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ABSTRACT

The correct mapping of the proteome is an important
step towards advancing our understanding of bio-
logical systems and cellular mechanisms. Methods
that provide better mappings can fuel important pro-
cesses such as drug discovery and disease under-
standing. Currently, true determination of translation
initiation sites is primarily achieved by in vivo exper-
iments. Here, we propose TIS Transformer, a deep
learning model for the determination of translation
start sites solely utilizing the information embedded
in the transcript nucleotide sequence. The method is
built upon deep learning techniques first designed
for natural language processing. We prove this ap-
proach to be best suited for learning the semantics of
translation, outperforming previous approaches by a
large margin. We demonstrate that limitations in the
model performance are primarily due to the presence
of low-quality annotations against which the model
is evaluated against. Advantages of the method are
its ability to detect key features of the translation pro-
cess and multiple coding sequences on a transcript.
These include micropeptides encoded by short Open
Reading Frames, either alongside a canonical cod-
ing sequence or within long non-coding RNAs.
To demonstrate the use of our methods, we ap-
plied TIS Transformer to remap the full human
proteome.

INTRODUCTION

Translation is the synthesis of proteins from messenger
RNA (mRNA). The nucleotide sequence of mRNA not
only encodes proteins through its codon structure, but also
influences other factors, such as the location and efficiency
of the translation process (1). The complexity of the nu-
cleotide sequence is highlighted by the variety of gene prod-
ucts, playing roles in multiple molecular processes. Partly

due to this complexity, existing mappings of the genome,
transcriptome and proteome are still mostly based on the
combination of experimental data with statistical tests.
Genome annotation platforms such as Ensembl, NCBI and
USCS rely largely on sequence alignment methods (2,3).
Flaws of such systems are inherent to the knowledge at
hand, where biases and errors are known to be propagated
with time (4). Subsequently, changes in existing annotations
are made as new data on gene products or molecular mech-
anisms become available.

A comprehensive understanding of translation in combi-
nation with the design of high performing machine learn-
ing approaches can advance the identification of novel pro-
teins. In recent years, machine learning models have gained
attention due to their ability to attain high performances
when sufficient data is available. Prior work has attempted
to predict TISs sites solely based on intronless transcript se-
quences (5–11). Deep learning techniques have also gained
success due to their automated feature learning (12), as can
be seen through the application of neural networks on se-
quence and omics data. Zhang et al. use a combination of
convolutional and recurrent layers to process a transcript
sequence of fixed length around the TIS (8). Similarly, Zual-
laert et al. and Kalkatawi et al. have applied convolutional
neural networks to determine the location of TISs (9,10).
Although the predictive performance of these models still
imposes restrictions on their wider applications, value from
these studies is derived from insights gained on the under-
lying decision-making process.

Deep learning techniques have the unique strength of un-
covering complex relationships in big data. Standard ma-
chine learning methods and traditional neural network ar-
chitectures map relations of the input features to the target
label. These relations are, for most architectures (e.g. lin-
ear regression, fully-connected layers, convolutions), explic-
itly mapped as trained weights that determine how informa-
tion is combined in each layer. In contrast, attention meth-
ods determine how information within inputs is combined
based on the inputs themselves and their (relative) position-
ing. This is calculated on the fly for each new set of inputs
at each layer of the network. For many natural language
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Figure 1. Schematic of the data and model set-up. (Left) The Ensembl annotation (version 107) is used to determine transcript sequences and translation
initiation sites (TISs). Transcripts are grouped by chromosome to create a training, validation and test set. (Right) The performer model allows processing
of full transcript sequences, evaluating data through the layers in parallel to obtain model outputs at each position. The model architecture can handle
varying input lengths, as identical model weights are applied to transform the data. Through self-attention, sequential information from any site on the
transcript can be queried by the model to determine the presence of TISs at any position.

processing tasks, this approach has proven superior (13–15).
Similar to natural languages, information within biological
sequences is complex and convoluted. Some recent stud-
ies have successfully shown the efficacy of transformer net-
works on genome data, such as proposed by Zaheer et al.,
for the prediction of promoter regions and chromatin profil-
ing (16). Ji et al. introduce DNABERT, a transformer model
pre-trained on genome data that can be fine-tuned for a
specific task such as the annotation of promoters or splice
sites (17).

The computational cost of attention imposes limitations
on the maximum input length of sequential data. This cost
scales quadratically with respect to the length over which
attention is calculated. This has traditionally limited the
maximum sequence length of previous studies to 512 units
(15,17), making the application of recent transformer net-
works such as DNABERT not suitable for processing full
transcript sequences. However, several recent studies have
focused on overcoming this limitation through the use of
mathematical approximation techniques that save on com-
putational cost, allowing the attention mechanism to be ap-
plied over larger sequences (18–20).

In this work, we propose TIS Transformer (see Figure 1),
a tool for the identification of TISs using the full pro-
cessed transcript sequence as input. Our technique uses
one of the proposed scaling solutions for computing at-
tention (20), where transcripts up to a length of 30 000
nucleotides can be processed at single nucleotide resolu-
tion. Models are trained and evaluated on the processed
human transcriptome, excluding introns and intergenic re-
gions. First, we benchmark our method against previous
studies, where we show state-of-the-art performances. Af-
terwards, we provide an in-depth analysis on the current
state of applying learning methods for the annotation of
TISs on the full human transcriptome. We show our ap-
proach to achieve notable performances in general, where
learning and evaluation approaches are mostly hindered
by low quality annotation. We believe this approach to
be of substantial benefit to the community, where it can
aid the discovery and annotation of novel proteins, thus
building state-specific proteome maps, or the engineering of
transcripts.

MATERIALS AND METHODS

Training objective

The goal of the study is to create a predictive model that is
able to detect the occurrence of coding sequences (CDSs)
within the transcriptome. Rather than predicting a paired
TIS and translation termination site (TTS), we decided to
achieve this goal through the detection of TISs, as it poses a
simpler optimization and decision-making problem. TTSs
have been determined post-hoc through detection of the
first in-frame stop codon. As such, the model is optimized
to perform binary classification between TISs and non-TISs
for each nucleotide position of the human transcriptome.
We provide all code material and results as part of the study.

Model input and output

The model processes the full sequence of the transcript to
impute the presence of TISs at each nucleotide position
(see Figure 1). The input of the model is represented by
Hin ∈ R

n×d , where n < 30 000 and d the dimension of the
hidden states. Hin

i denotes the nucleotide vector embed-
ding (A, T, C ,G , N, [START], [STOP]) at position i of
the transcript (thymine is used to proxy uracil throughout
the paper). Vector embeddings are numerical representa-
tions (i.e., vectors) of concepts that exist within a multi-
dimensional space, where their distance w.r.t. other embed-
dings (distance, angle) allow meaningful computations. The
input embeddings are trained as part of the optimization
process. The [START] and [STOP] tokens are used at before
the beginning and after the end of the transcript, relatively.
Identical in dimensions to the input embeddings, the out-
put Hout ∈ R

n×d of the transformer network is processed
by a pair of feed-forward layers which result in a model out-
put at each nucleotide position of the transcript. The cross-
entropy loss is computed from predictions at inputs ∈ {A,
T, C, G, N}.

Transformer architecture

The transformer architecture is a recent methodology that
implements (self-)attention for a group of inputs. The atten-
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tion mechanism is applied to determine the flow of informa-
tion (i.e. applied weights to combine information) based on
the information itself. The transformer network is charac-
terized by several sequential layers with identical designs.

The principal element is the use of self-attention, per-
formed by a module called the attention head. Here, a query,
key and value matrix are derived from the input X in each
layer:

Q, K, V = XW�
q , XW�

k , XW�
v , (1)

where Q, K, V ∈ R
n×dk . For the first layer, X equals Hin.

Multiplication and subsequent normalization between Q
and K� return a n × n matrix, whose values determine
the flow of information to (e.g. ( QK�)i,:) and from (e.g.
( QK�):,i ) each hidden state through multiplication with V.
For each attention head, a matrix Z is calculated, holding
the combined information for each input hidden state.

Z = softmax
(

QK�
√

dk

)
V (2)

where Z ∈ R
n×dk . Multiple sets of Wq , Wk, Wv make it pos-

sible to route multiple types of information from X in each
layer. The outputs Z that are derived from different atten-
tion heads are concatenated and transformed to fit the di-
mension size of the input X, with which they are summed
(i.e. residual connection). Each layer is built using the same
components, albeit unique weights. The architecture allows
processing of transcripts of different lengths, as the same
weights are applied to calculate the q, k and v vectors for
each input hidden state (independent of position). These
are calculated in parallel for each layer and represented as
rows in the matrices Q, K and V. Positional encodings are
used to incorporate positional information with each in-
put. These vectors are of the same size as the inputs with
which they are summed and can be utilized as biases that
are fixed for each position. Previous research has shown that
the model can utilize this information (15).

To allow long-range attention over full transcripts, we
used a recent innovation in calculating full attention
introduced by Choromanski et al. (20). Equation (2) is ex-
changed with the Fast Attention Via Positive Orthogonal
Random Features (FAVOR+) algorithm, which utilizes ran-
dom feature maps decompositions for approximation in or-
der to obtain a computational complexity that scales lin-
early with respect to the length of the sequence. The final
model uses a combination of local and full attention heads
(Supplementary Table A6, Supplementary Figure A14).
In contrast to full attention, local attention limits the in-
put range over which attention is calculated to a smaller
window.

Data sets and model optimization

No single data set has previously been designed to func-
tion as a benchmark standard when evaluating the predic-
tion of TISs. The Ensembl assembly of the Human genome
(GRCh38.p13; release 107) was selected to provide the tran-
script sequences and label the known TISs. The data set
contains a total of 431 011 438 RNA nucleotide positions,
96 655 of which are positively labeled as a TIS (0.022%),
indicating an extremely imbalanced class distribution. The

model processes full transcripts in parallel, of which 96
655 (38.49%) are protein-coding and 154 ,466 (61.51%) are
non-coding. The training, validation, and test set are allo-
cated in accordance with chromosomes, thereby grouping
transcript isoforms and proteoforms together. Transcripts
longer than 30 000 nucleotides (17 instances) are excluded
due to memory requirements. When remapping the full hu-
man proteome, six models were trained to sequentially use
different sets of chromosomes as test, validation, and train
data (Supplementary Table A2 and Figure 1). The anno-
tations on the test sets, constituting one sixth of the chro-
mosomes for each model, are used to obtain a complete re-
annotation. To perform the benchmark, several additional
constraints were required to ensure all methods were trained
and evaluated utilizing the same data (see Supplementary
Files). To illustrate, these exclude non-ATG positions and
positions at the edge of transcripts that cannot be parsed
by one or more of the evaluated methods. The benchmark
was performed using chromosome 1, 7, 13, 19 as testing
data and chromosome 2 and 14 as validation data. This
results in train, validation and test sets of 3 608 307, 641
264 and 1 069 321 candidate TIS positions, respectively. For
all instances, training was stopped when a minimum cross-
entropy loss on the validation set is obtained. All reported
performance metrics are obtained on the test sets. Before
benchmarking our method with other studies, hyperparam-
eter tuning was performed (Supplementary Figure A4). In
general, it was observed that the performance of the model
was not correlated substantially with any single parameters,
but with the total number of model parameters. The num-
ber of model parameters is influenced by the dimension of
the hidden states (H), number of layers, dimension of the
attention vectors q, kandv and number of attention heads.
Through hyperparameter tuning, two model architectures
were selected to benchmark against previous approaches,
TIS Transformer and TIS Transformer L(arge), each fea-
turing 118K and 356K model parameters. Supplementary
Tables A3– A5 list the details of each model architecture.

RESULTS

The study is separated into two main parts. First, we per-
form a benchmark to compare our method with previous
studies and find our method to achieve state-the-art perfor-
mances. Afterwards, we remapped the human proteome us-
ing our approach for a more in-depth analysis on the ability
of our models.

Benchmark

A multitude of studies exist that apply machine learn-
ing techniques for the prediction of TISs (Supplementary
Table A1) (5–11,21,22). Two main approaches exist that
model sequence information to the occurrence of TISs: sup-
port vector machines and neural networks. Problematically,
the computational cost for support vector machines scales
quadratic with the number of samples evaluated. As such,
given tools are impossible to be applied on the full genome.
To illustrate, the maximum data set size applied by previ-
ous studies is 13 503 samples, <0.01% of the positions on
the full transcriptome. The limited data size allowed to train
these models is an important disadvantage, where previous
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Table 1. Benchmarked performances on a set of available tools. For each study are given: the year of publication, the nucleotide input size parsed by
the machine learning model, the total number of trainable parameters, the training time until convergence, and the ROC and PR AUC scores. Note that
methods applying support vector machines could not be evaluated due to the size of the data, nor DeepTIS due to missing information. The total number
of transcript positions used to train, validate and test each method count to a total of 3 608 307, 641 264 and 1 069 321 positions

Model name Year Input size Parameters Train time ROC AUC PR AUC

DeepGSR (10) 2019 600nt ∼181M ∼100h 0.9485 0.2110
TITER (8) 2017 203nt ∼431K ∼24h 0.9617 0.3770
TISRover (9) 2018 203nt ∼240K ∼3h45 0.9650 0.4495
TIS Transformer 2022 Transcript ∼118K ∼10h 0.9970 0.7628
TIS Transformer L 2022 Transcript ∼356K ∼6h 0.9971 0.7684

DeepTIS (21): see supplementary files on missing details on its architecture.
SVM (5–7,11): training of support vector machines is not tractable on large data sets.

Figure 2. Model performances on predicting translation initiation sites. (A) (top) A histogram of the model output predictions when evaluated on chromo-
some 2 (test set). Transcript sites are divided in a negative (blue) and positive (orange) set according to the annotations provided by Ensembl. The dotted line
represents the threshold that an equal number of positive model predictions as provided by Ensembl. (bottom) The resulting coding sequences of predicted
TISs were evaluated against UniProt using pBLAST. Shown are the fraction of coding sequences returning a good match in relation to the model output
score. Only TISs not annotated by Ensembl (i.e., negative set) were considered. (B) Model performances were binned according to transcripts properties.
PR AUC performances (left) and the ratio of positive samples in each group (right) are obtained by binning the transcripts according to transcript support
level and other properties given to the annotated translation initiation site or transcript (if any, otherwise nan).

studies show that support vector machine implementa-
tions are consistently outperformed by neural network ap-
proaches (9,10,21).

Candidate TIS positions are identical for the training and
evaluation of different approaches to ensure a fair compar-
ison. The construction of the training, validation and test
set is discussed in more detail in Section 2.2 of the Supple-
mentary Files. We rely on previous results that show listed
neural networks approaches to outperform support vector
machines, as proposed data set sizes cannot be applied to
train support vector machines. Furthermore, we were un-
able to incorporate the method DeepTIS, as proposed by
(21), due to missing details on the model architecture in the
published paper. See the Supplementary Files for more in-
formation on, and an extended discussion of, the individual
methods and the benchmark.

Results show TIS Transformer to largely outperform pre-
vious methods (Table 1, Supplementary Figure A13). As
TIS Transformer L(arge) performs better on the benchmark
data set, it is the model architecture that has been applied
to remap the human proteome.

Evaluation of the remapped proteome

Performance evaluation. To perform an in-depth analysis
on the model predictions of the full human transcriptome,
a cross-validation scheme is used (see Section 2.4, Supple-

mentary Table A2, Supplementary Figures A5 and A6). The
average area under the precision-recall curve (PR AUC)
score of the six models trained to remap the proteome
is 0.839. These scores underline the capability of the TIS
Transformer to predict with a high recall and precision
given the extremely imbalanced setting, in turn reflecting
the usefulness of the model to be applied to predict sites
of interest on the full transcriptome. The output probabili-
ties of the negative and positive samples can be clearly dis-
tinguished as they are concentrated at 0 and 1, respectively
(Figure 2A). Similarly, this can be observed when evaluat-
ing the model outputs at the single transcript level (e.g. see
Figure 4).

Several patterns exist between the model performance
and data properties as obtained by GENCODE (Fig-
ure 2B). Some properties are linked to the transcript, such
as the transcript support level, which quantifies the support
for a transcript to exist based on available in vivo evidence
(23). Other discussed properties relate to whether these
TISs are part of the consensus coding sequence database
(CCDS), whether the transcript and resulting coding se-
quence is identified as a representative sample for the gene
(basic), and whether the mRNA end could be confirmed or
not (mRNA end NF). Supplementary Figure A7 includes
more information for each group including the ROC AUC
scores and number of nucleotide positions (samples) in each
group.
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We observe several patterns of special interest. First, the
performance of the model is correlated to the transcript sup-
port level for the bulk of annotations (CCDS, basic). Only
the group with the lowest transcript support level (i.e. 5)
shows better performances than expected based on its rank-
ing. As this group of transcripts is described as ‘no sin-
gle transcript supports the model structure’, we hypothe-
sise their presence to be supported by other factors such
as computational pipelines, which can be expected to have
good performance. Second, the model performs worse for
the group of transcripts where no tags are given to the tran-
script or TISs. These tags include the validation of TISs by
other parties such as the CCDS initiative. Third, the differ-
ences in performance between groups is largely uncorrelated
to the ratio of positive samples along rows and columns,
which could otherwise have been the driving factor for dif-
ferences in PR AUC scores.

Figure 2A shows the relation between the model output
and the percentage of resulting CDSs having been observed
by previous studies but are not included in Ensembl. These
show a clear correlation between the model output and the
percentage of positive matches. These results were obtained
by querying CDSs resulting from high-ranking predictions
that were not previously annotated by Ensembl against
Swiss-Prot and TrEMBL (mammals) using pBLAST. These
highly predicted positions are present on both transcripts
that currently have annotated TISs and those that are la-
baled as non-coding transcripts. Supplementary Figure A12
includes several transcripts with high ranking predictions
that currently do not contain annotated TISs. Section 3.2
of the Supplementary Files lists the required conditions for
a match to be considered valid. Corroborating previous re-
sults, the fraction of pBLAST matches is also correlated
with the quality of the transcript support level (Supplemen-
tary Figures A8 and A9). Supplementary Figure A12

Input attribution score analysis. Several techniques exist
that allow us to gain insights into the decision-making
process of the trained model. Here, we apply integrated
gradients to evaluate the relative contribution of the in-
put nucleotides on the transcript to the predicted output
(Figure 3A). Integrated gradients, first introduced by Sun-
dararajan et al., utilizes the partial derivatives of the model
prediction with respect to the input values in order to as-
sign attribution scores (24). We observe several expected
patterns, such as the high importance of the candidate TIS
itself and surrounding areas (e.g. Kozak sequence context).
In addition to this, we see recurring patterns that both the
translation termination sites and reading frame can have
importance towards determining TISs (Figure 3B). We hy-
pothesize that the relatively higher importance of the sec-
ond and third nucleotide within each codon of the reading
frame can be ascribed to their relatively higher information
content (in relation to the defined amino acid) as compared
to the first nucleotide of each codon. No annotations on
reading frames or translation termination sites were given
to the model, reflecting the capability of the model to de-
termine complex features. It is possible that the importance
of the codon content and translation stop sites is linked to
the model learning general properties of relevant coding se-
quences on top of biological factors that determine transla-

Figure 3. Attribution scores of input nucleotides which reflect the impor-
tance of each nucleotide towards predicting the annotated TIS. (A) Scores
shown are given by the model for the translation initiation site on posi-
tion 257 of FGFR3 (ENST00000340107) and at position 52 of CYP4A11
(ENST00000475477). (B) Attribution scores for the positions surrounding
the translation initiation site (TIS) averaged for all top ranked predictions.
a rolling average is given for the three reading frames.

tion to start. These might be relevant to detect special-type
translation initiation sites, such as those with short or miss-
ing 5’ untranslated regions, but might also be a result of in-
corporating existing biases (e.g. CDS length).

Detection of small proteins and multi-TIS transcripts. In
1994, it was postulated that the minimum length of func-
tional proteins is around 100 amino acids (25). Today, mul-
tiple studies have reported proteins shorter than 100 amino
acids (26,27), fulfilling roles in different types of regula-
tory mechanisms (28,29). Nonetheless, small open reading
frame encoded peptides (SEPs) translated from small open
reading frames (sORFs) continue to be underrepresented
in existing annotations (30). With sequence alignment al-
gorithms suffering from low statistical power for shorter se-
quences, more evidence is needed to differentiate the false
from the true positives (31).

The introduction of high-performing machine learning
models could offer a solution to the detection of SEPs. The
ability of the model to detect SEPs is reflected by the overlap
between model predictions and a recently published list of
newly introduced SEPs that were discovered using ribosome
profiling (32) (see Supplementary Table A6). Nonetheless,
the absence of SEPs in the data used to train and validate
novel approaches is likely to influence the model and eval-
uation process. We observe overall lower probability scores
for TIS positions that result in smaller CDSs (Supplemen-
tary Figure A11).

Figure 4 shows some examples on the output of the TIS
Transformer for several high-profile and validated SEPs.
Akimoto et al. prove the existence of three upstream open
reading frames (uORFs) for the MKKS gene through pro-
teome analysis, serving as a regulatory mechanism (pep-
toswitch) (33). uMKKS0, uMKKS1 and uMKKS2 are
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Figure 4. Example transcripts with predicted micropeptide expression. Shown are the model outputs (y-axis) for each position of the transcript (x-axis).
For high TIS predictions, the bounds (striped line) and area of the resulting CDSs are shown. Given are the predictions for the transcripts. (A) MKKS
(ENST00000652676), (B) SPAAR (ENST00000443779), (C) MTLN (ENST00000426713) and (D) ATF4 (ENST00000676346).

reported to be 43, 63 and 50 amino acids long, respectively
(Figure 4 A). Matsumoto et al. could validate the expression
of a 90 amino acid sORF on the SPAAR gene (Figure 4B)
(34). The micropeptide is shown to be an important fac-
tor in regulating biological pathways related to muscle re-
generation. Two studies reported the existence of a 56 SEP,
found to affect mitochondrial respiration (35,36) (Figure 4
C). Young et al. report the existence of an upstream CDS of
53 codons overlapping with the ATF-4 coding region (Fig-
ure 4D) (37) . Supplementary Table A6 features more in-
formation on model predictions of recently recovered small
ORFs (38). Supplementary Figure A12 gives the model out-
put of transcripts with multiple high-ranking CDSs, some
of which being short CDSs.

In contrast to the Ensembl database used for training,
the model allows for multiple high ranking TIS per tran-
script (Figure 4A, B, D) and does not seem to be affected
by the lack of multiple TISs in the training data. When se-
lecting as many TISs within the positive set as are present
in the Ensembl annotations (i.e. by incorporating the top-
ranking predictions in the positive set), a total of 956 tran-
scripts with multiple TISs would be obtained. Supplemen-
tary Figure A10 shows the occurrence of upstream (over-
lapping), downstream (overlapping), and internal ORFs on
the transcriptome annotated by TIS Transformer. Several
examples of such transcripts are shown in Supplementary
Figure A12.

DISCUSSION

Recent advancements of machine learning in processing se-
quential data, mainly introduced in the field of natural lan-
guage processing, portend new opportunities towards the
creation of predictive models on biological sequence data.
The introduction of the FAVOR+ mechanism, which re-
duces the complexity of the attention step, has been an es-
sential advancement to make processing of full transcript
sequences at single nucleotide resolution possible. In this
study, we investigate the use of these transformer networks
to determine TISs based on the processed transcript se-
quences. We introduce TIS Transformer and benchmark it

with previous solutions and show that a major improve-
ment in performance was achieved. Transformers offer sev-
eral advantages, notably, the model is able to parse variable
length inputs, allowing it to process the full transcript se-
quence. It is efficient in parsing transcript information, as
it requires only to parse the full transcript once to provide
predictions for all its nucleotide positions. Furthermore, we
see that improved performances have been achieved with a
similar number of model weights as compared to previous
tools. Although the research objective has been taken on
by a plethora of studies in the past, the general usability
and advantage of utilizing machine learning for annotating
the full transcriptome has remained unclear. Various factors
that previously posed as limitations, such as computational
requirements, do not necessarily prove to be an inhibiting
factor today.

Ensembl annotations

Selection of the Ensembl data set to perform the study was
based on multiple arguments. It currently includes annota-
tions from several other collaborations such as CCDS and
GENCODE. Featured annotations are not derived from
a single experiment or generated using a single algorithm.
Rather, the database is the result of multiple decades of care-
ful curation and is based on the work of thousands of in-
dependent experiments. Unfortunately, it is plausible that
our current knowledge of the human proteome is biased
and incomplete. A lack of annotated SEPs and the existence
of multi-TIS transcripts have previously been hypothesized
(30,33). TISs that result in products that are hard to de-
tect using common experimental methods (e.g., too small,
unstable/aberrant proteins) are bound to be underrepre-
sented in today’s data sets. These biases cannot be simply
solved as part of this research, but will require an iterative
and targeted effort.

We could determine no biological factors that could ex-
plain the correlation between the performance of the model
and the transcript support level (Figure 2B; Supplemen-
tary Figures A8 and A9) or GENCODE tag (Figure 2B).
In contrast, the ability of the model to detect novel TISs is
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corroborated by the increasing fraction of validated TISs
using pBLAST (Figure 2A). Overall, these findings give a
strong indication that performances are at least partially
caused by (i) data set limitations, such as the lack of multi-
TIS transcripts, (ii) faulty transcript sequences resulting
from errors in the transcriptome and (iii) noisy TISs anno-
tations due to biases in the data set (e.g. SEPs).

Transcript types

In this study, the positive set incorporates all TIS annota-
tions provided by Ensembl, thereby also including the nu-
cleotide positions on a set of transcript types that are ac-
tively regulated against or result in faulty protein products.
Nonsense mediated decay is a mechanism that targets faulty
mRNA transcripts and breaks these down to prevent the
initiation of aberrant translation products (39). Another
set of transcript isoforms misses validated coding mRNA
ends (GENCODE tags CDS end NF/mRNA end NF) or
retains introns. We see that a large portion of novel an-
notations performed by the model occurs on special type
transcripts (see Supplementary Figure A10), following the
idea that unstable proteins are underrepresented in today’s
known proteome. Future work might focus in on differenti-
ating between types of translation events, such as those re-
sulting in unstable proteins, in order to evaluate the influ-
ence on the resulting model.

Non-canonical start codons

The presence of non-canonical start codons has been shown
by various studies through the analysis of ribosome profil-
ing data (40), where near-cognate start codons make up a
substantial part of the predicted TISs. Due to these findings,
it is hypothesized that today’s TIS annotations are lack-
ing for near-cognate start codons. The model conforms to
the importance of ATG as a start codon, where only seven
(0.006%) instances (all CTG) of non-cognate start codons
are present within the top scoring predictions, including as
many predicted TISs per chromosome as annotated by En-
sembl. This behavior is likely explained by the lack of non-
ATG start codons in the Ensembl annotations today.

Future prospects

The relevance of deep learning has strongly increased in
recent years as its application and adaptation becomes
more widespread. Most notably has been the release of Al-
phaFold, which has become a central tool for protein struc-
ture prediction (41). Similarly, annotation software driven
by machine learning, such as TIS transformer, can drive the
design of future studies or serve as an extra validation step.
These can be focused on the discovery of new proteins, im-
proving our understanding of biological drivers of transla-
tion, or predicting the occurrence of TISs on novel tran-
scripts, a required step in the study of biological pathways.
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The main repository is available at https://github.com/jdcla/
TIS transformer, https://doi.org/10.5281/zenodo.7611886.

All annotations of the model are publicly available. All code
is available and can be used to train varying model archi-
tectures or remap the proteome of other organisms. All dis-
cussed models are made available for the community and
can thereby be applied to custom transcripts. The input
data, unprocessed model outputs, and curated predictions
for each chromosome, as used in this study, are available.
Lastly, to promote access to the results, and allow users
to quickly obtain predicted TISs given certain criteria, we
provide an online tool that is linked on the GitHub and
currently online at https://jdcla.ugent.be/TIS transformer
(Supplementary Figures A1– 3). To illustrate, one can easily
collect the small ORFs on non-coding sequences, all tran-
scripts featuring multiple TISs, and transcripts featuring
upstream ORFs.
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