al., 2018c Serum miR-193b

Cheng et al., 2020 Serum miR-219a

Wei et al., 2018 Serum miR-223

Li et al., 2020Cheng et al., 2015 Serum miR-335-5p APBB1; LRP1; CASP7

Li et al., 2020Cheng et al., 2015 Serum miR-342-3p APH1B; MME; LPL; 
GSK3β

Li et al., 2020 (Cheng et al., 2015) Serum miR-361-5p ADAM10; APH1B; LRP1
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Study Source Down-regulated 
miRNAs

Up-regulated 
miRNAs

Known target genes 
(relevant to AD 
pathogenesis)

Cheng et al., 2020 Serum miR-374a-5p

Yang et al., 2018c Serum miR-384

Li et al., 2020Cheng et al., 2015 Serum miR-424-5p APBB1; APH1A; APP; 
LRP1; CDK5R1; GSK3β

Li et al., 2020Cheng et al., 2015 Serum miR-582-5p IDE

Cheng et al., 2020 Serum miR-585-5p

Cheng et al., 2020 Serum miR-941

Li et al., 2020Cheng et al., 2015 Serum miR-1306-5p

Cheng et al., 2020Li et al., 2020Cheng et al., 2015 Serum miR-3065-5p

Cheng et al., 2020 Serum miR-3157-5p
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Table 2

Exosomal protein as biomarkers in AD.

Study Exosomal proteins Change Specimen Patients

Gu et al., 2020) (Jia et al., 2019Abner et al., 2016 
Goetzl et al., 2016a Winston et al., 2016Fiandaca et 
al., 2015

Aβ42 Increased Plasma AD

Gu et al., 2020) (Jia et al., 2019Kapogiannis et al., 
2019 Goetzl et al., 2016a Abner et al., 2016Winston 
et al., 2016Fiandaca et al., 2015

p-T181-Tau Increased Plasma AD

Jia et al., 2019Fiandaca et al., 2015 t-Tau Increased Plasma AD

Goetzl et al., 2016a Winston et al., 2016Fiandaca et 
al., 2015

p-S396-Tau Increased Plasma AD

Abner et al., 2016Goetzl et al., 2015 cathepsin D Increased Plasma AD & MCI

Goetzl et al., 2016a BACE-1 Increased Plasma AD & MCI

Goetzl et al., 2016a γ-secretase Increased Plasma AD, MCI & early 
dementia

Goetzl et al., 2016a sAPPβ Increased Plasma AD, MCI & early 
dementia

Goetzl et al., 2016a sAPPα Increased Plasma AD, MCI & early 
dementia

Goetzl et al., 2015 Heat-Shock Protein 70 (HSP70) Decreased Plasma AD

Jia et al., 2021Abner et al., 2016Winston et al., 
2016

Neurogranin (NRGN) Decreased Plasma AD

Jia et al., 2021Agliardi et al., 2019 Synaptosome Associated Protein 
25 (SNAP25)

Decreased Blood AD, amnestic MCI

Jia et al., 2021 Goetzl et al., 2016b Growth Associated Protein 43 
(GAP43)

Decreased Blood AD, amnestic MCI

Jia et al., 2021 Goetzl et al., 2016b Synaptotagmin-1 Decreased Blood AD, amnestic MCI

Goetzl et al., 2016b Synaptophysin Decresead Plasma AD

Goetzl et al., 2016b Synaptopodin Decreased Plasma AD

Goetzl et al., 2016b pS9-synapsin Decreased Plasma AD

Goetzl et al., 2016b Synapsin Decreased Plasma AD

Kapogiannis et al., 2015 Total insulin receptor substrate 1 
(t-IRS-1)

Decreased Plasma Preclinical AD

Kapogiannis et al., 2019Kapogiannis et al., 2015 Phosphorylated-serine 312-type 
1 insulin receptor substrate (p-
S312-IRS-1)

Increased Plasma Preclinincal AD

Kapogiannis et al., 2019Kapogiannis et al., 2015 ratio of P-serine 312-IRS-1 to 
P-pan-tyrosine-IRS-1 (p-S312-
IRS-1/p-Y-IRS-1)

Increased Plasma Preclinincal AD

Goetzl et al., 2015 LAMP-1 Increased Plasma AD

Goetzl et al., 2018b Complement proteins Increased Plasma AD

Abner et al., 2016Winston et al., 2016 REST Increased
Decreased

Plasma AD

Goetzl et al., 2016b MOG Decreased Plasma AD

Goetzl et al., 2016a GDNF Decreased Plasma AD, MCI & early 
dementia

Goetzl et al., 2016a GFAP Decreased Plasma AD, MCI & early 
dementia

Goetzl et al., 2016a GluSyn Decreased Plasma AD, MCI & early 
dementia
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Goetzl et al., 2016a Neuron-specific enolase Decreased Plasma AD, MCI & early 
dementia

Goetzl et al., 2016a Septin-8 Decreased Plasma AD, MCI & early 
dementia

Gu et al., 2020 Metalloproteinase 9 (MMP-9) Increased Plasma AD
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