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Abstract 

Background:  Colorectal cancer (CRC) is one of the most common cancers in the 
world. Oxidative stress reactions have been reportedly associated with oncogenesis 
and tumor progression. By analyzing mRNA expression data and clinical information 
from The Cancer Genome Atlas (TCGA), we aimed to construct an oxidative stress-
related long noncoding RNA (lncRNA) risk model and identify oxidative stress-related 
biomarkers to improve the prognosis and treatment of CRC.

Results:  Differentially expressed oxidative stress-related genes (DEOSGs) and oxida‑
tive stress-related lncRNAs were identified by using bioinformatics tools. An oxidative 
stress-related lncRNA risk model was constructed based on 9 lncRNAs (AC034213.1, 
AC008124.1, LINC01836, USP30-AS1, AP003555.1, AC083906.3, AC008494.3, AC009549.1, 
and AP006621.3) by least absolute shrinkage and selection operator (LASSO) analysis. 
The patients were then divided into high- and low-risk groups based on the median 
risk score. The high-risk group had a significantly worse overall survival (OS) (p < 0.001). 
Receiver operating characteristic (ROC) and calibration curves displayed the favorable 
predictive performance of the risk model. The nomogram successfully quantified the 
contribution of each metric to survival, and the concordance index and calibration 
plots demonstrated its excellent predictive capacity. Notably, different risk subgroups 
showed significant differences in terms of their metabolic activity, mutation land‑
scape, immune microenvironment and drug sensitivity. Specifically, differences in the 
immune microenvironment implied that CRC patients in certain subgroups might be 
more responsive to immune checkpoint inhibitors.

Conclusions:  Oxidative stress-related lncRNAs can predict the prognosis of CRC 
patients, which provides new insight for future immunotherapies based on potential 
oxidative stress targets.
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Background
Colorectal cancer (CRC) is the third most common malignancy worldwide account-
ing for 9% of all cancer cases, and the fourth most common cause of cancer-related 
deaths [1]. The combination of folinic acid, 5-fluorouracil, oxaliplatin and/or irinote-
can are the efficacious chemotherapy drugs for  CRC. In addition, the use of mono-
clonal antibodies against vascular endothelial growth factor and epidermal growth 
receptor increased the efficiency of chemotherapy regimens and the survival time of 
CRC patients, but most patients develop resistance to drugs over a longer course of 
treatment [2]. Immunotherapy is another promising treatment for CRC, and a grow-
ing number of immunotherapy drugs are currently being developed, which can poten-
tially increase treatment effectiveness and reduce side effects [3].

Many risk factors, including environmental factors, smoking, alcohol consumption, 
diet and obesity, are related to the onset and progression of CRC [4]. The cross talk 
between these known risk factors can lead to oxidative stress and the overproduction 
of reactive oxygen species (ROS) in cells, which can gradually result in gene muta-
tions and promote tumor initiation [5–7]. It can also promote tumor growth by acti-
vating the receptor tyrosine kinase (RTK), phosphatidylinositol 3‐kinase (PI3K)/Akt, 
and nuclear factor κB (NF‐κB) pathways. In the later stages of carcinogenesis, exces-
sive ROS may counterintuitively lead to apoptosis [6, 8, 9]. Moreover, ROS continually 
stimulate the proliferation and survival of tumor cells by activating various transcrip-
tion factors [10]. Another type of mutation associated with oxidative stress in CRC is 
DNA microsatellite instability (MSI), which is related to incorrect DNA repair during 
genome replication [9, 11].

In recent years, it has been increasingly recognized that ROS play a multifaceted 
role in shaping the tumor microenvironment (TME). Many preclinical studies have 
shown that immune checkpoint therapy (ICT) and chimeric antigen receptor (CAR)-
T-cell therapy can both induce oxidative stress in the TME as well as tumor cells; 
meanwhile, these two therapies are vulnerable to suppression imposed by ROS 
derived from the surrounding immunosuppressive cells such as regulatory T cells 
(Tregs) and myeloid-derived suppressor cells (MDSCs). Therefore, therapeutic strate-
gies should be developed to amplify T-cell-induced oxidative stress in cancer cells but 
inhibit elevated oxidative stress imposed on effector T cells by the TME [12].

Long noncoding RNAs (lncRNAs) are a class of RNA transcripts with a length 
greater than 200 nucleotides that have diverse biological functions in cells [13, 14]. It 
has been revealed that lncRNAs play an important role in tumor growth, metastasis 
and oxidative stress [15, 16]. For example, the lncRNAs GABPB1-AS1 and GABPB1 
can regulate oxidative stress during erastin-induced ferroptosis in the hepatocellu-
lar carcinoma cell line HepG2, and high expression levels of GABPB1 are positively 
correlated with poor prognosis in HCC patients, while high levels of GABPB1-AS1 
are correlated with improved overall survival (OS) [17]. The XIST lncRNA promotes 
oxidative stress-induced migration, invasion, and epithelial-to-mesenchymal transi-
tion of osteosarcoma cancer cells through the miR-153-SNAI1 axis [18]. However, 
the treatment potential of oxidative stress-related lncRNAs has not been explored in 
CRC. Investigation of oxidative stress-related lncRNAs can help us better understand 



Page 3 of 22Chen and Wei ﻿BMC Bioinformatics           (2023) 24:76 	

the roles of oxidative stress in CRC development and provide potential markers for 
prognosis prediction and targets for CRC treatment.

Currently, the most commonly used prognostic prediction system of CRC in clini-
cal practice is the TNM staging system published by the American Joint Committee on 
Cancer (AJCC). Previous TNM staging systems have shown excellent performance in 
formulating a reasonable treatment plan according to the stage, evaluating the efficacy 
objectively, and judging the prognosis correctly. The traditional view is that the higher 
the stage is, the worse the prognosis; however, studies have found that stage IIIA patients 
tend to have a better prognosis than some stage II patients [19]. This suggests that tra-
ditional TNM staging has limitations in accurate prognosis prediction, and this system 
still suffers from the following drawbacks:

	 I.	 The system incorporates only three indicators and uses a simple linear approach to 
classify patients, ignoring the objectivity of patient prognosis as a complex nonlin-
ear phenomenon.

	II.	 The system can no longer accurately predict the clinical prognosis of CRC patients 
due to its inaccurate weighting and complex time-dependent effects.

	III.	 The system does not integrate newly discovered prognostic predictors for improve-
ment, such as clinical information, pathological information, molecular markers 
and immune status markers of patients.

In this study, we obtained the transcriptome data and clinical information of CRC 
patients from The Cancer Genome Atlas (TCGA) database. We further screened the dif-
ferentially expressed oxidative stress-related genes based on the oxidative stress gene set 
and then constructed a risk model based on these oxidative stress-related lncRNAs. We 
verified the effectiveness and accuracy of our model using multiple methods. In sum-
mary, this study identified multiple oxidative stress-related genes that are related to the 
prognosis of patients with CRC and established a risk model based on these lncRNAs 
that can predict prognosis effectively and accurately, providing novel insights into CRC 
prognosis prediction and treatment. The proposed model has several novelties com-
pared to the previous TNM system as follows:

	 I.	 The prognostic model based on oxidative stress shows high diagnostic accuracy, is 
valuable for clinical translation and was validated using an independent cohort.

	II.	 The model combines TMB, immune status markers and traditional pathological 
prognostic indicators to more accurately predict the prognosis of CRC patients.

	III.	 The model can guide clinicians to select the appropriate drug therapy by compar-
ing the sensitivity of patients to common anticancer drugs in high-risk and low-
risk populations.

Results
DEOSG identification and functional enrichment analyses

A gene list containing 789 oxidative stress-related genes was curated. Differentially 
expressed genes between 568 CRC samples and 44 adjacent normal tissues were 
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identified. As a result, 226 oxidative stress-related genes, comprising 118 down-
regulated and 108 upregulated genes, were identified as DEOSGs (P < 0.05 and 
|log2FC|> 1.0). The expression of the DEOSGs in the two subgroups is displayed 
in Fig.  1. To investigate the potential functional and underlying molecular mecha-
nisms of these DEOSGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were performed. KEGG analysis showed that the DEOSGs 
were enriched in the synapse pathway, energy metabolic pathway, drug metabolism 
pathway, and steroid hormone biosynthesis pathway, all of which are associated 
with CRC development. The top 10 enriched GO terms included response to oxida-
tive stress, aging, secretory granule lumen, and oxidoreductase activity, acting on 
peroxide as acceptor (Figs. 2 and 3). All these enrichment analyses indicate that the 
DEOSGs are involved in metabolism and CRC progression.

Construction and verification of a prognostic model in patients with CRC​

According to univariate Cox regression analysis, we identified prognostic oxidative 
stress-related lncRNAs significantly correlated with OS (all P < 0.05). To avoid over-
fitting the prognostic model, we performed LASSO regression analysis on these 
lncRNAs. Finally, 9 lncRNAs (AC034213.1, AC008124.1, LINC01836, USP30-AS1, 
AP003555.1, AC083906.3, AC008494.3, AC009549.1, and AP006621.3) were identified 
that were related to oxidative stress in CRC when the first-rank value of Log(λ) was 
the minimum likelihood of deviance (Fig.  4A, B). We calculated the risk score with 
the following formula:

Fig. 1  Volcano plot of DEOSGs between CRC and normal samples. Dots in green represent significantly 
downregulated genes, dots in red represent significantly upregulated genes, and dots in gray represent 
genes whose expression levels were not changed significantly
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Based on the model, all patients with CRC were separated into low- and high-risk 
groups according to the median risk score. As shown in Fig.  4C, the OS of patients 
with CRC significantly decreased as the risk score increased. The number of deaths of 
CRC patients in the high-risk group was significantly higher than that of patients in the 
low-risk group (Fig.  4D, E). The heatmap shows the differential expression of 9 lncR-
NAs between the high- and low-risk groups (Fig. 4F). In addition, time-dependent ROC 
analysis indicated that the prediction model was quite credible, with the area under the 
ROC curve (AUC) reaching 0.703 at 5 years, indicating that this prognostic model had 
moderate specificity and sensitivity (Fig. 4G). This finding suggests that our risk model 
could predict OS not only for the total population but also for CRC patients.

To better understand the potential effect of lncRNAs on mRNAs in CRC, we built 
a lncRNA‒mRNA network and used Cytoscape and Sankey diagrams to visualize the 

Risk score = AC034213.1 × (0.7704) + AC008124.1 × (1.1086)

+ LINC01836× (0.7098) + USP30− AS1× (−0.9771)

+ AP003555.1 × (1.4298) + AC083906.3× (1.1536)

+ AC008494.3× (−3.6350) + AC009549.1× (1.5010)

+ AP006621.3 × (0.4908)

Fig. 2  KEGG enrichment analysis of DEOSGs [20–22]. A, B Top 30 classes of KEGG enrichment terms. Cluster 
diagram (C) and Circle diagram (D) showing terms enriched in KEGG analysis
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network. We constructed the lncRNA‒mRNA coexpression network using the nine 
screened oxidative stress-associated lncRNAs with Pearson correlation analysis (|R|> 0.4 
and P < 0.05). A total of 60 lncRNA‒mRNA pairs were filtered, and the correlations 
among lncRNAs, mRNAs, and the risk score groups were determined by the Sankey dia-
gram (Fig. 5A, B).

Univariate and multivariate Cox regression analyses were performed to determine 
whether the risk score was an independent prognostic factor. Unfortunately, in univari-
ate Cox regression analysis, although P < 0.05, the HR of the risk score was only 1.005; 
thus, it could not be said that the risk score was an independent prognostic factor yet. 
The risk score was no longer an independent prognostic factor in multivariate Cox 
regression analysis (P = 0.807) (Fig.  6A, B). The ROC curve at 1  year showed that the 
prognostic model had better predictive accuracy than other clinical features. The ROC 
curve at 5 years showed that the prognostic model had better predictive performance 
than other factors, including age, sex, T stage, N stage, and M stage (Fig. 6C, D). In addi-
tion, the conventional clinicopathologic characteristic stage showed the same results 
(Fig. 6E, F). Additionally, the C-index curve showed that the C-index of the risk score 
was greater than 0.7, indicating that the model had moderate accuracy (Fig.  6G). A 
nomogram plot is another quantitative model used to predict the clinical outcomes of 

Fig. 3  GO enrichment analysis of the DEOSGs. A, B Top 10 classes of GO enrichment terms in the biological 
process (BP), cellular component (CC), and molecular function (MF) categories. Cluster diagram (C) and circle 
diagram (D) showing terms enriched in GO analysis
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patients with CRC. A nomogram plot was developed based on the risk score and other 
clinical characteristics, allowing the calculation of the survival probabilities of individual 
patients with CRC at 1, 3, and 5  years (Fig.  6H). The calibration plots indicated good 
conformity between the predicted and observed outcomes at 3 and 5  years (Fig.  6I). 
We also employed principal component analyses (PCAs) to demonstrate the distribu-
tion patterns of the two subgroups in two-dimensional and three-dimensional graphs 
(Fig.  7A–E). T-distributed stochastic neighbor embedding (t-SNE) also indicated that 
two risk groups could be distinguished clearly (Fig. 7F, G). These results indicated that 
the prognostic model is effective for predicting CRC outcomes and clinical features.

Evaluation of the prognostic value of 9 oxidative stress‑related lncRNAs in an independent 

gene expression omnibus (GEO) validation cohort

To validate the prognostic value of the 9 oxidative stress-related lncRNAs, the GEO 
validation cohorts were divided into high- and low-expression groups. Due to the small 
number of CRC samples in the GEO dataset, 5 lncRNAs (AC034213.1, LINC01836, 
AP003555.1, AC083906.3, and AC009549.1) were not expressed in the GEO dataset, so 
we grouped the sample based on the median expression of the remaining 4 lncRNAs. 
Unfortunately, the survival rate of CRC patients was not statistically significant between 

Fig. 4  Construction of a prognostic model. A, B LASSO analysis for determining the number of factors and 
constructing the prognosis prediction model. C Survival curve. D, E Risk score distribution and survival status 
F heatmap showing the expression levels of the 9 lncRNAs in patients in the low- and high-risk groups. G 
TimeROC curves for forecasting OS
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Fig. 5  A The lncRNA–mRNA network between nine oxidative stress-associated lncRNAs and relevant 
mRNAs. Green circles indicate oxidative stress-associated lncRNAs. Red squares indicate mRNAs. The line 
represents a coexpression relationship between the lncRNA and the mRNA. B A Sankey diagram showed the 
co-occurrences of lncRNAs, mRNAs, and characteristics according to the risk score
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any of the high- and low-expression groups (P > 0.05) (Fig. 8). This is inconsistent with 
our previous results and may be related to the small sample size. Therefore, the exact 
role of these oxidative stress-related lncRNAs in CRC needs to be further investigated.

Tumor mutation burden (TMB) analysis

It has been established that somatic mutations are a characteristic of CRC. Indeed, we 
found that APC, TP53, TTN, and KRAS had high mutation rates in both the low- and 
high-risk groups (TMB rate > 40%) (Fig. 9A, B). The OS of patients with CRC was sig-
nificantly different among the high-TMB and high-risk, high-TMB and low-risk, low-
TMB and high-risk, and low-TMB and low-risk groups (P < 0.001) but not significantly 
different between the low- and high-TMB groups (Fig. 9C, D). Unexpectedly, there was 
no difference in TMB between the high- and low-risk groups (Fig. 9E). Additionally, a 
weak negative correlation was observed between the risk score and TMB (R =  −  0.013) 
(Fig. 9F).

CRCs with microsatellite instability (MSI) have a significantly higher TMB than CRCs 
microsatellite stability (MSS). We regrouped the CRC samples according to the MSI 
score. Samples with MSI scores greater than 10 were classified as the positive group, 
and those that did not have MSI scores greater than 10 were classified as the negative 

Fig. 6  Efficacy evaluation of the constructed prognostic model. Univariate (A) and multivariate (B) Cox 
regression analyses of the clinicopathological features. Clinical ROC curves at 1 year (C) and 5 years (D) for 
forecasting overall survival. The relationship between the risk score and stage I-II (E) and stage III-IV (F). G 
The constructed C-index curve. H The constructed nomogram of the risk score and other clinical factors for 
predicting the OS of patients with CRC at 1, 3, and 5 years. I The calibration plot of the nomogram
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Fig. 7  Evaluation of the efficacy of the constructed prognostic model. PCA of the risk groups in the testing 
(A) and training sets (B). PCA-3D of the risk groups based on all OS genes (C), DEOSGs (D), and 9 oxidative 
stress-related lncRNAs (E). The t-SNE of risk groups in the testing (F) and training sets (G)

Fig. 8  K-M survival curves for 4 target lncRNAs in CRC. The horizontal coordinate of the KM-plot is the 
survival time and the vertical coordinate is the survival rate. The starting point is the time of the start of 
follow-up, the falling curve represents patient death, and the " + "sign on the curve indicates censoring (last 
follow-up time for patients who are still alive)
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group. Consistent with the results of previous studies, the low-TMB group showed a 
tendency toward prolonged survival (P < 0.001) (Fig. 10A, C). However, the subsequent 
stratified survival analysis showed that the risk score could distinguish the survival of 
patients with CRC in both the MSI-positive and MSI-negative subgroups and that the 
trend of the survival advantage in the MSI-positive group was reversed by the risk score 
(Fig.  10B, D). Unfortunately, there was no difference in TMB between the high- and 
low-risk groups in both the MSI-positive and MSI-negative groups (P > 0.05) (Fig. 10E, 
F). Inconsistently, a weak positive correlation was observed between the risk score and 
TMB in both the MSI-positive (R = 0.10) and MSI-negative groups (R = 0.05) (Fig. 10G, 
H).

Gene set enrichment analysis (GSEA)

To investigate differences in biological functions between the two subgroups, we ana-
lyzed the KEGG enriched pathways using GSEA. The top ten enriched pathways in the 
high- and low-risk groups were related to tumor invasion, metabolism, and immunity 
(Fig.  11A, B). More specifically, adherens junction, basal cell carcinoma, and the Wnt 
signaling pathway were primarily enriched in the high-risk group, while galactose 
metabolism, oxidative phosphorylation, and the proteasome were considerably enriched 
in the low-risk group. Therefore, we identified different enriched pathways in different 
subgroups by the prognostic model.

Fig. 9  TMB analysis. The mutation rates in the high- (A) and low-risk groups (B). C–D Survival analysis of 
patients with different TMB levels. E Comparison of TMB for patients in the high- and low-risk groups. F 
Relevance analysis of TMB
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Immune characteristics of the high‑ and low‑risk subgroups

The TME, which is the surrounding microenvironment of tumor cells, comprises 
immune cells, surrounding blood vessels, fibroblasts, extracellular stroma, and vari-
ous signaling molecules. We first explored the relationship between the oxidative 
stress-related risk score and the TME. We found that the high-risk group presented 
higher immune cell infiltration than the low-risk group; however, our analysis showed 
that the low-risk group presented a higher ESTIMATE score and lower tumor purity 
than the high-risk group (Fig. 12A–C).

Heatmaps were constructed, as shown in Fig.  11C, D. The CIBERSORT algo-
rithm was applied to estimate the ratios of infiltrated immune cells in the TMEs of 
the high- and low-risk groups. The results revealed that the ratio of infiltrated CD8+ 

Fig. 10  TMB analysis in the MSI-positive and MSI-negative groups. Survival analysis of patients with different 
TMB levels and different risk scores in the MSI-positive (A, B) and MSI-negative groups (C, D). Comparison of 
TMB in patients with high- and low-risk scores in the MSI-positive (E) and MSI-negative groups (F). Relevance 
analysis of TMB in the MSI-positive (G) and MSI-negative groups (H)
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T cells was notably higher in the low-risk group, while the ratios of infiltrated M0 
macrophages and activated memory CD4+ T cells were markedly higher in the high-
risk group. Similarly, ssGSEA showed that the ratios of infiltrated CD8+ T cells, den-
dritic cells, NK cells, TH1 cells, and TH2 cells were notably higher in the low-risk 
group (all P < 0.05) (Fig. 11E, F); moreover, the ratio of infiltrated resting NK cells was 
closely related to the OS of patients with CRC, which was significantly worse with 
an increased infiltration of resting NK cells (Fig. 11G). We also found that lower risk 
scores were more likely to be associated with immune function, such as APC co-inhi-
bition, CCR (C–C chemokine receptor), check point, cytolytic activity, HLA, inflam-
mation promotion, MHC class I, parainflammation, T-cell co-inhibition and T-cell 
co-stimulation (Fig.  11H). We also identified 4 immune subtypes in CRC patients 
(C1-C4) based on their ssGSEA scores. The risk scores were significantly different 
between the C1 and C2 subtypes (P < 0.05) (Fig. 11I). In summary, our results suggest 
that CRC patients in the low-risk group tend to have a more favorable (i.e., immune-
activated) TME, while CRC patients in the high-risk group tend to have an immu-
nosuppressive TME that can contribute to the immune escape of tumor cells and is 
related to a worse prognosis. Consistent with previous reports [23, 24], patients in the 

Fig. 11  Investigation of immune cell infiltration and clinical treatment in different risk groups. GSEA of the 
top 10 pathways significantly enriched in the high-risk group (A) and low-risk group (B). C, D The immune cell 
heatmap of different risk groups. E The comparison of immune-related scores between the low- and high-risk 
groups. F The comparison of ratios of infiltrated immune cells between the low- and high-risk groups. G 
Survival curve of resting NK cells. H The comparison of immune functions between the low- and high-risk 
groups. I The comparison of immune subtypes between the low- and high-risk groups
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low-risk group also showed a better response to immunotherapy (Fig. 12D), indicat-
ing that our model could be used to select patients who are more likely to respond to 
ICT.

Chemotherapy drugs are the main treatment for patients with CRC. However, chem-
oresistance has been associated with a poor prognosis. Herein, we further predicted the 
chemotherapy response to common chemotherapy drugs in the two risk subgroups. The 
results showed that patients in the low-risk subgroup were more sensitive to AMPK 
inhibitors (AICAR) and tyrosine kinase inhibitors, while patients in the high-risk sub-
group were more sensitive to Lck inhibitors (e.g., A.770041), Raf inhibitors (e.g., AZ628), 
and ATRA (Fig. 12E–N).

Discussion
An increasing number of studies have confirmed that oxidative stress plays a crucial role 
in carcinogenesis and tumor treatment [25–27]. The construction of prognostic models 
based on public databases provides a more comprehensive clinical genetic prognostic 
value, and oxidative stress-based prognostic models are becoming a research hotspot for 
predicting the survival prognosis of different cancers [28–30]. However, the predictive 
value of oxidative stress-based prognostic models for the prognosis of CRC patients is 
still unknown and deserves further investigation. Using the transcriptome sequencing 
data, especially lncRNAs, and clinicopathological features of CRC obtained from TCGA, 
we identified and verified the 9-lncRNA prognostic signature related to OS in this study.

Fig. 12  Investigation of immune cell infiltration and clinical treatment in different risk groups. A–C The 
comparison of immune-related scores between the low- and high-risk groups. D The comparison of the 
response to immunotherapy between the low- and high-risk groups. E‒N The immunotherapy prediction of 
different risk groups
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In the present study, 226 DEOSGs were identified based on the public TCGA data-
base. Pathway enrichment analysis revealed that these DEOSGs were significantly cor-
related with the progression of several types of tumors, such as bladder, prostate, and 
hepatocellular carcinomas. Moreover, these DEOSGs were significantly enriched in sev-
eral biological processes, including response to xenobiotic stimulus, response to oxida-
tive stress, calcium ion homeostasis, and cellular divalent inorganic cation homeostasis, 
all of which have been reportedly correlated with tumorigenesis and progression [8, 
31, 32]. Furthermore, we identified 2169 oxidative stress-related lncRNAs by coexpres-
sion analysis. More importantly, a total of 9 prognostic oxidative stress-related lncR-
NAs, i.e., AC034213.1, AC008124.1, LINC01836, USP30-AS1, AP003555.1, AC083906.3, 
AC008494.3, AC009549.1, and AP006621.3, were screened by univariate Cox and 
LASSO regression analyses. High expression of these 9 lncRNAs is related to good prog-
nosis in patients with CRC. A previous study showed that Linc01836 may serve as a val-
uable noninvasive biomarker for the population screening, early detection, and clinical 
surveillance of CRC [33]. Other studies have found that AP0355.1 is closely associated 
with the poor prognosis of CRC and significantly correlated with OS, so it could be used 
as a promising biomarker for clinical outcome and therapeutic response predictions in 
colon cancer patients [34, 35]. In addition, the Sankey diagram showed that some of 
these lncRNAs were related to famous genes such as ATR and BRCA2. Some reports 
have shown that AC008124.1 is associated with ATR, and MMR promotes a DDR 
mediated by ATR, a key signaling kinase, in response to various types of DNA damage, 
including some encountered in widely used chemotherapy regimens [11]. In addition, 
some studies have shown that BRCA2 mutations are associated with CRC, but studies 
on how these mutations contribute to CRC development have shown conflicting results. 
For example, Gay-Bellile et al. [36] found that BRCA2 variants were implicated in famil-
ial CRC inheritance; however, one meta-analysis showed that there is an increased risk 
of CRC in BRCA1 but not BRCA2 mutation carriers [37–39]. Therefore, the conclusion 
from this study must be validated further in future large-scale studies.

The median risk score classified the patients into two groups, and K-M curve analysis 
showed that patients with high risk scores had a significantly worse prognosis; moreover, 
the stage factors were significantly related to the risk score. There was a tendency for 
a higher oxidative stress-related lncRNA-based risk score to be associated with a more 
advanced clinical stage. However, univariate and multivariate Cox analyses confirmed 
that the oxidative stress-related lncRNA-based risk score was not an independent pre-
dictor of OS. In addition, we built a nomogram to predict the OS at 1, 3 and 5 years as 
well as the risk of death. The performance of the nomogram was highly consistent with 
our prognostic model. Thus, our nomogram may provide simple but accurate prognostic 
predictions for CRC patients.

Using different analyses, we uncovered the underlying mechanisms of different risk 
groups identified by our prognostic model. GSEA indicated that the low-risk group con-
tained a higher fraction of some immune-related cells and functions. According to previous 
studies, the tumor immune microenvironment can influence the prognosis of CRC patients 
[40, 41]. To determine whether the different prognoses of patients were related to tumor 
cell-mediated immunity, the infiltration levels of multiple immune cells in CRC patients 
were evaluated by different methods, including CIBERSORT and ssGSEA. We found that 
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patients with high ratios of immune cell infiltration, including CD8+ T cells, dendritic cells, 
NK cells, TH1 cells, and TH2 cells, were mostly in the low-risk subgroup. It should also be 
noted that CD8+ T cells and NK cells favor antitumor activity in CRC and are associated 
with a better OS [42]. The TIDE module was used to estimate the immune function and 
rejection reaction of each patient. All of the above results indicate lower malignancy and 
potentially better immunotherapeutic effects in these patients [43, 44]. Thus, these results 
tentatively suggest that the poorer prognosis in the high-risk group may be due to dysreg-
ulation of antitumor immunity, and how oxidative stress affects the development of CRC 
through antitumor immunity still needs further study.

Moreover, the risk score was associated with TMB, suggesting that the poor prognosis 
of CRC patients in the high-risk group may be due to more mutated genes in this group. 
Increasing evidence suggests that patients with MSI-H are more sensitive to immunother-
apy and can benefit from immunotherapy drugs [45]. As current immunotherapy is still in 
its infancy for CRC, patients with poor prognoses may benefit from immunotherapy due to 
their high TMB score with more mutated genes [46]. In the present study, the proportion of 
MSI-H patients was higher in the low-risk score group, and thus, the level of immune cell 
infiltration was subsequently upregulated in dMMR-MSI-H patients. Therefore, dMMR-
MSI-H CRC patients may respond well to immune checkpoint blockade [47, 48]. CRC 
patients with MSI-H have both good and poor prognosis characteristics, and the specificity 
of MSI-H CRC determines the need for individualized treatment. The half maximal inhibi-
tory concentration (IC50) was used to investigate the differences in sensitivity to common 
chemotherapeutic agents between the high- and low-risk groups.

In the current study, we established an oxidative stress-based prognostic model for pre-
dicting prognosis in CRC and revealed the relationship between oxidative stress-related 
lncRNAs and immune status. Nonetheless, there were still several limitations in our study. 
First, our prognostic model was constructed and validated using a TCGA cohort and 
requires other realistic prospective data to assess its future clinical predictive value. Second, 
further molecular biology experiments are needed to explore the relationship between oxi-
dative stress and the prognostic features of CRC. Finally, the potential correlation between 
the risk score and antitumor immunity remains to be further investigated. Therefore, 
given the above limitations, the conclusions drawn from this study require more detailed 
validation.

Conclusion
In summary, with a series of bioinformatic analyses, 9 oxidative stress-related lncRNAs 
were identified, which were related to the prognosis of patients with CRC. A prognostic 
model with powerful predictive ability was constructed. The relationships and underlying 
mechanisms among oxidative stress, lncRNAs, anti-immunity function, and CRC are worth 
further exploration.

Methods
Data acquisition and identification of differentially expressed oxidative stress‑related 

genes (DEOSGs)

The RNA sequencing data of 568 CRC samples and 44 normal tissues, DNA mutation 
data of 582 CRC samples, and clinical information of 548 patients were downloaded 
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from the TCGA database (https://​portal.​gdc.​cancer.​gov/). The gene expression pro-
file matrixes of the CRC cohort from GSE192667  were downloaded from the GEO 
website (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) for validation. To identify DEOSGs, we 
first curated a gene list containing 789 oxidative stress-related genes with a relevance 
score ≥ 7 on the GeneCards website (https://​www.​genec​ards.​org) (Additional file 1), fol-
lowed by transcriptional analysis with the limma package. The oxidative stress-related 
genes with a false discovery rate (FDR) < 0.05 and |log2-fold change (FC)|≥ 1 were iden-
tified as DEOSGs [49]. As a result, 226 DEOSGs were included for further analyses using 
the Wilcox.test.

GO and KEGG pathway enrichment analyses

GO and KEGG pathway enrichment analyses were performed for the 226 DEOSGs, 
and the results were visualized using the clusterProfiler package (version 4.1.3) [50, 51]. 
Of note, GO analyses included biological process (BP), cellular component (CC), and 
molecular function (MF) analyses. A P value and adjusted P (q) value smaller than 0.05 
were considered statistically significant.

Selection of oxidative stress‑related lncRNAs

A total of 16,773 lncRNAs were identified in the raw transcriptome data using Straw-
berry Perl and the limma package [52, 53]. Correlation analysis was performed between 
the expression of 226 DEOSGs (Additional file 2) and 16,773 lncRNAs. LncRNAs with 
Pearson correlation coefficients > 0.4 and P < 0.001 were selected. As a result, 2169 lncR-
NAs were identified as oxidative stress-related lncRNAs.

Construction of the coexpression network

To better understand the relationship between lncRNAs and mRNAs, the lncRNA‒
mRNA coexpression network was visualized by Cytoscape software (http://​www.​cytos​
cape.​org/).

Construction and validation of the prognostic model

To reduce statistical bias in the analysis, CRC patients with missing OS data or with 
short OS values (< 30 days) were excluded. Finally, we retrieved transcriptome, mutation, 
and clinical data for 506 patients. These patients were randomly grouped into the train-
ing and testing groups at a ratio of 1:1 using Strawberry Perl and the caret package. All 
oxidative stress-related lncRNAs were subjected to univariate Cox regression analyses 
to explore the relationship between lncRNA expression and patient OS by the survival 
package. LncRNAs with a P < 0.05 were identified as prognostic oxidative stress-related 
lncRNAs. Subsequently, these candidate lncRNAs were integrated into least absolute 
shrinkage and selection operator (LASSO) regression to construct a prognostic model 
[54]. The risk score of each patient was calculated with the following formula:

Risk score =

k

n=1

expr− (ln cRNA) ∗ βi

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org
http://www.cytoscape.org/
http://www.cytoscape.org/
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where expr(lncRNA) represents the short form of the expression of lncRNAs correlated 
with survival and βi represents the regression coefficient.

The CRC patients were grouped into low- and high-risk subgroups based on the 
median risk score [52, 55]. The Kaplan‒Meier method and log-rank test using the R 
Bioconductor survival package were further conducted to compare OS [56, 57]. Scatter 
plots were used to display the survival status of CRC patients in the low- and high-risk 
groups. Utilizing the pheatmap package, a heatmap was constructed to show the differ-
ential expression of 9 lncRNAs between the low- and high-risk groups. The effectiveness 
and accuracy of the model were further verified using the survival and timeROC pack-
ages [58]. Univariate and multivariate Cox regression analyses were also performed to 
evaluate the relationship between clinical characteristics and the risk score. Additionally, 
a concordance index (C-index) curve was constructed to evaluate the prediction accu-
racy of the model in CRC patients using the pec package [59]. Risk score, age, sex, and 
tumor stage were used to construct a nomogram for predicting 1-, 2-, and 3-year OS 
using the rms package. Correction curves based on the Hosmer Lemeshow test showed 
that the predicted prognosis was in good agreement with the actual outcome [60, 61]. 
Finally, PCA and t-SNE were performed by the Rtsne and scaterplot3d packages to 
determine whether two subgroups could be distinguished by these two metrics [62, 63].

Evaluation of the prognostic value of 9 oxidative stress‑related lncRNAs in an independent 

GEO validation cohort

The CRC patients in GEO were grouped into low and high expression subgroups based 
on the median level of the lncRNAs [64]. The Kaplan‒Meier method using the R Bio-
conductor survival package was further conducted to compare the OS between the two 
subgroups, and then the survival and survminer packages were used to plot the survival 
curves.

TMB analysis

The DNA mutation data of CRC patients were downloaded from the TCGA database. 
The mutation rates in the high- and low-risk groups were visualized using the maftools 
and Rhtslib packages. Differences regarding TMB and OS in the high- and low-risk 
groups were analyzed using the limma, ggpubr, and survivor packages [65]. A relevance 
analysis between the risk scores and TMBs was performed using the limma, ggpubr, and 
ggExtra packages.

We further downloaded the reference list of MSI scores from the cBioPortal database 
(https://​www.​cbiop​ortal.​org/) (Additional file 3) [66]. Samples with MSI scores greater 
than 10 were classified as the positive group, and those with MSI scores not greater than 
10 were classified as the negative group. In the MSI-positive and MSI-negative groups, 
the ggplot2, survivor and ggstatsplot packages were used to perform difference analysis, 
survival analysis and correlation analysis between TMB and the risk score [67, 68].

GSEA

GSEA (https://​www.​gsea-​msigdb.​org/​gsea/​login.​jsp) was performed using the “kegg.
v7.4.symbols.gmt” gene set to identify significantly enriched pathways between the 

https://www.cbioportal.org/
https://www.gsea-msigdb.org/gsea/login.jsp
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low- and high-risk groups. Pathways with P < 0.05 and FDR < 0.25 were regarded as sig-
nificantly enriched pathways [29].

Analyses of TME and immune cell infiltration

The ESTIMATE scores, immune scores, and stromal scores of CRC samples were esti-
mated based on transcriptional data using the “estimation of stromal and immune cells 
in malignant tumors using expression data” (ESTIMATE) method [69]. Tumor purity 
was inferred based on the ggpubr package. Moreover, the abundances of 22 tumor-
infiltrating immune cells were estimated using the “cell-type identification by estimating 
relative subsets of RNA transcripts” (CIBERSORT) algorithm [70]. Utilizing the limma, 
ggpubr, pheatmap and vioplot packages, a heatmap was constructed to show the differ-
ential expression of immune cells between the low- and high-risk groups and the relative 
expression of immune cells in each sample. Immune cell infiltration was also estimated 
using single-sample GSEA (ssGSEA) [71, 72]. To assess the effectiveness of our model in 
predicting immunotherapy response, the online tool, Tumor Immune Dysfunction and 
Exclusion (TIDE) (http://​tide.​dfci.​harva​rd.​edu/), was used to estimate patient response 
to immune checkpoint therapy.

Exploration of the model in clinical treatment

The clinical responses of CRC patients to different chemotherapy drugs were predicted 
using the pRRophetic package. We compared the half-maximal inhibitory concentration 
(IC50) between the high- and low-subgroups [73].
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