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ABSTRACT

Although an essential step, cell functional annotation
often proves particularly challenging from single-cell
transcriptional data. Several methods have been de-
veloped to accomplish this task. However, in most
cases, these rely on techniques initially developed
for bulk RNA sequencing or simply make use of
marker genes identified from cell clustering followed
by supervised annotation. To overcome these limita-
tions and automatize the process, we have developed
two novel methods, the single-cell gene set enrich-
ment analysis (scGSEA) and the single-cell mapper
(scMAP). scGSEA combines latent data representa-
tions and gene set enrichment scores to detect coor-
dinated gene activity at single-cell resolution. scMAP
uses transfer learning techniques to re-purpose and
contextualize new cells into a reference cell atlas. Us-
ing both simulated and real datasets, we show that
scGSEA effectively recapitulates recurrent patterns
of pathways’ activity shared by cells from different
experimental conditions. At the same time, we show
that scMAP can reliably map and contextualize new
single-cell profiles on a breast cancer atlas we re-
cently released. Both tools are provided in an effec-
tive and straightforward workflow providing a frame-
work to determine cell function and significantly im-
prove annotation and interpretation of scRNA-seq
data.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) delivers unprece-
dented opportunities for measuring gene expression at
genome-wide scale and single-cell resolution. It provides a
cost-effective way to study cellular tissue composition (1–
5), dynamic processes during cell developmental stages (6)

or the role of transcriptional heterogeneity in pathologi-
cal conditions and in response to treatments (7). Indeed,
scRNA-seq is becoming the leading technique for transcrip-
tome profiling with large atlases of cells now routinely re-
leased from labs worldwide (1–8). Although scRNA-seq
confers the advantage of measuring gene expression at the
granular resolution of individual cells, the data produced
with this sequencing technique are extremely noisy and
zero-inflated (9). This property arises from both the low
amount of mRNA available in a single cell and the lim-
ited capture efficiency of the technology. Thus, computa-
tional tools initially built to analyse bulk RNA-seq are of-
ten inadequate for scRNA-seq, and ad-hoc tools need to
be developed to address the peculiarities of single-cell data.
The significant increase in scRNA-seq studies raised several
computational challenges, such as the development of au-
tomatic methods for functional annotation of scRNA-seq
helpful for cell type assignment or disease diagnosis.

In the last decade, a plethora of tools have been de-
veloped to summarize regulated gene expression profiles
into simplified functional categories useful for the anno-
tation and interpretation of bulk RNA-seq data (10–16).
Among these, the gene set enrichment analysis (GSEA)
(11) is probably the most used. GSEA is a statistical tool
that aims to measure coordinated activity of a priori de-
fined gene set (i.e. pathway) starting from a ranked list of
genes usually obtained from differential expression (DE)
analysis. By aggregating individual DE genes into path-
ways, GSEA projects DE results in a robust and easily in-
terpretable biological space where additional analytics tools
can be later applied. Currently, the application of GSEA
to single-cell data remains challenging (17) and only a few
methods are available but still not efficient (18,19). There-
fore, there is an urgent need to develop novel computational
methods capable of scoring the activity of a pathway within
a reasonable time scale. On the other hand, the availabil-
ity of large single-cell reference atlases comprising up to
millions of cells across different species, conditions, tissues,
or organs provides an unprecedented opportunity to use
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‘re-purposing’ techniques for the functional annotation
of cells. Indeed, transfer learning (TL) techniques (20)
are becoming increasing popular in the analysis of high-
throughput -omics datasets including single-cell datasets
(21–24). TL is a machine learning technique that use a joint
embedding to integrate a query set of objects into a given
reference and to contextualize them with the metadata as-
sociated with the reference elements.

Here, we present two novel ready-to-use pipelines tailored
to scRNA-seq data that can be used to automatize cell func-
tional annotation: scGSEA (single-cell gene set enrichment
analysis) and scMAP (single-cell Mapper). scGSEA is a sta-
tistical framework for scoring coordinated gene activity in
individual cells to automatically determine the pathways
that are active in a cell. scMAP is a TL algorithm to map
a query set of cell transcriptional profiles on top of an ex-
isting reference atlas and contextualize the new data with
the reference metadata. Both methods are based on non-
negative matrix factorization (NMF) (25), a popular matrix
decomposition method, that can be solved in a very compu-
tationally efficient manner (26). We validated scGSEA to
identify pathway activity in both a simulated dataset and a
real dataset comprising cells during various reprogramming
stages (6) or drug treatment (27). We also tested the ability
of scMAP in mapping novel sequenced cells from several
conditions, including cells sequenced in different batches
or another lab with a different sequencing technique. Both
tools were developed in the framework of the gficf package
(9,28), an R package we recently developed for the normal-
ization, visualization and clustering of single-cell data that
takes advantage of text-mining approaches and available at
https://github.com/gambalab/gficf.

MATERIALS AND METHODS

Cell culture

MDAMB468 and CAL51 cell lines used in this study were
obtained from commercial providers and cultured in ATCC
recommended complete media at 37◦C and 5% CO2.

scRNA library preparation, sequencing and alignment

Single-cell transcriptomics of the MDAMB468 and CAL51
cell lines were performed with DROP-seq technology (29)
and library preparation as described in Gambardella et al.
(7). scRNA libraries were sequenced with NovaSeq 6000
machine using an SP 100 cycles flow cell. Raw reads pre-
processing was performed using Drop-seq tools v2.3.0 and
following the Dropseq Core Computational Protocol re-
ported at http://mccarrolllab.org/dropseq. Briefly, raw reads
were first filtered to remove all read pairs with at least
one base in their cell barcode or UMI with a quality
score <10. Then, read 2 was trimmed at the 5’ end to re-
move any TSO adapter sequence, and at the 3’ end to re-
move polyA tails. Filtered reads were then fed to STAR-
solo tool v2.7.10a (https://github.com/cellgeni/STARsolo)
to perform alignment, UMI deduplication and gene expres-
sion quantification. Hg38 human genome (primary assem-
bly v40) downloaded from GENCODE (30) was used as
a reference genome for read alignment. Only high depth
cells with at least 2500 UMI were retained and used to test

our cell mapping tool. Alignment pipeline can be found at
https://github.com/gambalab/dropseq.

Single-cell gene set enrichment analysis (scGSEA)

To perform scGSEA, raw count matrix was first normalized
with gficf package (28). Then, NMF was used to decom-
pose gficf scores (or normalized log(CPM + 1) expression)
into two positive related matrices containing gene weights
(W) and cell weights (H) where each column of W or row of
H defines a latent actor fi . Non-negative matrix factoriza-
tion was performed by using the fast parallel implementa-
tion that can be found in RcppML R package (26) avail-
able at https://github.com/zdebruine/RcppML. NMF im-
plementation in the RcppML package is based on Alternat-
ing Least Square (ALS) approach and diagonalized NMF
to enable symmetric factorization and to reduce bias re-
lated random initialization (26). Gene set enrichment anal-
ysis was performed against each column of the W matrix us-
ing as input a pre-defined list of gene sets S = {s1, s2 . . . sn}.
GSEA was performed using the R package fgsea (31) avail-
able at https://github.com/ctlab/fgsea. At the end of this
process, a novel matrix P with the same number of columns
(i.e. factors) of W and with the number of rows equal to the
number of inputs used gene set is obtained. Each element of
Pi,j contains the normalized enrichment scores of the path-
way si related to the factor f j . Next, only positives and sig-
nificant normalized enrichment scores with an FDR < 0.05
were retained while all the other elements of P are put to
zero. Finally, since elements of P describe the pathways’
contribution in each latent factor, the pathway’s activity
level in each profiled cell is computed as the weighted sum of
the normalized pathway’s enrichment scores across the fac-
tors shared by the cell. This corresponds simply to the dot
product of the P and H matrices. The described pipeline is
implemented in the function scGSEA of the gficf package.

Simulated scRNA-seq profiles and gene sets

Splatter R package (32) with default parameters was used
to generate a zero-inflated count dataset composed of 5000
cells and 1000 genes with cells grouped in four distinct pop-
ulations. Next, six gene sets were simulated to be exclusively
expressed in each group of simulated cells (i.e. 6 gene sets ×
4 groups of cells = 24 simulated gene sets). The 24 gene
sets comprised 2432 unique genes that we added to the sim-
ulated dataset generated with splatter. A zero-inflate Pois-
son distribution with success probability equal to 50% and
lambda value of 10 was used to simulate the expression of a
gene set in a specific set of cells. This to simulate a moderate
dropout and a relatively low gene count expression for each
gene set.

Estimation of scGSEA computational time

The computation time of the scGSEA tool was estimated
using three collections of different pathways (i.e. 50 Hall-
marks gene sets, 186 KEGG pathways and 7763 GOBP
gene sets) and 10 000 cells randomly selected from the
single-cell breast cancer atlas we recently published (7).
Next, scGSEA pipeline was performed using a number of
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CPU cores ranging from 1 to 16. This process was re-
peated five times to obtain an average computational time
representative of each execution for each specific number
of CPUs used. Simulations were performed using a PC
equipped with a 16-cores AMD Ryzen 9 3950X and 128GB
of RAM.

Pseudo-time analysis

scGSEA method was run using as input the 1044 PC9
single-cell transcriptional profiles and the 50 hallmarks
gene sets (v2022.1) downloaded from MSigDB (www.gsea-
msigdb.org/gsea/msigdb). The obtained pathways’ activity
matrix was used to run psupertime function of psupertime
R package and infer the pseudo-time order of cells. Psuper-
time function was run with default parameters and using as
labels their sequencing day (i.e. 0, 1, 2, 4, 9 or 11)

Single-cell mapper (scMAP)

UMAP embedding space of reference single-cell breast can-
cer cell-line atlas or the reference single-cell breast cancer
patient atlas were built from scratch with gficf package (28).
Then, new sequenced cells are mapped on the reference at-
lases following the strategy depicted in Supplementary Fig-
ure S2. Briefly, new scRNA-seq profiles are first normal-
ized with gficf strategy but using the ICF weight learned
on the reference atlas and then projected to the existing
NMF (or PC) sub-space using gene loadings learned from
the reference atlas. These values are then used as input of
the umap transform function of uwot package, which uses
the UMAP estimated model to map the new cells into the
reference UMAP space. Finally, the cell line of origin as-
sociated with each mapped cell, or its cancer subtype was
predicted by using k nearest-neighbor algorithm from Ker-
nelKnn package (https://mlampros.github.io/KernelKnn).
For all assignments, k parameter was set to 101. Single-cell
mapping pipeline is implemented into the function scMAP
of the gficf package.

Public single-cell transcriptional dataset

The raw counts of the 35 276 single-cell transcriptional
profiles of the 32 breast cancer cell (7) used in this study
were downloaded from figshare (https://doi.org/10.6084/
m9.figshare.15022698). The 25 1203 single-cell transcrip-
tional profile from pluripotent stem cells (6) were obtained
from GEO database with accession number GSE122662.
The single-cell transcriptional profiles of MCF7 cells and
derived clones (33) were obtained from GEO database with
accession number GSE114462. The 2311 single cell the
transcriptional profile across the eleven breast cancer cell
lines (8) were obtained from GEO database with acces-
sion number GSE157220. PC9 lung cells were obtained
from GEO database with accession number GSE149383
but only 1044 cells with a total number of UMI >2500
were used in this work. Patients derived single-cell transcrip-
tional profiles of 34 treatment-naı̈ve breast primary tumors
(34) were obtained from GEO database with accession num-
ber GSE161529. A subset of this dataset was used, including
47 692 epithelial cells (35) with a minimum of 5000 UMIs,

from 24 breast cancer patients. These single-cell transcrip-
tional profiles comprised 7 Triple Negative (TN) breast can-
cer patients, 5 HER2-amplified (HER2+) breast cancer pa-
tients and 12 ER + breast cancer patients.

RESULTS

Gifcf package overview

We recently introduced an R package named gficf use-
ful for normalization of 3’ single-cell transcriptional data
and the identification of biomarker genes across multiple
experimental conditions or cell types (7,9,28). Our tool
builds on a data transformation model named Gene Fre-
quency – Inverse Cell Frequency (i.e. gf-icf) derived from
the Term Frequency - Inverse Document Frequency (i.e. tf-
idf) approach. TF-IDF is a statistical measure extensively
used in the fields of text analysis and machine learning ap-
plied to Natural Language Processing (NLP) for quantify-
ing the relevance of a word (i.e. gene) in a document (i.e.
cell) amongst a comprehensive collection of documents (i.e.
scRNA-seq dataset) (36,37). When applying this model to
scRNAseq data, the relevance of a gene increases propor-
tionally to its expression in the cell but is offset by the fre-
quency of the gene in the population of sequenced cells (28),
so that only genes highly expressed in a small fraction of the
cells are selected as the most relevant.

Briefly, the gf-icf pipeline (9,28) starts from a set of single-
cell transcriptional profiles and consists of the following
steps: (i) cell quality control (QC) and filtering, (ii) rescal-
ing of gene expression profiles of each cell to sum one (GF
step) after raw count normalization (38), (iii) cross-cell nor-
malization, to assign higher scores to rarely expressed genes
than commonly expressed genes within each cell (ICF step),
(iv) an L2 rescaling step to normalize gf-icf values; (v) lin-
ear dimensionality reduction of the data (i.e. PCA(39) or
NMF(26)) to condense the complexity of the dataset into a
lower-dimensional space, (vi) non-linear dimensionality re-
duction (i.e. t-SNE (40) or UMAP (41)) of the data for its
visualization and finally (vii) several downstream analyses
including cell clustering and differential expression (9) (Fig-
ure 1A). GF-ICF method is implemented as an open-source
R package, freely available at https://github.com/gambalab/
gficf.

Here we updated the gf-icf package and implemented two
novel functionalities: scGSEA and scMap.

scGSEA for the reconstruction of pathway activity at single-
cell resolution

We aimed to construct a bioinformatics method that could
measure the activity of an a priori defined collection of gene
sets (i.e. pathways) at the single-cell resolution. To this end,
we developed a robust and fast single-cell Gene Set Enrich-
ment Analysis (scGSEA) algorithm that takes advantage of
the informative biological signals spreading across the la-
tent factors of gene expression values obtained from non-
negative matrix factorization (see Materials and methods)
(25,26). The scGSEA method starts from a set of single-cell
expression profiles and a collection of gene sets and scores
their cumulative expression (i.e. pathway activity) in each of
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Figure 1. Single-cell gene set enrichment analysis overview and performances. (A) GFICF package overview. (B) Single-cell gene set enrichment analysis
pipeline. (C) UMAP plot of 5000 simulated cells grouped in four distinct groups. (D) Reconstructed activity of 24 simulated pathways across the 5000 cells
in (C). In the heatmap pathways are along rows while simulated cells along columns. Cells are ordered according to their group of origin. (E) Comparison
between scGSEA pathway scores and signature scores originally computed by Schiebinger et al. on 25 1203 single-cell profiles collected during differentia-
tion stages. First row shows original gene set scores computed by Schiebinger et al. using wot phyton package. Second row shows gene set scores computed
with scGSEA tool in the gficf R package. Each column represents a different gene set. Scores were plotted on the original FLE (force-directed layout)
coordinates published by Schiebinger et al. (F) Spearman Correlation Coefficient (SCC) between scGSEA scores and wot package signature scores across
the 25 1203 single-cell transcriptional profiles in (E). (G) UMAP representation of 1044 cells subject to eleven days of consecutive erlotinib treatment. Cells
are color-coded according to sequenced day (i.e. 0, 1, 2, 4, 9 and 11 days). Single-cell transcriptional profiles were normalized with gficf package. (H) EMT
activity scores against inferred cell pseudo-time using the activity scores of 50 hallmark gene sets downloaded from MSigDB. Cells are color-coded as in
(G). (I–K) Same as (H) but for wnt, cholesterol and fatty acid pathways respectively.

the profiled cells and it is divided into three main steps (Fig-
ure 1B). In the first step, we use NMF to decompose GF-
ICF normalized data into two positive related matrices con-
taining gene weights (W) and cell weights (H). Each column
of W or row of H defines a factor representing complex bio-
logical processes that recur throughout the set of sequenced
cells (42,43). While, at the same time, all features define the
latent space amongst genes and cells. In the second step, we
infer which biological processes each latent factor is asso-
ciated with by performing GSEA (31) against each column
of the W matrix. Since the values in each column of the W
matrix are continuous weights describing the relative con-
tribution of a gene in each inferred factor, a positive and
significant value of the enrichment score (ES) for a specific
pathway implies the factor is related to it. At the end of
this step, the W matrix is transformed into a novel positive
matrix P describing the pathways’ contribution in the form
of normalized enrichment scores (NES) for each latent fac-
tor. Finally, in the third step, we infer the pathway’s activity
level in each profiled cell by multiplying the P matrix re-

constructed in step two with the H matrix obtained using
the NMF method in step one. The rationale behind this last
step is that each column of the matrix H describes the rela-
tive contribution of a cell across the factors. Thus, a cell with
a high weight for a specific factor is assumed to share the
phenotype or biological process related to that factor (43).
Consequently, the activity level of a pathway in a cell can be
computed as the weighted sum of the normalized pathway’s
enrichment scores across the factors shared by the cell.

We performed simulations to assess the effectiveness of
scGSEA in recapitulating the activity level of a pathway at
single-cell level (see methods for details). By using the splat-
ter package (32) we generated a zero-inflated count dataset
composed of 5000 cells grouped in four distinct populations
(Figure 1C) through a gamma-Poisson distribution using
parameters inferred from a real dataset. Then, we assigned
24 overlapping gene sets of different sizes (Supplementary
Table S1) to be exclusively expressed in each cluster (i.e. six
specific gene sets per cluster). As shown in Figure 1D, we
found that scGSEA can identify in each group of cells the
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activity of the six specific simulated pathways with some
of these correctly predicted active also in other groups of
cells due to their partial overlap with other genes sets (Sup-
plementary Figure S1). We found similar results also when
applied NFM step was performed on log-normalized CPM
counts (Supplementary Figure S2A). Next, to demonstrate
the reliability of the scGSEA method on a real dataset, we
applied it to the cell reprogramming scRNA-seq data in
Schiebinger et al. (6). This dataset comprises 25 1203 single-
cell transcriptional profiles collected at half-day intervals
across 18 days of reprogramming by ectopic expression of
OKSM (a.k.a. Oct4, Klf4, Sox2 and Myc) transcription fac-
tors. In this work, the authors constructed seven curated
gene signatures to score cells as pluripotent-, epithelial-,
trophoblast-, neural-, MEF-like and proliferative. Hence,
we applied our scGSEA method to this dataset with these
seven gene sets as the input. As shown in Figure 1E,F, we
found a high degree of correlation (avg. 0.8) between the
predicted scGSEA pathway’s activity level and the pathway
expression computed by Schiebinger et al. (6). We obtained
similar results also when NFM step was performed starting
from log-normalized CPM counts (Supplementary Figure
S2B,C). Finally, we estimated the average computational
time required by the scGSEA tool with 10 000 cells and dif-
ferent pathway collections from MSigDB, including the 50
Hallmarks gene sets, the 186 KEGG pathways and the 7763
GOBP gene sets (see Materials and methods). As shown in
Supplementary Figure S3, scGSEA analysis always requires
a few minutes to be completed when the number of path-
ways is small, like in the case of KEGG or the Hallmarks
pathway collections. While about 5 h are needed when us-
ing a larger pathway collection like the GOBP and only one
CPU core. However, as Supplementary Figure S3 shows, in
this scenario scGSEA computational time quickly decrease
to about one hour using four CPUs.

Next, we investigated whether we could use scGSEA
scores to infer cell trajectories and reconstruct dynamics
of the key pathways driving resistance to EGFR inhibitors
in non-small-cell lung carcinoma (NSCLC). Several stud-
ies have suggested that acquired resistance mechanisms to
EGFR inhibitors involve the compensatory activation of re-
dundant signalling pathways that share effectors or down-
stream modulators of the EGFR signalling cascade, thus
bypassing EGFR inhibition. Different pathways can serve
as alternative routes for reactivation of signalling down-
stream of inhibited EGFR, including MET, IGF-1R, PI3K-
AKT-mTOR, BRAF/RAS and Wnt signalling pathways
(44–47), all able to sustain cell survival, proliferation, migra-
tion and epithelial–mesenchymal transition (EMT). There-
fore, we downloaded the scRNA-seq dataset published by
Aissa et al. (27) comprising 1044 PC9 lung cells (Figure
1G) that were subject to eleven days of consecutive erlotinib
treatment and sequenced at six different time points (i.e. 0,
1, 2, 4, 9 and 11 days). We then applied scGSEA to score the
activity of 50 MSigDB hallmark pathways (48) across the
cells. The resulting scores were used as input to reconstruct
the dynamic activity of these pathway by applying a pseudo-
time algorithm (49) (Supplementary Figure S4). As shown
in Figure 1H,I we found strong upregulation of EMT and
Wntb-catenin signalling pathways in erlotinib tolerant cells,
while erlotinib tolerant cells showed a potent inhibition of

genes related to cholesterol and fatty acid metabolism, as
also reported by Aissa et al. (Figure 1J,K).

These results show how scGSEA could recapitulate re-
current patterns of pathways’ activity shared by hundreds
of thousands of cells from multiple conditions and dur-
ing dynamic processes like cell reprogramming or drug
treatments.

Mapping a single-cell transcriptional profile on a reference
atlas

We developed scMAP (single-cell Mapper), a transfer learn-
ing algorithm that combines text mining data transforma-
tion and a k-nearest neighbours’ (KNN) classifier to map
a query set of single-cell transcriptional profiles on top of
a reference atlas (see Materials and methods). Our strategy
consists of three main steps, as schematised in Supplemen-
tary Figure S5: (i) we first normalize the query cell profiles
with the GF-ICF method by using the ICF weights learned
by the reference atlas; (ii) we then project normalized cell
profiles to the NMF (or PC) sub-space of the reference at-
las before mapping them onto its UMAP embedding space;
and (iii) finally, we use the KNN algorithm to contextualize
mapped cells using available metadata.

To test scMAP, we took advantage of the single-cell at-
las of breast cancer we have recently released (7). This at-
las comprises 35 276 individual cells from 32 breast can-
cer cell lines covering all four major breast tumour subtypes
(i.e. LuminalA, LuminalB, Her2-positive and Basal Like).
Hence, we first applied GF-ICF tool (28) on these cells to
generate a reference UMAP embedding space from either
the top 100 NMF factors (Figure 2A) or the top 50 PC
(Figure 2B). Next, we used three approaches to test the ac-
curacy of our method in correctly mapping the very cells
in the breast cancer atlas. First, we used a cross-validation
approach where we randomly divided the 35 276 single-cell
transcriptional profiles in different proportions of training
and test cells (i.e. from 10 to 90% of the cells in each cell
line). With this approach, we use training cells to recon-
struct the reference BC cell-line atlas and the remaining cells
to measure the performances of the mapping algorithm.
Second, we re-sequenced with the DROP-seq platform 1683
cells of two cell lines included in the atlas and mapped the
transcriptome of these cells onto it. Third, we tested our
mapping strategy on 16 683 single-cell transcriptional pro-
files from 11 cell lines included in the atlas but sequenced
by other laboratories with 10X genomics platform (8,33). In
all cases the performances of the mapping algorithm were
tested by using either NMF or PCA as cell sub-space before
remapping them into the UMAP embedding space. After
remapping, the label of a cell was assigned using the clos-
est 101 cells (7) (see Materials and methods). As shown in
Figure 2C, the median cross-validation approach’s accuracy
of the mapping algorithm was 97% when using NFM as
cell sub-space and 99% when using PC as sub-space. How-
ever, with the cross-validation approach we always use cells
sequenced in the same batch. Thus, to avoid this possible
bias, we re-sequenced 306 and 1377 cells of MDAMB468
and CAL51 cell lines, respectively (see Materials and
methods). As shown in Figure 2D, 96% of MDAMB468
and 97.3% for CAL51 cells were recognized and labelled
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Figure 2. Single-cell mapping accuracy evaluation. (A) UMAP representation of 35 276 cells from 32 breast cancer cell-lines using as cell subspace NMF.
Cells are color-coded according to their cell-line of origin. Single-cell transcriptional profiles were normalized with gficf package. (B) Same as (A) but using
PC as cell sub-space (C) Accuracy evaluation of mapping method using cross-validation approach using as cell sub-space either NMF (orange) or PCA
(green). Each boxplot display accuracy distribution in classifying the 32 cell lines but using as a training set the percentage of cells indicated on the x-axis.
Accuracy is defined as the number of correctly classified cells over the total number of mapped cells. (D) Left plot; mapping of the MDAMB468 and CAL51
cells after they were re-sequenced with drop-SEQ technology. Right plot; accuracy of the mapping method in classifying re-sequenced MDAMB468 and
CAL51 cells. NMF cell subspace is used. (E) Same as (D) but using PC sub-space. (F) Accuracy evaluation of the mapping method on 14 372 single-cell
transcriptomes sequenced with 10x Chromium method for MCF7 parental (P) cell line and three derived subclones (C1,C2,C3) using as cell sub-space either
NMF (left) or PCA (right). (G) Performance of the mapping method in classifying 2311 single-cell transcriptomes sequenced using the 10x Chromium
method from eleven distinct breast cell lines cell. Performances are reported in terms ROC curve and AUC is also displayed. (H) Same as (G) but using
PC cell sub-space.

correctly when using NFM as cell sub-space. While
when using PC as subspace mapping accuracy was of
79.7% and 98.1% for MDAM468 and CAL51 respectively
(Figure 2E).

Next, we investigated whether the sequencing technology
could affect the efficacy of the mapping algorithm. Thus,
we started mapping into the reference breast cancer cell-
line atlas 14 372 single-cell transcriptomes sequenced us-
ing the 10x Chromium method from the MCF7 cell line
and three subclones derived from it (33). Considering that
KPL1 has been documented as an MCF7 derivative cell line
(50,51), we found that 13 699 of the 14 372 cells (95.3%)
were recognized correctly (Figure 2F) when using NFM as
subspace. Using PC instead of NFM as a cell sub-space,
the total accuracy was of 94.2% (Figure 2F). Finally, we
mapped 2311 single-cell transcriptomes sequenced using
the 10x Chromium method from 11 additional breast cell
lines included in our atlas and published by Kinker et al.
(8). Figure 2G shows classification performance on these
cells in terms of ROC (receiver operating characteristic)
curve with an AUC of 0.975. The AUC of the ROC curve
was 0.876 when the PC subspace was used instead of NFM
(Figure 2H).

Next, to demonstrate the reliability of the scMAP tool in
correctly contextualize novel sequenced cells on a reference
atlas we used it to perform automatic breast cancer subtype
classification from single-cell data of patient’s tissue biopsy.
To this end, we used 47 692 single-cell transcriptional pro-

files from 24 treatment-naive primary tumours compris-
ing 7 Triple Negative (TN), 5 HER2-amplified (HER2+)
and 12 ER + breast cancer patients (34) (see Materials and
methods). Next, we used leave-one-out cross-validation ap-
proach to test the accuracy of scMAP in correctly map-
ping novel patients’ cells and predicting their cancer sub-
type. With this approach, at each iteration, cells from 23 pa-
tients are used to reconstruct the reference BC patient atlas
and the remaining cells of the left-out patient mapped and
contextualized onto it. As Supplementary Figure S6 shows
we obtained an average accuracy of tumour classification of
81% when using NMF as cell sub-space and of 76% when
the PC subspace was used instead of NFM.

Overall, these analyses shows that the mapping approach
and transfer learning strategy we developed provide reliable
results with good accuracy for both mapping and contextu-
alize new cells in a reference atlas.

DISCUSSION

Single-cell RNA-seq provides a cost-effective way to study
cell composition of tissues (1–5), cell developmental stages
(6), and to elucidate the role of transcriptional heterogene-
ity in pathological conditions or in response to drug treat-
ments (7). Indeed, large atlases of cells with their relative
associated metadata are now routinely released. However,
computational methods for the reconstruction of pathway
activity at single-cell level useful for their annotation or to
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contextualize novel sequenced cells in an already available
and annotated atlas of cells remain challenging.

Finding an effective way to capture coordinated gene ac-
tivity at the single-cell level is crucial for single-cell data
transformation and subsequent analyses. Such transforma-
tion allows representation of cellular state in terms of activ-
ity levels of biological processes (i.e. set of genes) rather than
through the expression levels of individual genes. Thus, al-
lowing the projection of single-cell data to a quickly biolog-
ically interpretable space in which analytic approaches can
later be applied. For example, such representations could
be used to detect within the same cell type shifts in the por-
tion of cells exhibiting an altered biological process between
two phenotypes of interest. Thus improving the identifica-
tion of dysregulated signalling pathways across pathologi-
cal conditions, otherwise identified from differential expres-
sion (38,52–56) or co-expression (19,57,58–69) analyses that
are still challenging for single-cell datasets due to their zero-
inflated nature (70–76).

Here, we introduced scGSEA, a novel efficient ready-to-
use method that provides an effective and simple workflow
for the measurement of pathway activity at single-cell level.
Our scGSEA takes advantage of the informative biologi-
cal signals spreading across the colinearly optimized and
additive collection of factors of gene expression values ob-
tained from an NMF model. Indeed, when applied on bulk
transcriptional datasets, NMF factors have already been
shown to better capture patterns of coordinated gene ac-
tivities compared to other matrix decomposition methods
like SVD ranks or PCA components (43) Recently, NMF
has been shown to greatly improve scRNA-seq data clus-
tering and visualization thanks to its inbuilt ability to im-
pute missing values and decompose data into additive parts
(26). In applications, we demonstrated that our scGSEA has
high accuracy in capturing coordinated gene activity at the
single-cell level in both simulated and real dataset compris-
ing hundreds of thousands of cells.

The ‘double dipping’ problem is referred as the problem
to use the same dataset for selection and selective analy-
sis that can lead to invalid statistical inferences (77). How-
ever, scGSEA tool directly leverages NMF expression la-
tent factors to infer pathway activity at a single-cell level
thus avoiding the double dipping problem. On the other
hand, since based on NMF, scGSEA also inherits limita-
tions of the NMF model. For example, a limit of this model,
like other matrix decomposition techniques, is the choice
of the exact number of factors to use. This choice can be
made by either using a subjective approach like finding an
inflection point in a curve of ranks against an objective
(i.e. elbow plot) or with higher precision, but computation-
ally demanding approaches, like jackstraw or k-fold cross-
validation. However, when choosing the number of factors
to use, to avoid information loss, it is advisable to adopt a
cautious approach by selecting a higher number. Thus, we
generally recommend using at least 100 NMF factors on a
large dataset comprising >10 000 cells, otherwise 50 should
suffice.

In this study we also presented scMAP, a transfer learning
algorithm that combines text mining data transformation
and the k-nearest neighbours’ algorithm to map a query set
of cell transcriptional profiles on top of an existing cell at-

las. Finding an effective way to ‘re-purpose’ sequenced cells
in an already annotated dataset of cells could be helpful in
the study of different diseases. For example, we have already
shown that we can use breast cancer cell lines for automatic
cancer subtype classification starting from the single-cell
transcriptomic dataset of patient biopsies (7). Recently, it
has also been shown that with transfer learning, we can use
the knowledge of sensitive drugs for each cell line to predict
the patient’s treatment once the patient’s cells were confi-
dently mapped on the reference atlas (78). Here, we demon-
strated our method has high accuracy in cell mapping even
when we profile cells’ transcriptomes after several culture
passages in a different batch or with a different sequencing
technique. The proposed mapping method may be applica-
ble in several scenarios; however, it is best suited when the
query cells consist of cell types and experimental protocols
close to the reference data. Finally, the number of shared
genes between the query and reference cells can also im-
pact mapping accuracy. We recommend using all available
genes in the reference-building step to guarantee more ex-
tensive feature overlap between reference and query cells,
which naturally increases the mapping quality.

In summary, we have updated our gficf R package with
two novel functionalities, both useful for cell functional an-
notation. One allows to capture coordinated gene activity at
the single-cell level, and another that can re-purpose newly
sequenced cells into an already annotated reference dataset.
Both tools are provided in an effective and straightforward
workflow and are implemented in the framework of our
open-source R package gficf available at https://github.com/
gambalab/gficf.
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