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Protein structure and folding pathway prediction
based on remote homologs recognition using
PAthreader
Kailong Zhao1, Yuhao Xia1, Fujin Zhang1, Xiaogen Zhou 1, Stan Z. Li 2✉ & Guijun Zhang 1✉

Recognition of remote homologous structures is a necessary module in AlphaFold2 and is

also essential for the exploration of protein folding pathways. Here, we propose a method,

PAthreader, to recognize remote templates and explore folding pathways. Firstly, we design a

three-track alignment between predicted distance profiles and structure profiles extracted

from PDB and AlphaFold DB, to improve the recognition accuracy of remote templates.

Secondly, we improve the performance of AlphaFold2 using the templates identified by

PAthreader. Thirdly, we explore protein folding pathways based on our conjecture that

dynamic folding information of protein is implicitly contained in its remote homologs. The

results show that the average accuracy of PAthreader templates is 11.6% higher than that of

HHsearch. In terms of structure modelling, PAthreader outperform AlphaFold2 and ranks first

on the CAMEO blind test for the latest three months. Furthermore, we predict protein folding

pathways for 37 proteins, in which the results of 7 proteins are almost consistent with those

of biological experiments, and the other 30 human proteins have yet to be verified by

biological experiments, revealing that folding information can be exploited from remote

homologous structures.
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A lphaFold2 developed by the DeepMind team has achieved
a major breakthrough in machine learning-based protein
structure modelling. However, the physics of how pro-

teins dynamically fold into their equilibrium structures is not
explored in AlphaFold21,2, while understanding protein folding is
important for deciphering the genetic code and will promote the
exploration of pathogenic mechanism, the development of drug
design, and the design of engineered protein-based materials3–5.
It is well known that templates play a critical role in the protein
structure modelling4. Meanwhile, the evolutionary relationship
implicitly contained in templates are probably favorable for study
of protein folding6.

Templates are essential for improving the accuracy of protein
structure prediction. In general, protein structure modelling
methods are divided into three categories: physics-based meth-
ods, knowledge-based methods, and end-to-end deep learning
methods. Physics-based structure modelling methods use the
template as the initial structure for folding simulations, such as
metropolis monte carlo and molecular dynamics simulation7.
Knowledge-based modelling approaches usually perform
template-based large-scale conformational sampling guided by
the energy function, such as RosettaCM8, D-I-TASSER9, SWISS-
MODEL10 and MODELLER11. In end-to-end deep learning
methods, such as AlphaFold23, RoseTTAFold12 and RGN213,
template information is used explicitly or implicitly for deep
learning models. Some recent work have shown that almost all of
the popular protein structure prediction methods strongly depend
on the quality of the template2. For example, it has been reported
that the AlphaFold2 structure accuracy in the AlphaFold Protein
Structure Database (AlphaFold DB) is largely affected by template
availability4,14. The distribution of AlphaFold2 models of human
proteins with Protein Data Bank (PDB) structures available is
heavily skewed to higher average confidence scores than those
without PDB structures available15,16. There is evidence that the
structural space of the PDB is complete and can be used to solve
most single-domain proteins17. Therefore, developing a new
method to recognize high-quality remote homologous templates
(PDB structures with a sequence identity <30%)18,19 is extremely
important for protein structure prediction.

Templates are also crucial for the research on protein folding
pathways. AlphaFold2 has been successfully used for protein
structure prediction using statistical knowledge of the crystal
structure. However, it is not clear whether AlphaFold2 can learn
the physics of how proteins dynamically fold into equilibrium
structure1,20. Protein folding is a very fast process (<1 s for
small proteins with ≈100 AAs), which results in intermediates
that only transiently populate during kinetic folding21. Experi-
mentalists usually use spectrometry methods such as circular
dichroism chromatography, fluorescence spectroscopy, etc. to
study protein folding pathways. Circular dichroism spectro-
scopy uses the different absorption of left and right circularly
polarized light by chiral molecules to analyze protein interac-
tions and determine protein folding paths22. Fluorescence
spectroscopy is based on the fluorescence emission character-
istics of aromatic amino acids in proteins to monitor the
folding-unfolding pattern and protein denaturation23. These
methods can follow kinetic folding but provide very limited
information to define the structure of folding intermediates24.
In some related works, attempts have been made to avoid these
difficulties by simulating the folding process. Kresten Lindorff-
Larsen et al. studied the folding process of proteins through
equilibrium MD simulations by improving the CHARMM force
field to make it easier to transfer between different protein
classes21. Charlotte M Deane et al. use DMPfold to predict the
distribution of distances for each residue pair to determine rigid
and flexible behavior of proteins25. However, inferring the

folding path from the mass of simulated data is still a challenge.
As a result of gene fusion in the organism, protein folding
intermediates may be found in the final state of other
proteins24. Is it possible to explore folding pathways from a
large number of remote homologous structures? For billions of
years, organisms in nature have produced stable, functionally
safe three-dimensional protein shapes that are reused repeat-
edly, ranging from short structure to oligomeric complexes26.
Therefore, all known PDB structures can be grouped into a very
limited number of hierarchical families27,28. The evolutionary
relationships of these protein families may implicitly contain
folding information of individual protein. Recently, the Deep-
Mind and the EMBL-European Bioinformatics Institute colla-
borated to create a new data resource, AlphaFold DB, which has
attracted the extensive attention of biological scientists14. It
greatly expands the structural coverage of the known protein
sequence space. This makes it possible for AlphaFold DB to
complement PDB with respect to the recognition of remote
homologous structures and the discovery of template-inspired
protein folding pathways. With more than 188,502 publicly
available PDB structures (as of August 2020) and 564,449
AlphaFold DB structures (as of March 2022), developing an
efficient method is essential for recognizing remote templates
and exploring folding pathways.

In the current literature, the common template recognition
approaches can be roughly divided into two categories: profile-
based alignment methods and binary contact/distance-based
threading methods. Most profile-based alignment methods use
sequential information, including sequence profile, secondary
structure, solvent accessibility and torsion angles to build scoring
functions, such as HHsearch18, SPARKS-X29 and MUSTER30.
Binary contact/distance-based threading methods have been
developed as great progress has been made by deep learning in
inter-residue contacts or distances prediction. For example, in
EigenTHREADER31 and CEthreader19, eigenvector decomposi-
tion is used to resolve the principal eigenvectors, and then an
alignment search is performed on the eigenvectors using standard
dynamic programming algorithms. DeepThreader32 aligns the
query protein to the template and uses the predicted distance
potential to further improve the sequence-template alignment. In
addition, there are methods to integrate sequence profile infor-
mation and contact maps into scoring functions, such as
LOMETS33 and CATHER34. These methods improve the accu-
racy of template recognition to a certain extent, but they can be
further improved, as shown in many studies2,33.

In this work, we proposed a method, PAthreader, to recognize
the remote template and explore the folding pathway by learning
from PDB and AlphaFold DB. The results on a large-scale
benchmark dataset indicate that PAthreader is significantly
better than state-of-the-art methods for remote template recog-
nition. To the best of our knowledge, AlphaFold DB is applied to
remote template recognition and folding pathway exploration for
the first time. We also analyzed the relationship between the
template and the model of AlphaFold2, which shows that the
quality of model mainly depends on the template availability.
When feeding the better template of PAthreader into Alpha-
Fold2, the accuracy of its model was improved. Furthermore, we
propose a hypothesis that the evolutionary relationship of pro-
tein families implicitly contains the folding information of
individual proteins. That is, the folding pattern that occur fre-
quently in protein structures are more evolutionarily conserved,
and these conserved regions are structurally stable and pre-
ferentially formed in protein folding. Based on the above, we
identified folding intermediates from homologous templates and
obtained protein folding pathways of 7 widely studied cases and
30 human proteins.
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Results
PAthreader overview. The pipeline of PAthreader is illustrated in
Fig. 1, and the details are presented in the Methods section. First,
multi-peak distance profiles are obtained by our in-house
DeepMDisPre, which may predict multiple possible distances
for flexible protein regions. Structure profiles are extracted from
PAcluster80, a master structure database built by clustering PDB
and AlphaFold DB with a threshold of 80% structural similarity.
Then, a three-track alignment algorithm is proposed to align the
query sequence to each cluster seed of PAcluster80, in which the
protein-specific score matrix is first calculated by residue pair
alignment and profile alignment, and the optimal sequence
alignment is then searched by dynamic programming and the

maximum alignment score (alignScore) is obtained. Subse-
quently, physical and geometric features are extracted from the
alignment structure and fed into a convolutional network with
self-attention to predict the DMScore (pDMScore)35, a global
structure scoring metric that is complementary to alignScore
and linearly weighted with the alignScore for template ranking.
Finally, the top templates are fed into state-of-the-art protein
structure prediction methods for structure modelling. Mean-
while, the folding pathway is explored based on the folding
intermediates, which are deduced according to secondary
structures and frequency distributions of residues calculated on
the basis of different distance deviation thresholds after tem-
plate alignment by TM-align36.

Fig. 1 Overview of the PAthreader workflow. a The flowchart of PAthreader. Starting from the sequence, MSA is generated by searching the UniRef30
database using HHblits, and multi-peak distance profiles are predicted by our in-house DeepMDisPre. Meanwhile, structure profiles are extracted from
PAcluster80, a master structure database constructed by clustering PDB and AlphaFold DB. Then, a three-track alignment algorithm is designed to align
the query sequence to each cluster seed to obtain the maximum alignment score (alignScore). The physical and geometric features of the alignment
structures are fed into a trained deep learning model to predict the pDMScore and rank the templates. Finally, the identified templates are integrated into
AlphaFold2 for the structure modelling, and the protein folding pathway is determined by identifying folding intermediates according to the residue
frequency distribution extracted from templates. b Schematic of the three-track alignment. The first track is to calculate the protein-specific score matrix
and find the optimal sequence alignment by dynamic programming, where the score matrix is obtained from the second track by finding the optimal residue
pair alignment. Residue pair alignment is performed based on the construction of the residue pair score matrix, where the values are calculated from the
third track by maximizing the product of probabilities and minimizing the distance difference. c The deep neural network for pDMScore prediction, which
consists of 3 axial attention blocks and 15 residual blocks.
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PAthreader significantly outperforms state-of-the-art methods
for template recognition. We constructed a test set of 551
nonredundant proteins with sequence identities <30% from the
SCOPe37 database. The resolutions of these proteins are less than
2 Å, and their lengths range from 120 to 700 residues. We
compared our method with state-of-the-art threading protocols,
including HHsearch18 and LOMETS333, where homologous
templates with a sequence identity ≥30% to the query were
excluded. In order to objectively evaluate the performance of
these methods at different difficulty levels, we divided the test set
into 4 subsets based on the TM-score of the best template in PDB,
i.e., 0–0.5, 0.5–0.7, 0.7–0.9 and 0.9–1 (Supplementary Data 1).
The results are summarized in Table 1. Our method outperforms
HHsearch and LOMETS3, with the average TM-score of test
targets that is 12.2% and 5.2% higher than that of HHsearch and
LOMETS3, respectively. The P values of Student’s t-test are
3.29E-47 and 1.52E-25, respectively, indicating statistically sig-
nificant differences between them. Figure 2a and b present the
head-to-head TM-score comparison between methods, where
PAthreader achieves a higher TM-score than HHsearch and
LOMETS3 for 76% and 71.3% of the targets, respectively. In
particular, the performance of PAthreader is significantly better
than that of HHsearch and LOMETS3 for the hard targets (0–0.5
and 0.5–0.7). We compared HHsearch/LOMETS3 and PAthrea-
der without AlphaFold DB, and the results are shown in Sup-
plementary Table S1. The average TM-score of the first template
identified by PAthreader is 0.702, which is 8.6% and 1.9% higher
than that of HHsearch and LOMETS3, respectively. We also
compared our method with SPARKS-X、MUSTER、CEthreader
and EigenTHREADER, where homologous templates with a
sequence identity ≥30% to the query were excluded. The results
are summarized in Supplementary Table S2. The average TM-
score of PAthreader is 12.2%, 5.2%, 8.4%, 8.5%, 7.9% and 10.5%
higher than that of HHsearch、LOMETS3、SPARKS-X、
MUSTER、CEthreader and EigenTHREADER, respectively. The
results show that the PAthreader performs better than these
methods.

Until now, achieving accurate predictions for multi-domain
protein structures has been more challenging than for single-

domain proteins38,39. Therefore, we compared PAthreader with
HHsearch and LOMETS3 in terms of template recognition ability
for multi-domain proteins. Here, the test set was classified into
three categories: single-domain proteins (1dom), proteins with 2
domains (2dom), and proteins consisting of ≥3 domains
(≥3dom). The results are reported in Fig. 2c. From this figure,
it is shown that the average TM-score of PAthreader is 12.2% and
4.1% higher than that of HHsearch and LOMETS3 for single-
domain proteins, respectively. For multi-domain proteins, the
average TM-score of PAthreader is 12.3% and 7.9% better than
that of HHsearch and LOMETS3, respectively. These results
demonstrate the robustness of PAthreader, which outperforms
state-of-the-art template recognition methods for both single-
domain and multi-domain proteins. Moreover, we attempted to
recognize the templates of protein complexes by adding 21
residue repeated Glycine-Glycine-Serine to link the chains of the
complexes together40. Supplementary Fig. S1 shows that
templates with TM-scores= 0.97 and 0.91 are obtained for
1AB9 and 1GRN, respectively, using PAthreader. These results
suggest that although PAthreader was designed for single-chain
proteins, it may be used to recognize templates of protein
complexes.

There may be three reasons for the better performance of
PAthreader over HHsearch and LOMETS3. Firstly, AlphaFold
DB helps to improve the accuracy of template recognition by
expanding the family coverage of model organism proteomes.
From the structures of 48 species provided by AlphaFold DB,
which provides novel folding architectures and motifs not found
in PDB, we selected 100,912 high-confidence structures15 with a
predicted local distance difference test (pLDDT) score ≥90 to
complement the master structure database from PDB. We
investigate the effect of AlphaFold DB on template recognition
through ablation experiments, and the results are shown in Fig. 3a
and Supplementary Table S1. When AlphaFold DB is used, the
average TM-score of PAthreader is 0.1%, 1%, 8.2% and 23.4%
higher than those without using AlphaFold DB for the targets of
0.9–1, 0.7–0.9, 0.5–0.7 and 0–0.5, respectively, where the
performance of PAthreader is significantly improved for the
hard targets (0–0.5 and 0.5–0.7). However, the performance of

Table 1 TM-score of template recognition on 551 tested proteins.

(0.9, 1.0) (0.7, 0.9) (0.5, 0.7) (0.0, 0.5) All

num (58) num (321) num (149) num (23) num (551)

PAthreader 0.899 0.787 0.568 0.424 0.725
HHsearch 0.840 0.718 0.476 0.272 0.646
LOMETS3 0.868 0.754 0.534 0.342 0.689

Tested proteins were divided into four subsets (0–0.5, 0.5–0.7, 0.7–0.9 and 0.9–1) based on TM-score of the best template of targets in PDB. Bold text highlights the best result in each category.

Fig. 2 Performance of PAthreader for template recognition. a, b Head-to-head TM-score comparison of PAthreader with HHsearch and LOMETS3
at different difficulty levels. c Average TM-score on single-domain and 2-domain and ≥3-domain proteins, with corresponding protein numbers in
parentheses.
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PAthreader is not remarkably improved for the easy targets
(0.7–0.9 and 0.9–1) because they already have promising
templates in the PDB. This suggests that AlphaFold DB may be
an effective complement to the current PDB, especially for
extremely remote templates, which is helpful to improve the
accuracy of template recognition. Supplementary Fig. S2a shows
an example, 1HZ4_A, whose TM-score is significantly improved
from 0.56 to 0.84 due to the extension of AlphaFold DB.

Secondly, the three-track alignment takes full advantage of the
structural information and predicted multiple promising dis-
tances for residue alignment, residue pair alignment, and
distance-structure profile alignment. In order to analyze the
performance of the three-track alignment, we perform sequence-
structure threading for the identified structures in different ways
on the benchmark set. Figure 3b presents a comparison, where
the results of PAthreader are obtained by threading the sequences
into the identified structures based on the sequence alignment
provided by the three-track alignment, and the results of
HHsearch are generated by the Hidden Markov-constructed
profiles comparison. PAthreader# and HHsearch# represent the
results obtained by comparing the identified structure with the
native structure through TM-align, which is denoted as the native
alignment. The comparison of PAthreader# and HHsearch#

shows that the template structures identified by our method are
better than those of HHsearch. It also highlights that there is a
gap between HHsearch and its native alignment HHsearch#,
while PAthreader is almost close to its native alignment
PAthreader#. These results indicate that more accurate structures
are identified when using our method, and more accurate
sequence-template alignments than HHsearch are presented. The
performance is further confirmed by the comparison of the

results shown in Fig. 3c, where PAthreader also significantly
outperforms HHsearch when removing homologous templates
with 100% sequence identity. Supplementary Fig. S2b shows a
representative example, where 3CES_A is identified as the best
template structure for the query target using both PAthreader and
HHsearch. However, the alignment provided by PAthreader is
closer to the native alignment than HHsearch, resulting in a
better TM-score for the PAthreader template (0.81) than the
HHsearch template (0.55).

Thirdly, we combine the pDMScore predicted by deep learning
and the alignScore obtained from the three-track alignment to
select better templates. Figure 3d and Supplementary Table S1
present the results of the ablation experiments. Compared with
alignScore, the templates that are selected by pDMScore are better
for cases at the difficulty level of 0-0.5. This is because pDMScore
uses a deep neural network that combines physical and geometric
features of structures, reducing the noise from AlphaFold DB and
the predicted distance profiles and effectively complementing to
the alignScore. Therefore, when using the score based on the
linear weighting of alignScore and pDMScore, the template is
better than that selected by independently using alignScore and
pDMScore. As shown in Supplementary Fig. S2c, the TM-score of
the template identified by the combination of alignScore and
pDMScore is 0.89, which is higher than that identified by
alignScore (0.66) and pDMScore (0.64) obtained independently,
since the template has accurate domain orientation and high
coverage. Furthermore, the average run time of PAthreader is
1.25 hours for 551 test proteins when computing on a single
workstation with 10 Intel Xeon Silver 4210 R 2.4 GHz CPUs.
Supplementary Fig. S3 shows the runtime of each protein, which
increases nearly linearly with sequence length.

Fig. 3 Performance of PAthreader for template recognition. a The average TM-score for template recognition with and without AlphaFold DB at different
cut-off ranges. b, c The proportion of the number of templates with ≥30% and 100% sequence identity removed at different TM-score cut-off.
PAthreader# and HHsearch# represent the results obtained by comparing the identified structure with the native structure through TM-align. d The
average TM-score for different template rankings, showing the effect of pDMScore on template recognition.
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Our results suggest that the performance of AlphaFold2
depends on the quality of the template. AlphaFold2 has made a
great advance in protein structure prediction based on the current
sequence library and structure library. Here, we performed two
experiments to analyze the relationship between the template and
the accuracy of the AlphaFold2 model. Firstly, we examined the
quality of templates for high-scoring models (pLDDT ≥ 90) of
AlphaFold DB by structural comparison. As of March 2022,
AlphaFold DB provides 564,449 structures for 48 organisms. We
clustered 100,912 high-scoring models selected from AlphaFold
DB using TM-align with 80% structural similarity. We found that
55.7% of the structures could be classified into the 34,701 PDB
clusters determined during the construction of the master
structure database, and the remaining structures could form
22,105 new clusters. This indicates that more than half of the
high-scoring models in AlphaFold DB have templates with TM-
score ≥ 0.8 in PDB.

Secondly, we further analyzed the relationship between the
model accuracy and the first template used for AlphaFold2
modelling on 551 test proteins, where all templates with sequence
identity ≥30% were removed. The results are presented in
Supplementary Fig. S4a. On the 274 targets with higher quality
templates (TM-score ≥ 0.7), models with TM-score ≥ 0.9 are
generated for 88% of targets by AlphaFold2. On 277 targets with
relatively poor templates (TM-score < 0.7), the number of models
with TM-score ≥ 0.9 predicted by AlphaFold2 decreased to 49.8%.
However, in some cases without high quality templates, high
scoring models can still be obtained by AlphaFold2. We speculate
that there may be two main reasons for this. One is that these
targets can be searched for abundant multiple sequence
alignments (MSAs), which are used to infer the precise residue
relationship by AlphaFold2. The other is that these test proteins
may be included in the training set of AlphaFold2, which makes it
difficult to accurately test the effect of templates on AlphaFold24.
We also used the CAMEO test set (2022/04/01-2022/06/18) to
analyze the relationship between the template and the accuracy of
the AlphaFold2 model. The results are presented in Supplemen-
tary Fig. S4b. The CAMEO test set has the same trend as the 551
test proteins in terms of the relationship between the template
and the accuracy of the AlphaFold2 model. AlphaFold2 produced
more and more low-scoring models as template quality decreased.

The above results suggest that the performance of AlphaFold2
depends on the quality of the template to some extent. Therefore,
it is possible to improve AlphaFold2 by providing better
templates.

AlphaFold2 model can be enhanced by PAthreader templates.
We participated in the CAMEO blind test by replacing the
template recognition component (HHsearch) of AlphaFold2 with
PAthreader. In a continuous three-month test, our method
(PAthreader) achieved better results than the state-of-the-art
methods, and ranked first among the public servers (Supple-
mentary Table S3). Here, we compare our method with Alpha-
Fold2 and RoseTTAFold on the CAMEO targets. The results of
AlphaFold2 were obtained by running the standalone package
locally and those of PureAF2_orig, PureAF2_notemp, and
RoseTTAFold were obtained from the CAMEO official website
(https://www.cameo3d.org/modelling/). Figure 4a and Table 2
present the results, where PAthreader obtains the better model
than other methods on most of the cases and achieves higher TM-
score compared to other methods on average. This suggests
PAthreader was able to provide better templates for the modelling
than HHsearch. Figure 4b presents the template recognition
results of PAthreader and HHsearch, where the average TM-score
of PAthreader is 11.2% higher than that of HHsearch on the

CAMEO targets. PAthreader generates templates with TM-
score ≥ 0.9 on 32.3% of the targets, which is almost twice as high
as HHsearch (17.2%). We analyzed the relationship between the
model accuracy and the first template used for PAthreader
modelling on CAMEO targets (Supplementary Data 2). On the 62
targets with poor quality templates (TM-score < 0.7), models with
TM-score ≥ 0.9 are generated for 38.7% of targets by PAthreader.
On 124 targets with higher templates (TM-score ≥ 0.7), the
number of models with TM-score ≥ 0.9 predicted by PAthreader
increased to 83.1%. Interestingly, we find that PAthreader obtains
templates with a higher TM-score than AlphaFold2 models on
10.2% targets (Fig. 4c). These results again demonstrate the ability
of PAthreader in terms of template recognition.

The number of structural patterns or family types of proteins is
limited. Many proteins with low sequence identity correspond to
the same structural pattern in PAcluster80. Therefore, templates
are essential for AlphaFold2 modelling when a protein does not
have enough MSAs to infer atomic coordinates and its
corresponding structural pattern happens to exist. Figure 4d
presents two representative examples, a single-domain protein
(7PNO_D) and a multi-domain protein (7T4Z_A). For the target
7PNO_D, PAthreader generates a model with TM-score of 0.89,
which is better than that of AlphaFold2 (0.75) and PureAF2_orig
(0.73). This is because there is only one sequence in the MSA,
which cannot probably provide sufficient co-evolutionary infor-
mation to infer residues relationship, resulting in the protein
modelling of AlphaFold2 being heavily dependent on the
template. However, HHsearch employed by AlphaFold2 provided
a poor template with TM-score= 0.33. PAthreader identified a
better template with TM-score= 0.64, which results in a better
final model. For target 7T4Z_A, PAthreader generates a model
with TM-score of 0.92, which is better than that of AlphaFold2
(0.84) and PureAF2_orig (0.84). This is because PAthreader
recognize a better template with TM-score= 0.85 than that of
HHsearch (0.77), which provide accurate domain orientations for
multi-domain proteins modelling.

Since 2019, considerable efforts have been made to determine
the structure of proteins in SARS-CoV-2, a novel coronavirus
responsible for the COVID-19 pandemic. We used PAthreader to
recognize templates and model structures for 17 proteins of
SARS-CoV-2 virus, and the results are shown in Supplementary
Table S4. The average TM-score of PAthreader templates is 0.725,
which is 11.3% higher than that of HHsearch. In structural
modeling, PAthreader models achieved a slightly higher average
TM-score (0.825) than the AlphaFold2 models (0.812). In
Supplementary Fig. S5, we show a comparison of structural
model built by PAthreader and AlphaFold2, where the PAthrea-
der model has the TM-score of 0.987 which is better than that of
the AlphaFold2 model (TM-score= 0.825).

Protein folding pathway exploration. PAthreader predicts the
protein folding pathways based on intermediates inferred from
remote homologous proteins, which likely originate from a
common ancestor and can reveal the evolutionary relationship
between proteins27,41. It is well known that the structures of
proteins are more evolutionarily conserved than their sequences,
and amino acid mutations may not result in major changes in
structure and function42,43. When comparing remote homo-
logous proteins with each other, it can be found that there are
highly similar structures between them that are very stable in
organisms after billions of years of evolution. Inspired by these
ideas, we speculate that folding intermediates may be related to
these stable structures and that they may have been selected by
evolution so as to have a rapid and robust pathway for folding to
the native structure. In other words, the evolutionary
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relationships of protein families may contain folding information
of individual protein, such as folding intermediates. In addition,
there are some reports that the secondary structure influences
folding and unfolding kinetics and could determine the folding
pathway23, especially the pattern imposed by the cooperative
formation of α-helices and β-sheets, which may be an important
factor in determining the folding pathway44,45. Based on the
above assumptions, we explored protein folding pathways from

homologous templates and secondary structures, consisting of
two consecutive steps. First, the global structural alignment of the
identified homologous templates with the first template was
performed by TM-align. The residue frequency scores
(ResFscore) were then calculated at different distance deviation
thresholds, where a higher value indicates a higher frequency of
residue alignment at corresponding positions of template struc-
tures. Second, the target was divided into multiple segments based

Fig. 4 Performance of PAthreader on CAMEO. a Head-to-head TM-score comparison of PAthreader with AlphaFold2, pureAF2_orig, pureAF2_notemp,
and RoseTTAFold for structure modelling. Each point represents a protein target, and different colors indicate different protein sizes. b The distribution
of the TM-score of templates identified by PAthreader and HHsearch. c Comparison of the TM-score of templates by PAthreader and the model
obtained using AlphaFold2 on 19 proteins. d Examples of the single-domain protein 7PNO_D and the multi-domain protein 7T4Z_A. The structure
superpositions of PAthreader model (blue), AlphaFold2 model (pink), and pureAF2_orig model (green) with the native structure (grey) and template
(yellow) are shown.
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on the secondary structure, and the average ResFscore for each
segment was calculated by dividing the corresponding area of the
segment by its length. Folding intermediates were finally deter-
mined by adaptively selecting fragments with an average
ResFscore greater than a given threshold (see details in Methods
section). We explored protein folding pathways on 7 widely
studied cases and 30 human proteins (Supplementary Data 3).
The results show that the 7 proteins are almost consistent with

biological experiments, and the other 30 human proteins have yet
to be verified by biological experiments.

Horse heart cytochrome c is a member of the cytochrome c
superfamily. It is an electron-transfer protein with a heme c
group, and it binds to protein via thioether bonds to complete the
transfer of electrons. The structure consists of five α-helices
connected by random coil segments, which fold around the heme
moiety with histidine residue (H18) and methionine residue
(M80) as axial ligands46. In the current literature, two different
folding pathways of this protein have been identified by hydrogen
exchange (HX) pulse labeling and nuclear magnetic resonance
(NMR). Figure 5a shows the first experimental pathway, where
the blue helices are first folded and followed by red regions45.
Figure 5b shows the second experimental pathway, where blue is
folded first, followed by green, yellow, red and then grey47,48. It
contains 4 folding intermediates, I1, I2, I3 and I4 (Supplementary
Fig. S6).

Figure 5c shows the folding intermediate and pathway of horse
heart cytochrome c predicted by PAthreader, where the
intermediate contains three helices that are consistent with the
first experimental pathway. Although multiple intermediates of
the second experimental pathway are not accurately predicted,
the ResFscore distribution of residues identified by PAthreader
from homologous templates can explain the folding order
determined by biological experiments well. As shown in Fig. 5d,
the N- and C-terminal helices corresponding to blue segments of

Fig. 5 Folding pathway of horse heart cytochrome c (PDB ID: 1I5T). a The first experimental pathway. The blue region is first folded and is followed by the
red region. b The second experimental pathway. Blue is folded first, followed by green, yellow, red and then grey. It contains 4 intermediates, I1 (blue), I2
(blue + green), I3 (blue + green + yellow) and I4 (blue + green + yellow + red). c Intermediate and folding pathways predicted by PAthreader, the blue
region is first folded and is followed by the red region. d Two different experimental paths and the ResFscore distribution of residues identified by
PAthreader. e–g Template structures from 1KIB, 1W2L and 2YEV. The solid line box is the partial superposition of templates and the structure of horse
heart cytochrome c (grey), which correspond to intermediates of the second experimental pathway.

Table 2 TM-score of structure modelling and template
recognition on the three-month CAMEO blind test.

2022/04/01–
2022/04/23

2022/04/29–
2022/05/21

2022/05/27–
2022/06/18

Structure modelling
PAthreader 0.882 0.900 0.876
AlphaFold2 0.878 0.896 0.869
pureAF2_orig 0.877 0.892 \
pureAF2_notemp 0.864 0.896 \
RoseTTAFold 0.811 0.824 0.830

Template recognition
PAthreader 0.719 0.754 0.776
HHsearch 0.650 0.672 0.690

The results of AlphaFold2 were obtained by running the standalone package locally and those of
PureAF2_orig, PureAF2_notemp, and RoseTTAFold were obtained from the CAMEO official
website. Bold text highlights the best result in each category.
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the second experimental pathway have a relatively high
ResFscore, followed by the green segments. The red and grey
segments have the lowest ResFscore.

The order of the yellow segments could not be identified
accurately because they are too short. This result indicates that
the average ResFscore corresponding to the secondary structure
can reveal the folding order of the protein. From the analysis of
the results, we found that intermediates could be found in the
template structures identified by PAthreader. Figure 5e–g show
similar template structures of intermediates I1, I2 and I4 of the
second experimental pathway (the difference between I3 and I2 is
not obvious), which are from the cyanobacterium Arthrospira
maxima cytochrome c6 (PDB ID: 1KIB), Rhodothermus marinus
caa3 cytochrome c domain (PDB ID: 1W2L) and Thermus
thermophilus caa3-type cytochrome oxidase (PDB ID: 2YEV) in
PDB, respectively. It can be seen that the three structures
correspond to different intermediates of the second experimental
pathway. They are from the same protein family and have similar
electron transfer functions. However, these structures have been
changed during the evolution of different organisms, which are
mainly reflected in local structures other than preferentially
folded three helices. For example, compared with the bottom loop
of cytochrome c (residues 35–56 in Fig. 5c), 1KIB and 1W2L form
a short helix and two antiparallel β-strands in the corresponding
regions, respectively. Based on the differences between these
structures, we further analyzed why the three helical segments of
cytochrome c are preferentially folded. The local structural
changes of the cytochrome c family are probably related to the
electron transfer function, since ligand binding can induce
conformational changes49, which are characterized by heme
crevice undergoing closed-open transitions concomitant with
shifts of residues 77–85 and residues 35–5646. These flexible local
structures have a high probability of mutation in biological
evolution, while the pocket region formed by the three helices is
stable. Therefore, the order of protein folding is related to its
function, and relatively stable regions of structure are preferen-
tially formed during protein folding. These results suggest that the
final state structures of protein families may be the folding
intermediates of individual protein, which implicitly contain
folding information. Interestingly, we also found an intermediate-
like structure of cytochrome c in the complex, which is composed
of the N-terminal of chain 1 and the C-terminal of chain 2
(Supplementary Fig. S7). This suggests that proteins in organisms,
including single-domain proteins, multi-domain proteins and
complexes, may be formed with a limited number of folding
patterns.

Figure 6 shows the results of the folding pathways of synaptic
protein PSD-95 (PDB ID: 1BE9), T4 lysozyme (PDB ID: 2LZM),
human protein ckshs1 (PDB ID: 1DKT), apomyoglobin (PDB ID:
1MBC), acyl-CoA binding protein (PDB ID: 1NTI) and
redesigned Rd-apocyt b562 based on apocytochrome b562
(PDB ID: 1YYJ)50–55. Figure 6a and b show the folding pathway
determined by the biological experiments, where the blue region
is folded first and is followed by the red region (the yellow region
is not clearly defined). Figure 6c and d show the ResFscore
distribution and folding pathway identified by PAthreader. The
results show that the ResFscore distribution identified by our
method is consistent with the experiment determined protein
folding order for all proteins. It can be seen that relatively high
ResFscore often correspond to segments of α-helices or β-sheets,
while ResFscore of the loop regions that connect α-helices or β-
sheets have low ResFscore. This is consistent with the conclusion
that has been reported in the literature, that is, the folding nucleus
formed by the secondary structure is important in determining
the folding pathway of the protein44,45, and the folding

intermediate contains extensive secondary structures. In addition,
the secondary structure segments contained in the intermediates
identified by PAthreader are consistent with the results of
biological experiments for the first five proteins. For the last
protein, 1YYJ, the intermediate identified by PAthreader contains
three helices, which is slightly different from that determined by
native-state hydrogen exchange. This may be because 1YYJ is an
artificially designed protein, which results in its evolutionary
information not being accurately obtained from the protein
family. Figure 6e shows the template structures identified by
PAthreader, which have a similar intermediate structure to the
target proteins. The results of the 30 human proteins studied are
summarized in Fig. 7. Supplementary Fig. S8 and Supplementary
Table S5 show the optimal templates, folding intermediates, and
the proportion of templates used to recognize the intermediates
in different pfam families in detail. These results reveal that the
evolutionary relationships of protein families contain folding
information of the individual protein, which may provide a basis
for understanding the function and mechanism of molecules and
guide experimental structure determination.

Discussion
In this study, we developed PAthreader for remote template
recognition and template-based protein structure prediction and
folding pathway exploration. The results show that PAthreader
outperforms the state-of-the-art methods HHsearch and
LOMETS3 for remote template recognition. The ability of
PAthreader to recognize better remote templates is mainly
attributed to three aspects: the family coverage of model organism
proteomes is expanded through AlphaFold DB, the three-track
alignment algorithm provides accurate sequence-template align-
ment, and the predicted pDMScore helps to select physically
plausible templates. PAthreader can complete template recogni-
tion for proteins <120 AAs in 0.5 h using 10 CPUs, which is
acceptable for most applications. This is mainly attributed to the
clustering of the master structure database, which provides
structure profiles for alignment to help quickly locate the best
structural classes.

We demonstrated that the state-of-the-art protein modelling
method AlphaFold2 depends on the quality of templates to some
extent. Especially for multi-domain proteins, the model predicted
by AlphaFold2 still has a large deviation due to inaccurate
domain orientations56. We further enhanced AlphaFold2 using
PAthreader and ranked it first in the CAMEO blind test for three
consecutive months (2022/04/01-2022/06/18). However, we
found that directly providing better templates can only improve
AlphaFold2 to a certain extent, which may be the reason for the
over-engineering of AlphaFold2. Embedding PAthreader into
AlphaFold2 and retraining it may obtain a more suitable model,
but it would be a challenge because it requires an extremely large
number of computational resources.

Based on the recognized homologous templates, we further
explored protein folding pathways by identifying folding inter-
mediates. In this study, we proposed that the evolutionary rela-
tionships of protein families implicitly contain folding
information of individual protein, and protein folding inter-
mediates can be inferred from collections of remote homologous
structures. We explored the protein folding pathways of 37 pro-
teins. The results of 7 proteins are almost consistent with biolo-
gical experiments, and the remaining 30 human proteins have yet
to be verified by biological experiments. The ability of PAthreader
to explore folding pathways is mainly attributed to two aspects.
First, AlphaFold DB complements a large number of remote
templates, which provide sufficient evolutionary information
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between protein families. The second important contribution to
PAthreader is that DeepMDisPre predicts multiple promising
distances for flexible protein regions (an example is shown in
Supplementary Fig. S9), and the three-track alignment uses pre-
dicted multi-peak distance profiles to optimize the alignment,
which allows templates that satisfy all possible distance con-
straints to be recognized. The exploration of folding pathways
based on remote templates provides new ideas and insights for
the study of protein folding mechanisms, which will be advanced
by the accumulation of structures deposited in PDB and the rapid
expansion of AlphaFold DB.

Methods
Benchmark set. The benchmark set was constructed based on SCOPe 2.0737,
which was divided into 11,198 clusters by CD-HIT57 with a 30% sequence identity
cut-off. We selected 2021 clusters with only one member as candidate sets because
they have few templates with high sequence identity in the template library, which
helps to objectively evaluate the ability of remote templates recognition. In the 2021
clusters, 551 nonredundant proteins were selected as the benchmark set based on
sequence lengths ranging from 120 to 700 AAs and resolutions less than or equal to
2.0 Å. The parameters of PAthreader are listed in Supplementary Table S6.

Master structure database. We constructed a master structure database, named
PAcluster80, based on PDB and AlphaFold DB, and the flowchart is shown in

Fig. 6 Results of protein folding pathways. a, b Folding pathway determined by biological experiments. The folding order is blue and then red. c The
residue frequency distribution identified by PAthreader. d Folding pathway determined by PAthreader. e Template structures with folding intermediates
(blue) that are similar to those of the target protein (grey). TM-scorelocal is the similarity between the local structure (blue) of the template and the target
protein.
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Supplementary Fig. S10. Firstly, we removed structures with 100% sequence
identity from the PDB, since identical sequences often correspond to very similar
structures. Then, we calculated the structural similarity of the retained 106,275
proteins using TM-align and classified them into 34,701 structural classes based on
an 80% structural similarity threshold (protein pairs with TM-score ≥ 0.8 have a
great probability of being the same SCOP fold, and they have very similar
topologies)58. In this process, we used a greedy incremental clustering approach
similar to CD-HIT, which avoids many pairwise structure alignments (see details in
Supplementary Note S1). As of March 2022, there were 564,449 predicted struc-
tures from 48 species provided by AlphaFold DB (https://alphafold.ebi.ac.uk/). We
selected 100,912 structures with pLDDT ≥ 90 from these structures as available
templates and clustered them using the 34,701 PDB cluster seeds according to 80%

structural similarity, resulting in 55.7% of the structures being classified into 34,701
PDB clusters and the remaining structures forming 22,105 new clusters. Finally,
PAcluster80 was constructed by the 56,805 clusters, which consists of 106,275 PDB
and 100,912 AlphaFold DB structures.

Structure profiles and distance profiles. The structure profiles are histogram
distributions of pairwise residue distances, which were derived from structure
classes of PAcluster80 by statistical consistency analysis. The member structures of
the cluster were globally aligned with the centroid by TM-align, and the distance
distribution of the residue pairs of centroid structures was extracted. As shown in
Supplementary Fig. S11, we divided the distance range (2–20 Å) into 36 bins with a

Fig. 7 Results of folding pathways predicted by PAthreader on 30 human proteins. Thirty human proteins, whose native structures have not been
determined by biological experiments are labeled with their UniProt accession. The structures shown are identified by template recognition. The blue
region is the intermediate, and the folding order is blue and then red.
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size of 0.5 Å, plus one bin indicating residue pair distance ≥20 Å. The number of
times of falling into the bin divided by the total was taken as the probability. Note
that residue pairs with gaps were not included in the total. The distance profiles
were represented as the probability distribution of pairwise residue distances
predicted by our in-house DeepMDisPre, an inter-residue distance predictor using
a convolutional network with self-attention. The input of DeepMDisPre was the
query sequence, and MSAs were generated by searching UniRef3059 with
HHblits60. Importantly, DeepMDisPre predicted a multi-peak distance distribution
within 20 Å for flexible protein region, which provides more information for
template recognition and folding pathway exploration.

Three-track alignment. To take full advantage of the deposited structure infor-
mation to identify templates, we developed a three-track alignment (sequence
alignment, residue pair alignment, and profile alignment) for two stages. In the first
stage, the optimal Nclu structural clusters are identified by the three-track alignment
between the query sequence and the cluster seeds. In the second stage, the optimal
templates are identified from the structures within the clusters determined in the
first stage by repeating the three-track alignment.

The purpose of the three-track alignment is to find an optimal alignment
between the query sequence and the template sequence by maximizing the
alignScore defined by Eq. (1), as shown in Fig. 1b. The first track is to calculate the
protein-specific score matrix and find the optimal sequence alignment by dynamic
programming. The protein-specific score matrix is obtained from the second track
by a second dynamic programming to find the optimal residue pair alignment that
only considers the inter-residue distance. The residue pair alignment is performed
based on the construction of the residue pair score matrix, where the values are
calculated from the third track by maximizing the product of probabilities and
minimizing the difference of distances.

The alignment scores of the query sequence and template are defined as follows:

alignScoreða; bÞ ¼
Sa;balign þ Sa;bgap

Satot
ð1Þ

where a and b are the query sequence and template, respectively; Sa;balign is the

alignment score; and Sa;bgap is the penalty score for gaps, which is obtained by
counting the gaps in the alignment of the query sequence and template. Satot is the

reference score for normalization. Sa;balign and Satot are defined by Eq. (2) and Eq. (3),
respectively:

Sa;balign ¼ ∑
L

n¼1
∑
L

m¼1
max pin;m � qjn;m � wseq

n;m � wdist
n;m � wcut

n;mji 2 ½1; ka�; j 2 ½1; kb�
n o

ð2Þ

Satot ¼ ∑
L

n¼1
∑
L

m¼1
pmax
n;m � wseq

n;m � wcut
n;m ð3Þ

where L is the length of the alignment; pin;m and qjn;m are the i-th and j-th maxima
of probability between the n-th and m-th residues of distance profiles and structure
profiles, respectively; and pmax

n;m is the highest probability between the n-th and m-th
residues of the distance profiles. ka and kb are the number of maxima of probability
selected from the distance profiles and structure profiles, respectively. In the second
three-track alignment stage, the structure profile only uses the single maxima
because it is extracted from a single structure. wseq

n;m is the weight of sequence
separation, which is designed based on the fact that long-range sequence separation
is more important than short-range separation, and it is given as follows:

wseq
n;m ¼

0:5; if jn�mj< 12

0:75; if 12 ≤ jn�mj< 24

1; otherwise

8><
>:

ð4Þ

where wdist
n;m is the weight of the distance difference of the residue pair between the

query sequence and the template. The smaller the distance difference is, the greater
the weight, which is shown as follows:

wdist
n;m ¼

1; if jdan;m � dbn;mj≤ 5Å
0:5; if 5 Å< jdan;m � dbn;mj≤ 8Å
0:25; otherwise

8><
>:

ð5Þ

where wcut
n;m represents that only the distance information between the n-th and m-

th residues within λÅ are used, which is shown as follows:

wcut
n;m ¼ 1; if Da

n;m < λ;Db
n;m < λ

0; otherwise

(
ð6Þ

Da
n;m ¼ maxfdan;mðiÞji 2 ½1; ka�g;Db

n;m ¼ maxfdbn;mðjÞjj 2 ½1; kb�g ð7Þ

pDMScore prediction and ranking of templates. According to alignScore, we
selected the top NpDM templates to predict pDMScore. The physical and geometric
features of the template structure were extracted as the input of the network.
Physical features include Rosetta intra-residue energy terms, secondary structure

and amino acid properties61. Geometric features include multiple distances of
inter-residue, orientations, voxelization and ultrafast shape recognition62. More
detailed descriptions of the features are listed in Supplementary Table S7.

We used a convolutional network with self-attention to predict the quality score
of the template. The first step is feature concatenation. The voxelization is input to
a 3D convolutional layer and flattened into a 1D vector. It is concatenated with 1D
features and fed into a 1D convolutional layer. The output 1D vectors are
horizontally and vertically striped into 2D vectors and concatenated with 2D
features. It is then turned into a 128-channel feature matrix through 2D
convolution, instance normalization, and ELU activation. The second step is the
self-attention operation, which contains 3 axial-attention blocks. The feature
matrix is processed by an axial multi-head attention method, which alternates
attention on the rows and columns of all features. The number of attention heads is
8. The encoded representation is a set of query-key-value triples in each head of the
self-attention layer. The output from masked multi-head attention is further
processed by a pointwise feedforward layer. The third step is the convolution
operation. The convolution operation consists of 15 residual blocks, each of which
is composed of three ELU activation layers, three 2D convolutional layers, and
three instance normalization layers. The output layer is processed through sigmoid
and softmax functions to predict the Cα distance deviations for all residual pairs.

DMScore, a global structure scoring metric proposed in our previous study35, is
used to evaluate the model scores by computing the Euclidean distance difference
of the residue pairs, taking values (0, 1). DMScore not only evaluates the global
topology but also considers the local structure differences, which are defined as
follows:

DMScore ¼ 1
LðL� 1Þ ∑

L

i¼1
∑
L

j¼1

1

1þ ðdi;j=d*Þ
2 ð8Þ

d* ¼ logðεþ ji� jjÞ; i≠ j ð9Þ
where L is the length of the protein structure; di;j is the predicted deviation between
the i-th and j-th residues; d� is the normalized scale used to eliminate the inherent
dependence of the score on protein size; and ε is an infinitely small quantity so that
d� is not zero.

The loss function includes the distance deviation of the residual pair and
pDMScore of the residue, which are evaluated by the multivariate cross-entropy
loss function and the mean square loss function, respectively. The loss function is
defined as follows:

loss ¼ lossdev þ w � losspDM ð10Þ
where lossdev is the distance deviation loss and lossDM is the pDMScore loss of each
residue.

We ranked the templates by rankScore calculated with linear weighting of
alignScore and pDMScore, which is defined as follows:

rankScore ¼ alignScore � alignScoreþ ð1� alignScoreÞ � pDMScore ð11Þ

Protein folding pathway exploration. Based on a large number of homologous
templates, PAthreader explores the protein folding pathway by calculating residue
frequency distributions and identifying intermediates. First, the structure of the
target protein was determined with the first template. We selected the top Nt

templates for global structural alignment with the target protein structure using
TM-align. The frequency scores of each residue were then calculated by Eq. (12),
which revealed the similarities and differences between homologous templates.

ResFscorei ¼
1
N t

∑
N t

n¼1
scoren; i 2 ½1; L� ð12Þ

scoren ¼

1; if di ≤ 2Å

0:75; if 2 Å< di ≤ 4Å

0:25; if 4 Å< di ≤ 5Å

0; otherwith

8>>><
>>>:

ð13Þ

where L is the length of the target protein; N t is the number of templates; and di is
the Euclidean distance between the i-th residue of the target protein and the
corresponding residue of the other templates;

Second, the target protein was divided into multiple segments based on three
secondary structure types (α-helix, β-sheet and loop), and loop segments ≤4 AAs
were merged into neighboring helix or sheet segments. The average ResFscore for
each segment was calculated by dividing the corresponding area of the segment by
its length, which is defined as follows:

ResFscoreaves ¼ 1
Ls

∑
Ls

j¼1
ResFscorej; s 2 ½1; S� ð14Þ

where S is the number of segments; Ls is the length of the s-th segment. The
segments with a ResFscoreaves ≥ Icut were selected as intermediates. Icut is a threshold
parameter with an initial value of 0.4, ranging from 0 to 1. If the length of the
intermediate was outside the range [0.25*L, 0.75*L], the intermediate will be re-
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selected by adjusting the parameter Icut with a step size of 0.02 until the conditions
were met, where L is the length of query sequence.

Statistics and reproducibility. All data were carefully collected and analyzed using
standard statistical methods. Comprehensive information on the statistical analyses
used is included in various places, including the figures, figure legends and results,
where the methods, significance and p-values are described.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the results and conclusions of this study are
available within the paper and its Supplementary Information. The pDMscore model, the
distance profile prediction model and the master structure database PAcluster80 are
available at http://zhanglab-bioinf.com/PAthreader/.

Code availability
The online server and package of PAthreader are made freely available at http://
zhanglab-bioinf.com/PAthreader/ and GitHub (https://github.com/iobio-zjut/
PAthreader).
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