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Abstract

Multivariate outcomes are common in pragmatic cluster randomized trials. While sample size 

calculation procedures for multivariate outcomes exist under parallel assignment, none have 

been developed for a stepped wedge design. In this article, we present computationally efficient 

power and sample size procedures for stepped wedge cluster randomized trials (SW-CRTs) 

with multivariate outcomes that differentiate the within-period and between-period intracluster 

correlation coefficients (ICCs). Under a multivariate linear mixed model, we derive the joint 

distribution of the intervention test statistics which can be used for determining power under 

different hypotheses and provide an example using the commonly utilized intersection-union test 

for co-primary outcomes. Simplifications under a common treatment effect and common ICCs 

across endpoints and an extension to closed cohort designs are also provided. Finally, under the 

common ICC across endpoints assumption, we formally prove that the multivariate linear mixed 

model leads to a more efficient treatment effect estimator compared to the univariate linear mixed 

model, providing a rigorous justification on the use of the former with multivariate outcomes. We 

illustrate application of the proposed methods using data from an existing SW-CRT and present 

extensive simulations to validate the methods.
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1 | INTRODUCTION

The stepped wedge cluster randomized trial (SW-CRT) is an increasingly popular design, 

typically used to evaluate health system, policy and service delivery interventions in real-

world settings. In this design, clusters typically all start in the control condition; at different 

intervals, clusters are randomly selected to cross over to the intervention condition until by 

the end of the trial, all clusters are in the intervention condition. Clusters that share the 

same cross over point are said to be a part of the same treatment sequence (Figure 1 ). This 

design is often chosen because it allows all clusters to receive the intervention during the 

trial and for its potential gains in statistical efficiency. 1 At each interval, measurements are 

taken in each cluster: in a cross-sectional design, the measurements are taken on different 

individuals, and in a closed-cohort design, on the same individuals. 2

It is well-known that, in a cluster randomized design, individual outcomes within a cluster 

are more similar than those between clusters. Thus, rigorous design and analysis require 

statistical methods that take into account the correlation within clusters: referred to as the 

intracluster correlation coefficient (ICC). SW-CRTs have an additional layer of complexity 

due to its longitudinal nature: individual measurements within the same cluster and the 

same time period can be expected to be more strongly correlated than measurements within 

the same cluster but different time periods. Thus, the design and analysis of SW-CRTs 

commonly include a within-period ICC and a between-period ICC. Under a cross-sectional 

design, a typical analytical model for SW-CRTs is the Hooper et al. 3 and Girling et al. 
4 linear mixed effects model (LMM) which includes a random cluster effect, allowing 

individuals within the same cluster to be correlated, and a random cluster-by-period 

interaction, allowing individuals within the same cluster at the same time period to share an 

additional level of correlation. The two random effects are assumed to be independent and 

their inclusion in the LMM induces the so-called nested exchangeable correlation structure. 
5 Further, allowance for the random cluster-by-period effect has been shown to be vital in the 

design phase of SW-CRTs to avoid underpowered trials.6

While most trials have a single primary outcome which drives the sample size calculation, 

multivariate or co-primary outcomes are increasingly common in trials designed with a 

pragmatic intention, for a variety of reasons. 7 For example, multiple co-primary outcomes 

may be selected to satisfy the decision-making needs of a range of trial stakeholders 

and to ensure that the trial is adequately powered to detect effects on both clinical and 

patient-reported outcomes. Multivariate outcomes are also common when the intervention 

specifically targets multiple types of participants, for example, the patient-caregiver dyad 

in trials involving the elderly. Finally, patient-oriented outcomes may be measured using 

questionnaires with multiple subscales and the intervention effects on each subscale may be 

of interest.

Guidance for the design and analysis of CRTs with multivariate outcomes is currently 

available only for parallel-arm designs. Turner et al. 8 proposed a multivariate linear mixed 

model (MLMM) for analyzing multivariate normally distributed outcomes, where between-

outcome correlations on the cluster and individual levels are taken into account via random 

effects. Based on this MLMM, Yang et al. 9 recently developed sample size considerations 
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for parallel-arm CRTs with multivariate outcomes, using an intersection-union test (IU-test) 
10,11 which requires statistical significance on all outcomes, i.e. a co-primary outcome 

approach. To the best of our knowledge, there are currently no available methods for 

designing SW-CRTs with multivariate outcomes. Sample size and power considerations are 

more complicated in SW-CRTs because of the need to account for both within-period and 

between-period ICCs.

Our study is motivated by the shared decision-making in inter-professional home care 

teams (IP-SDM) study. The IP-SDM study is a cross-sectional SW-CRT evaluating the 

implementation of shared decision-making tools in inter-professional home care teams 

caring for elderly clients and their caregivers. 12 The primary outcome of interest was the 

binary decision to stay at home or move while a key secondary outcome was quality of 

life measured using two subscales of the Nottingham Health Profile (NHP): social isolation 

and emotional reactions 13 used to assess social and personal effects of illness in patients. 

Although the NHP subscales were considered secondary outcomes in the IP-SDM study, 

here we illustrate how a future trial might be designed with the NHP subscales as the 

primary focus. Designing SW-CRTs with more than one primary outcome, in fact, has 

become increasingly common in trials in the frail elderly. For example, the Connect-Home 

study is a SW-CRT to evaluate a transitional care intervention in seriously ill patients being 

discharged from skilled nursing facilities to their caregivers. 14 The co-primary outcomes 

were the preparedness of patients for discharge and the preparedness of caregivers for 

providing care, both measured using questionnaires. Another recent example is a SW-CRT 

examining the effect of an interdisciplinary medication review on quality of life measures 

within older populations with polypharmacy. 15 The investigators had two primary quality of 

life measures of interest, one of which included eight subscales which were each modeled 

separately. In individually randomized trials, ignoring the potential correlations between 

multiple primary endpoints (referred to as the between-endpoint ICC) can often lead to 

larger than necessary sample size estimates. 16 In SW-CRTs, the impact of the between-

endpoint ICC may be more complex since outcomes are collected over multiple periods and 

the within-period and between-period ICCs need to be considered.

In this article, we develop novel design formulas to enable computationally effcient power 

and sample size calculation for designing cross-sectional SW-CRTs with multivariate 

outcomes that differentiate the within-period and between-period ICCs. In Section 2, we 

provide an extension of the standard LMM for cross-sectional SW-CRTs with a single 

outcome to a MLMM where the effects of the intervention on multiple outcomes are 

simultaneously estimated and evaluated. In Section 3, we derive the joint distribution of 

the intervention test statistics which can be used for generating power estimates under 

any specified hypothesis and provide an example using the commonly utilized IU-test for 

co-primary outcomes. Further, we provide insights into power calculations in the special 

case of assuming a common treatment effect across outcomes, assuming common ICCs 

across outcomes, and under closed-cohort designs. In Section 4, we illustrate our sample 

size methodology using the quality of life measures from the IP-SDM study, and we further 

validate our power procedure under the IU-test using simulations in Section 5. Finally, we 

conclude with a discussion in Section 6.
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2 | MODELLING MULTIVARIATE CONTINUOUS OUTCOMES IN SW-CRTS

We first consider a cross-sectional SW-CRT with L continuous outcomes, and assume that 

the scientific interest lies in simultaneously estimating the effect of an intervention on 

each outcome. In this article, we propose a multivariate version of the commonly used 

LMM 3,4 for analyzing cross-sectional SW-CRTs with a single outcome. Specifically, let 

Y ijk = Y ijk1, …, Y ijkL
⊤ be the vector of L outcomes for subject k = {1, … , Nij} nested 

in cluster i = {1, … , I} at time period j = {1, … , T }, we simultaneously model these 

outcomes using the following MLMM

Y ijk = β0 + βj + Xijδ + bi + sij + ϵijk, (1)

where Xij is an indicator variable for the intervention (equal to 1 if cluster i is receiving 

the intervention at time period j and 0 otherwise) and δ = (δ1, … , δL)T is a vector of 

endpoint-specific intervention effects. Under model (1), β0 = (β01, … , β0L)T is a vector 

of endpoint-specific means under the control condition, βj = (βj1, … , βjL)T is a vector 

of fixed time effects (to control for confounding by time) for period j and is typically 

treated as a categorical variable for maximum flexibility; in other words, the above MLMM 

adjusts for possibly unique secular trends for each outcome l ∈ 1, …, L . In addition, bi 

= (bi1, … , biL)T is a vector of cluster random effects and follows a multivariate normal 

distribution denoted by N 0L × 1, Σb , sij = sij1, …, sijL
⊤ is a vector of random cluster-by-

period effects and follows a multivariate normal distribution denoted by N 0L × 1, Σs , and 

ϵijk = ϵijk1, …, ϵijkL
⊤ is a vector of random errors and follows a multivariate normal 

distribution denoted by N 0L × 1, Σϵ . We assume bi, sij, and ϵijk are independent for 

identifiability and place no further restrictions on Σb, Σs, and Σϵ except that they are 

positive definite. We denote the diagonal elements of Σb as σbl
2  and off-diagonal elements 

as σbll′ giving us a total of L(L + 1)/2 variance components for defining Σb. Similarly, the 

diagonal elements of Σs and Σϵ are denoted by σsl
2  and σϵl

2  and off-diagonal as σsll′ and σϵll′
respectively, giving Σs and Σϵ each L(L + 1)/2 variance components.

Under this parameterization, the marginal variance of each endpoint can vary with l and is 

given by σY l
2 = σbl

2 + σsl
2 + σϵl

2 . Furthermore, our model implicitly provides the following five 

ICCs also shown in Table 1 :

1. ρ0
l = corr Y ijkl, Y ijk′l = σbl

2 + σsl
2 /σyl

2 , denoting the within-period inter-subject 

correlation of the outcomes corresponding to the same endpoint or otherwise 

known as the within-period endpoint-specific ICC;

2. ρ1
l = corr Y ijkl, Y ij′k′l = σbl

2 /σyl
2 , denoting the between-period endpoint-specific 

ICC;

3. ρ0
ll′ = corr Y ijkl, Y ijk′l′ = σbll′ + σsll′ / σylσyl′ , denoting the within-period inter-

subject correlation of two outcomes corresponding to two different endpoints l 
and l’ or otherwise known as the within-period between-endpoint ICC;
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4. ρ1
ll′ = corr Y ijkl, Y ij′k′l′ = σbll′/ σylσyl′ , denoting the between-period between-

endpoint ICC;

5. ρ2
ll′ = corr Y ijkl, Y ijkl′ = σbll′ + σsll′ + σϵll′ / σylσyl′ , denoting the intra-subject 

between-endpoint ICC or for brevity, the intra-subject ICC.

Under our model we have symmetry in that ρ0
ll′ = ρ0

l′l, ρ1
ll′ = ρ1

l′l, and ρ2
ll′ = ρ2

l′l, and 

degeneracy such that ρ0
ll = ρ0

l , ρ1
ll = ρ1

l , and ρ2
ll = 1. Our ICC definitions from the MLMM 

(1) also implicitly assume ρ1
l ≤ ρ0

l , and ρ1
ll′ ≤ ρ0

ll′ ≤ ρ2
ll′ for all l and l′, meaning our model 

specification assumes the between-period ICCs are less than or equal to the within-period 

ICCs, and is a generalization of the common assumption in the analysis of SW-CRTs with 

a single outcome. Finally, in situations where limited information is available for ICC 

determination, an investigator could set the between-period ICCs to be a certain ratio of the 

within-period ICCs, referred to as the cluster autocorrelation coefficient (CAC). 3,17 Of note, 

when the variance components of the cluster-by-time random interactions are zero, Σs = 0, 

the MLMM (1) can be considered as a direct extension of the LMM developed by Hussey 

and Hughes 18 when there is more than one outcome.

Before we detail the design considerations for a cross-sectional SW-CRT with multivariate 

outcomes, we briefly describe the fitting strategies of the MLMM (1). We adopt the 

expectation-maximization (EM) algorithm where random effects are treated as missing 

data. The EM algorithm is an iterative approach that includes two steps: (1) generating the 

expected values of the random effects given the current parameter estimates and (2) using 

those expected values to generate updated parameter estimates using score functions. The 

first step fittingly refers to the expectation stage and the second step to the maximization 

stage since the score function for each parameter produces a value that maximizes the 

likelihood. The EM algorithm iterates between these two steps until convergence is met, 

usually defined as a negligible change in the likelihood (i.e. 10−5). Let θ = β⊤, σ⊤ ⊤
, where 

β is the vector of all fixed effects and σ is the vector of all variance components (unique 

components that make up Σb, Σs, and Σϵ), denote our set of parameters we wish to estimate. 

Also let Dij denote the design matrix for the fixed effects, β, for cluster i at period j. We can 

express the fully observed likelihood of our MLMM using

f(Y , b, s ∣ θ) =
i = 1

I

j = 1

T

k = 1

Nij
f Y ijk ∣ bi, sij; θ f bi ∣ θ f sij ∣ θ ,

where f Y ijk ∣ bi, sij; θ , f bi ∣ θ  and f sij ∣ θ  are the conditional multivariate normal 

density of the outcome, multivariate normal density for the random cluster effects and 

multivariate normal density for the random cluster-by-time interactions (detailed expressions 

are provided in Web Appendix A). To generate the score functions for the maximization step 

we take the partial derivative of our log-likelihood with respect to a particular parameter, 

set the expression equal to zero, and solve for that parameter giving us the following 

(derivations provided in Web Appendix A)
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S(β) =
i = 1

I

j = 1

T

k = 1

Nij
Dij⊤Σϵ−1Dij

−1

i = 1

I

j = 1

T

k = 1

Nij
Dij⊤Σϵ−1 Y ijk − bi − sij

S Σb = 1
I i = 1

I
bibi⊤, S Σs = 1

IT i = 1

I

j = 1

T
sijsij⊤

S Σϵ = 1

i = 1
I

j = 1
T Nij i = 1

I

j = 1

T

k = 1

Nij
Y ijk − Dijβ − bi − sij Y ijk − Dijβ − bi − sij

⊤ .

Next we need to generate the expected value of the random effects and crossproducts for the 

expectation step. To achieve this, we first re-parameterize our MLMM using the equivalent 

expression, Y ijk = Dij
⊤β + Mij

⊤ϕi + ϵijk, where ϕi = bi
⊤, si1

⊤, …, siT
⊤ ⊤

 is the vector of random 

effects for cluster i and follows a multivariate normal distribution with mean 0L(T + 1) × 1
and covariance Σϕ = diag Σb, IT ⊗ Σs  where IT denotes a T × T identity matrix. Further, Mij 

is the design matrix of the random effects, ɸi. Under this equivalent parameterization, the 

posterior distribution of the random effects for cluster i is f ϕi ∣ Y i; θ = f Y i, ϕi ∣ θ /f Y i ∣ θ , 

which can be shown to be a multivariate normal density, based on which the expected 

sufficient statistics can be constructed based on

E ϕi ∣ Y i, θ = Σϕ
−1 + Nij

j = 1

T
MijΣϵ−1Mij⊤

−1

j = 1

T

k = 1

Nij
MijΣϵ−1 Y ijk − Dij⊤β

V ϕi ∣ Y i, θ = Σϕ
−1 + Nij

j = 1

T
MijΣϵ−1Mij⊤

−1

E ϕiϕi⊤ ∣ Y i, θ = V ϕi ∣ Y i, θ + E ϕi ∣ Y i, θ E ϕi ∣ Y i, θ ⊤,

where Y i = Y i11
⊤ , …, Y iTNiT

⊤ ⊤
 is a vector of all outcomes measured in cluster i. In Web 

Appendix A, we summarize the operational details for the EM algorithm. Once the 

algorithm converges, the standard errors for model parameter estimators are obtained from 

numerically differentiating the log-likelihood function evaluated at the model parameter 

estimates. In Section 5, we demonstrate via simulations that the EM approach can provide 

nominal type I error rate and comparable empirical power relative to the formula predictions, 
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in the context of SW-CRTs. For ease of reference, the development of our sample size 

methodology relies on matrix notation which is described in Table 2.

3 | DESIGN CONSIDERATIONS: POWER CALCULATION WITH 

MULTIVARIATE OUTCOMES

3.1 | Variance of the Intervention Effect Estimator and Power Formula

For testing the intervention effect on outcome l, we consider the Wald t-statistic for δl, 

defined as wl = δ l/σδl where σδl denotes the estimated standard error of the intervention 

effect estimator from the MLMM (1). In the design stage, we can express σδl using the 

Feasible Generalized Least Square (FGLS) formula, which is given by 
i = 1
I Zi

⊤V i
−1Zi

−1
, 

where Zi is the design matrix for the fixed effects at the cluster-level and V i is the 

covariance matrix for the L cluster-period mean outcomes. A cluster-period means approach 

is applicable since the fixed effects of model (1) only depend on each cluster-period and 

has been shown to be equivalent to an individual-level approach. 19,20,21 For simplicity, we 

assume a balanced design where each cluster recruits the same number of subjects in each 

period (Nij = N). In Web Appendix B, we generate the inverse of V i as

V i
−1 = IT ⊗ Σs + 1

N Σϵ
−1

+ JT ⊗ 1
T TΣb + Σs + 1

N Σϵ
−1

− Σs + 1
N Σϵ

−1
,

where Ju denotes a u × u matrix of ones. If we let Zi = IT , Xi ⊗ IL where Xi denotes 

the randomization schedule for cluster i, then the bottom-right L × L matrix of the FGLS 

estimator will be the covariance matrix for the L intervention effect estimators. Using the 

FGLS estimator and our expressions for V i
−1 and Zi , we derive in Web Appendix B an 

expression for the L × L covariance matrix of the intervention effect estimators as

Ωδ

= IT ITU − TW + U2 − IV Σs + 1
N Σϵ

−1
− U2 − IV TΣb + Σs + 1

N Σϵ
−1 −1

, (2)

where U = i = 1
I

j = 1
T Xij, V = i = 1

I
j = 1
T Xij

2
, and W = j = 1

T
i = 1
I Xij

2
 are 

typical design constants that only depend on the randomization sequence of intervention 

indicators. From Table 1, we can map the variance component parameters to the set 

of unique ICC parameters by observing σbl
2 = σY l

2 ρ1
l , σbll′ = σY lσY l′ρ1

ll′, σsl
2 = σY l

2 ρ0
l − ρ1

l , 

σsll′ = σY lσY l′ ρ0
ll′ − ρ1

ll′ , σϵl
2 = σY l

2 1 − ρ0
l  and σϵll′ = σY lσY l′ ρ2

ll′ − ρ0
ll′ . Defining the diagonal 

matrix of outcome variances as ΛY = diag σY 1
2 , …, σY L

2 , we can further rewrite the 

covariance matrix of the intervention effect estimators as
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Ωδ = IT
N ΛY

1/2 ITU − TW + U2 − IV Γ2 − NΓ1 + (N − 1)Γ0
−1

− U2 − IV Γ2 + (T − 1)NΓ1 + (N − 1)Γ0
−1 −1ΛY

1/2,
(3)

where Γ0, Γ1, Γ2 are the within-period ICC matrix, between-period ICC matrix and intra-

subject ICC matrix across L endpoints, defined as

Γ0 =

ρ0
1 ρ0

12 … ρ0
1L

ρ0
12 ρ0

2 … ρ0
2L

⋮ ⋮ ⋱ ⋮

ρ0
1L ρ0

2L … ρ0
L

, Γ1 =

ρ1
1 ρ1

12 … ρ1
1L

ρ1
12 ρ1

2 … ρ1
2L

⋮ ⋮ ⋱ ⋮

ρ1
1L ρ1

2L … ρ1
L

, Γ2 =

1 ρ2
12 … ρ2

1L

ρ2
12 1 … ρ2

2L

⋮ ⋮ ⋱ ⋮

ρ2
1L ρ2

2L … 1

.

We denote diagonal elements of Ωδ as σδl
2 = var δ l  and off-diagonal elements as σδlll′

Under the case of a univariate outcome, such that Σb, Σs, and Σϵ are scalars, we show 

in Web Appendix B that our covariance expressions (2) and (3) reduce to the variance 

under the Hooper and Girling model for cross-sectional SW-CRTs. 3,4 We further explore 

the relationship between CAC and limN ∞var δ l  and find that the importance of 

differentiating the within-period and between-period ICCs in SW-CRTs with univariate 

outcomes still holds under multivariate outcomes. In particular, we found that

lim
N ∞

Ωδ ∝ ΛY
1/2 ITU − TW + U2 − IV Γ0 − Γ1

−1 − U2 − IV Γ0 + (T − 1)Γ1
−1 −1

ΛY
1/2,

which is not equal to a zero matrix unless Γ0 = Γ1. Thus, allowing some differentiation 

(CAC < 1) leads to a non-zero limiting variance and reduces the possibility of an 

underpowered trial.

Based on the closed-form variance expression Ωδ, we focus on power analyses when 

the L outcomes are co-primary outcomes, in which case the test rejects the null when 

the intervention leads to meaningful changes on all L outcomes. Alternatively, when 

there is interest in testing whether at least one outcome is affected by the intervention 

(an omnibus test) or testing whether the treatment effect is homogeneous for all L 

outcomes (testing for treatment effect homogeneity), one could combine Ωδ with the 

generic power formulas in Yang et al. 9 to derive a suitable power formula. To proceed 

with the co-primary outcome example, we notice that the joint distribution of the Wald 

t-statistics, W = w1, …, wL
⊤ = δ1/σδ1, …, δL/σδL

⊤, asymptotically follows a multivariate 

normal distribution with mean η = δ1/σδ1, …, δL/σδL
⊤ and covariance matrix ΩW  which is 

characterized by ones on the diagonal and σδII′
2 / σδlσδl′  on the off-diagonal; we will refer 

to this joint distribution using fW (W ). In practice, investigators could alternatively assume 
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fW (W ) follows a multivariate t-distribution with degrees of freedom characterized by the 

total number of clusters (I) and co-primary endpoints (L), specifically I – 2L, to account for 

the uncertainty in estimating the covariance components and better control the type I error, 

especially if the study has a limited number of clusters. 22

We can now explicitly define our null and alternative hypotheses and generate power 

predictions. In this study, we focus on the scenario where all L outcomes are of primary 

interest and generate power using the IU-test given by

H0: ∃l ∈ 1, …, L  s.t δl = 0, H1: ∀l ∈ 1, …, L δl > 0,

which has been frequently utilized in the context of co-primary endpoints to avoid inflated 

type I error.23,10 Under the IU-test we can generate our power estimate using

 power  = Prob ℛ =
l = 1

L wl > cl =
c1

∞

…
cL

∞

fW w1, …, wL d1…dL,  (4)

where ℛ denotes the rejection region, c = {c1, … , cL} is the set of critical values for 

rejection, and fW (W ) follows a multivariate t-distribution. A common and simple approach 

for specifying c is to use c1 = … = cL = tα(I – 2L) where tα(I – 2L) is the (1 – α)th 

quantile of the univariate t-distribution since this approach leads to a type I error rate 

strictly below α over the composite null space. 10,11,22 Only under the extreme case of 

one endpoint showing no intervention effect and all remaining endpoints showing large 

intervention effects, will the maximum type I error rate be achieved. 24 The relationship 

between power and each of the ICCs is shown in Figure 2 . As has been demonstrated for 

SW-CRTs with one primary outcome, higher values of the within-period endpoint-specific 

ICC ρ0
l  and typically lower values of the between-period endpoint-specific ICC ρ1

l  yield 

lower power values. Further, Figure 2 suggests that lower values of between-endpoint ICCs 

both within and between-period ρ0
12, ρ1

12  as well as the intra-subject ICC ρ2
12  lead to lower 

power estimates. Although we include this exploration of the relationship between ICCs 

and power, we caution that this relationship could be more complex. For instance, under 

a SW-CRT design with a single outcome, Davis-Plourde et al.20 found that power had a 

monotone relationship with the within-period ICCs and a non-monotone relationship with 

the between-period ICCs. Finally, although we focus on determining power, the sample size 

corresponding to a target level of power can be determined by solving for I or N using any 

standard iterative algorithm.

Our alternative hypothesis under the IU-test assumes that the desired effect of the 

intervention is an increase in all measured outcomes. If the desired intervention effect is 

a decrease in all measured outcomes, then our IU-test can still be used by changing the 

definition of each outcome. The power formula (4) can also be used for a mixture of 

superiority and noninferiority tests across the L outcomes through the specification of the 

critical values, c. For example, for a noninferiority test on the l-th endpoint, i.e. H0l:δl < λl
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versus H1l:δl ≥ λl with λl denoting the noninferiority margin, the test statistic becomes 

wl = δ l − λl /σδl.

3.2 | Common Intervention Effects

In some cases the global impact of intervention instead of individual effects may be of 

interest, and simplification of the above power formula may be of interest to facilitate study 

designs. Common intervention effects are frequently assumed in the social sciences, mental 

health, and meta-analysis. 25 A usual assumption under the common intervention effects 

model is that the standardized intervention effects are the same. 8 If such an assumption is 

valid, then incorporating common effects in the model can lead to more precise estimates. 

In this case, we can modify model (1) to include a common intervention effect for all L 
outcomes using a standardized scale

Y ijk = β0′ + βj′ + Xijδ′ + bi′ + sij′ ∘ σϵ + ϵijk, (5)

where σϵ = σϵ1, …, σϵL
⊤, bi′ follows a multivariate normal distribution denoted by 

N 0L × 1, Σb′ , and sij′  follows a multivariate normal distribution denoted by N 0L × 1, Σs′ . 

Under this specification, an overall intervention effect is given by δ′ which corresponds 

to individual intervention effects on the original outcome scales using the relationship 

δl = σϵlδ′. Similarly, remaining model effects can be translated to the original scale using 

β0l = σϵlβ0l′ , βjl = σϵlβjl′ , bil = σϵlbil′ , and sijl = σϵlsijl′ . An alternative approach to model (5) 

is to standardize relative to the total variance σY l
2 , however, this approach may be less 

attractive in SW-CRTs where the variance components of the random effects can be 

challenging to estimate with a limited number of clusters. 8 Under model (5), we show 

in Web Appendix C that the variance of the common intervention effect estimator is

var δ′ = IT
N ITU − TW + U2 − IV ω⊤ΛY

−1/2 Γ2 − NΓ1 + (N − 1)Γ0
−1ΛY

−1/2ω

− U2 − IV ω⊤ΛY
−1/2 Γ2 + (T − 1)NΓ1 + (N − 1)Γ0

−1ΛY
−1/2ω −1,

(6)

where ω = σY 1 1 − ρ0
1 1/2, …, σY L 1 − ρ0

L 1/2 ⊤
 and can be used in standard power procedures 

for SW-CRTs with a single outcome . For example, if we are interested in a one-

sided Wald test such that H0:δ′ = 0 versus H1:δ′ > 0, then we can use (6) along with 

 power  ≈ 1 − Φt tα(DF); DF, δ′ / var δ ′ , where Φt(t; DF, Λ) is the cumulative t-distribution 

function with DF degrees of freedom and noncentrality parameter Λ, and tα(DF) is the (1 

– α)th quantile of the central t-distribution. We can specify the degrees of freedom as a 

function of the total number of clusters (I) minus L period effects and one intervention effect 

(DF = I – L – 1), as an extension of the degrees of freedom proposed in Ford et al. 26 and Li 
27 with a univariate outcome.
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3.3 | Common ICC Values across Endpoints

In many SW-CRTs, it may not be unreasonable to assume a common ICC across endpoints, 

since cluster and other characteristics inducing similarity within clusters can plausibly affect 

multiple outcomes measured in those clusters. 8 Futhermore, endpoint-specific ICC values 

may not be known precisely at the time of sample size calculation and may instead, rely 

on rules of thumb based on the type of outcome. If the ICC is assumed to be common 

across the L multivariate endpoints, then there are no longer outcome-specific ICCs and 

only five ICCs regardless of l, such that ρ0
l = ρ0 and ρ1

l = ρ1∀l and ρ0
ll′ = ρ00, ρ1

ll′ = ρ11 and 

ρ2
ll′ = ρ2∀l, l′. Based on the mapping between the ICC parameters and variance components 

in Table 1, the common ICC assumption leads to simplification of the variance expression 

Ωδ by defining the three key ICC matrices with their explicit simple exchangeable forms:

Γ0 = ρ0 − ρ00 IL + ρ00JL, Γ1 = ρ1 − ρ11 IL + ρ11JL and Γ2 = 1 − ρ2 IL + ρ2JL. Plugging in 

these explicit forms into variance expression (3), we show in Web Appendix D that we can 

express the covariance matrix of the intervention effect estimators as

Ωδ

= IT
N ΛY

1/2 ITU − TW + U2 − IV λ2 − τ2 IL + τ2JL
−1 − U2 − IV λ3 − τ3 IL + τ3JL

−1 −1ΛY
1/2, (7)

where λ2 = 1 + (N − 1)ρ0 − Nρ1 and λ3 = 1 + (N − 1)ρ0 + (T − 1)Nρ1 are two distinct 

eigenvalues of the (endpoint-specific) nested exchangeable correlation structure 28 defined 

for cross-sectional SW-CRTs with a univariate outcome, and τ2 = (N − 1)ρ00 − Nρ11 + ρ2, 

τ3 = τ2 + TNρ11 characterize the impact of the three between-endpoint ICCs on the variance 

of intervention effect estimators through the MLMM. In the special case where all endpoints 

are completely independent such that ρ00 = ρ11 = ρ2 = 0, Ωδ becomes a diagonal matrix and 

each element becomes identical to the variance expression developed in Hooper et al. 3 and 

Girling et al. 4 for cross-sectional SW-CRTs with a univariate outcome. However, we can 

obtain additional insights into the general form of the diagonal element of Ωδ and summarize 

the results in the following Theorem (proof in Web Appendix D).

Theorem 1. Under the parsimonious parameterization with common ICC values across 

endpoints, the l-th diagonal element of Ωδ can be further written in the following analytical 

form

var δl =
(IT /N)σY l

2

ITU − TW + U2 − IV λ3 − τ3 − U2 − IV λ2 − τ2
×

ITU − TW + U2 − IV λ2 λ3 − τ3 λ3 + (L − 1)τ3 − U2 − IV λ3 λ2 − τ2 λ2 + (L − 1)τ2
ITU − TW + U2 − IV λ3 + (L − 1)τ3 − U2 − IV λ2 + (L − 1)τ2

.

Furthermore, denote the variance of the l-th intervention effect estimator based on a 

univariate Hooper and Girling model 3,4 is
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varHG δl =
(IT /N)σY l

2 λ2λ3
ITU − TW + U2 − IV λ3 − U2 − IV λ2

,

and var δ l ≤ varHG δ l  for any set of valid design parameters, with equality holds when 

τ2λ3 = τ3λ2 or ρ00 = ρ11 = ρ2 = 0 (a special case when τ2λ3 = τ3λ2).

Theorem 1 shows that the diagonal element of Ωδ is always smaller than the existing 

variance expression developed in Hooper al. 3 and Girling et al. 4 for compatible set 

of design parameters, explicitly revealing that modeling multivariate outcomes through 

MLMM will frequently lead to improved efficiency for estimating the endpoint-specific 

treatment effect, compared to separate LMM analyses. This is in sharp contrast to the 

previous results developed for designing parallel-arm cluster randomized trials, where 

MLMM and separate LMM analyses lead to the same asymptotic efficiency for estimating 

the endpoint-specific treatment effect when the cluster sizes are equal 9. Therefore, in a 

stepped wedge design, modeling multivariate outcomes through MLMM will frequently lead 

to a reduced sample size and larger power for testing the endpoint-specific treatment effect. 

Finally, the advantages of assuming common ICCs increases with L, in that the number of 

ICCs being estimated is significantly reduced as L ∞ and ICC estimation will likely be 

more precise. When the ICC parameters are anticipated to differ across endpoints, the more 

general expression developed in Section 3.1 should be considered.

3.4 | Common Intervention Effects and Common ICC Values across Endpoints

Lastly, it may be of interest to assume both common ICCs and common intervention effects. 

For a cross-sectional design, we can use model (5) and further simplify the variance of 

the intervention effect estimator (6) by replacing the ICC matrices with their exchangeable 

forms giving us (derivation in Web Appendix E)

var δ ′

= IT / LNλ1 λ2 + (L − 1)τ2 λ3 + (L − 1)τ3
ITU − TW + U2 − IV λ3 + (L − 1)τ3 − U2 − IV λ2 + (L − 1)τ2

, (8)

where λ2, λ3, and τ3 are the same as defined previously and λ1 = 1 – ρ0 is an additional 

distinct eigenvalue of the (endpoint-specific) nested exchangeable correlation structure 28 

defined for cross-sectional SW-CRTs with a univariate outcome. This variance expression 

can be used in standard power procedures for SW-CRTs with a single outcome. If a common 

intervention effect and common ICCs are expected, then the advantage of using the common 

intervention effect model (5) should be an increase in the precision of the intervention 

effect estimate. In the following Theorem, we formally compare the variance formula for 

both common ICCs and a common intervention effect (8) to the variance formula assuming 

common ICCs (Theorem 1) and summarize our results (proof in Web Appendix E).

Davis-Plourde et al. Page 12

Stat Med. Author manuscript; available in PMC 2024 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 2. Under the parsimonious parameterization with common ICC values and a 

common intervention effect across endpoints, the variance of the l-th intervention effect 

estimator (unscaled) under model (5), i.e.δl = σY lλ1
1/2δ′, is

varboth  δl =
(IT /(LN))σY l

2 λ2 + (L − 1)τ2 λ3 + (L − 1)τ3
ITU − TW + U2 − IV λ3 + (L − 1)τ3 − U2 − IV λ2 + (L − 1)τ2

.

As shown in Theorem 1, under the parsimonious parameterization with common ICC values 

across endpoints, the l-th diagonal element of Ωδ is denoted by

varICC δl =
(IT /N)σY l

2

ITU − TW + U2 − IV λ3 − τ3 − U2 − IV λ2 − τ2
×

ITU − TW + U2 − IV λ2 λ3 − τ3 λ3 + (L − 1)τ3 − U2 − IV λ3 λ2 − τ2 λ2 + (L − 1)τ2
ITU − TW + U2 − IV λ3 + (L − 1)τ3 − U2 − IV λ2 + (L − 1)τ2

,

and varboth  δ l < varICC δ l  for any set of valid design parameters.

In Theorem 1 we showed that assuming common ICCs often leads to more precise estimates 

of the intervention effect estimator and in Theorem 2 we showed that additionally assuming 

common intervention effects further improves that precision due to information borrowing 

across different endpoints to estimate a single treatment effect.

3.5 | Extensions to Closed-Cohort Designs

Thus far we have focused on cross-sectional SW-CRTs with continuous multivariate 

outcomes. If individuals within a cluster are followed over time, corresponding to a closed-

cohort design, then additional intra-subject ICCs are necessary to take into account the 

correlation of repeated measurements within the same subject. 28 In terms of our model (1), 

this means including additional random effects to account for repeated measures

Y ijk = β0 + βj + δXij + bi + sij + γik + ϵijk (9)

where γik = γik1, …, γikL
⊤ is a vector of random subject-level effects and remaining 

parameters are the same as described previously. We assume γik follows a multivariate 

normal distribution denoted by N 0L × 1, Σγ . We denote the diagonal elements of Σγ as σγl
2

and off-diagonal elements as σγll′ giving us a total of L(L + 1)/2 variance components for 

specifying Σγ. Similar to model (1), we assume bi , sij, γik, and ϵijk are independent and 

place no further restrictions on Σb, Σs, Σγ, and Σϵ except to be positive definite. Under this 

specification, the marginal variance for the l-th outcome is σY l
2 = σbl

2 + σsl
2 + σγl

2 + σϵl
2  and the 

first four ICC definitions under model (1) remain the same (only the marginal variance of 

the outcome changes ). Under model (9), the fifth ICC and two additional intra-subject ICCs 

defined under model (1) becomes,
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(5) ρ2, 0
ll′ = corr Y ijkl, Y ijkl′ = σbll′ + σsll′ + σγll′ + σϵll′ / σY lσY l′ denoting the intra-subject 

within-period between-endpoint ICC or the brevity, the within-period intra-subject ICC;

(6) ρ2, 1
ll′ = corr Y ijkl, Y ij′kl′ = σbll′ + σγll′ / σY lσY l′ denoting the intra-subject between-period 

between-endpoint ICC or for brevity, the between-period intra-subject ICC;

(7) ρ2
l = corr Y ijkl, Y ij′kl = σbl

2 + σγl
2 /σY l

2  denoting the intra-subject between-period 

endpoint-specific ICC or for brevity, the intra-subject endpoint-specific ICC.

Table 3 provides a summary of these ICC parameters under a closed-cohort design. The 

same properties of symmetry and degeneracy under model (1) also applies to all ICCs 

under model (9). Specifically, under model (9) we have symmetry in that ρ0
ll′ = ρ0

l′l, 

ρ1
ll′ = ρ1

l′l, ρ2, 0
ll′ = ρ2, 0

l′l , and ρ2, 1
ll′ = ρ2, 1

l′l , and degeneracy such that ρ0
ll = ρ0

l , ρ1
ll = ρ1

l , ρ2, 0
ll = 1, 

and ρ2, 1
ll = ρ2

l . Our ICC definitions also implicitly assume ρ1
l ≤ ρ0

l , ρ1
ll′ ≤ ρ0

ll′ ≤ ρ2, 0
ll′ , and 

ρ2, 1
ll′ ≤ ρ2, 0

ll′  for all l and l′, meaning our model specification again assumes the between-

period ICCs are less than or equal to the within-period ICCs. Furthermore, we show in Web 

Appendix F that the covariance matrix of the intervention effects under model (9) is

Ωδ = IT
N ΛY

1/2 ITU − TW + U2 − IV (N − 1) Γ0 − Γ1 + Γ2 − Γ2′
−1

− U2 − IV (T − 1)(N − 1)Γ1 + (T − 1)Γ2′ + (N − 1)Γ0 + Γ2
−1 −1ΛY

1/2,
(10)

where Γ2 is slightly modified to reflect the change in the fifth ICC and Γ2′ is an additional 

intra-subject ICC matrix that takes into account the closed-cohort design defined by

Γ2 =

1 ρ2, 0
12 … ρ2, 0

1L

ρ2, 0
12 1 … ρ2, 0

2L

⋮ ⋮ ⋱ ⋮

ρ2, 0
1L ρ2, 0

2L … 1

, Γ2′ =

ρ2
1 ρ2, 1

12 … ρ2, 1
1L

ρ2, 1
12 ρ2

2 … ρ2, 1
2L

⋮ ⋮ ⋱ ⋮

ρ2, 1
1L ρ2, 1

2L … ρ2
L

.

This covariance matrix expression, Ωδ, can be used in conjunction with (4) to estimate 

power and sample size for designing closed-cohort SW-CRTs with multivariate endpoints.

3.5.1 | Common Intervention Effects under Closed-Cohort Designs—We can 

extend our model for estimating a common intervention effect to a closed-cohort design by 

incorporating our additional random effect in model (5) giving us

Y ijk = β0′ + βj′ + Xijδ′ + bi′ + sij′ + γik′ ∘ σϵ + ϵijk, (11)

where γik′  follows a multivariate normal distribution denoted by N 0L × 1, Σγ′  and remaining 

effects are the same as previously described. Effects can be translated to the original scale 

Davis-Plourde et al. Page 14

Stat Med. Author manuscript; available in PMC 2024 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using the same properties described earlier in addition to γikl = σϵlγikl′  Under model (11), we 

show in Web Appendix G that the variance of the common intervention effect estimator is

var δ′ = IT
N ITU − TW + U2 − IV ω⊤ΛY

−1/2 (N − 1) Γ0 − Γ1 + Γ2 − Γ2′
−1ΛY

−1/2ω

− U2 − IV ω⊤ΛY
−1/2 (T − 1)(N − 1)Γ1 + (T − 1)Γ2′ + (N − 1)Γ0 + Γ2

−1ΛY
−1/2ω −1,

(12)

where ω = σY 1 1 − ρ0
1 + ρ1

1 − ρ2
1 1/2, …, σY L 1 − ρ0

L + ρ1
L − ρ2

L 1/2 ⊤
 and can be used in 

standard power procedures for SW-CRTs with a single outcome.

3.5.2 | Common ICC Values across Endpoints under Closed-Cohort Designs
—The common ICC assumption again leads to simplification of the variance expression Ωδ
by defining the three key ICC matrices with their explicit simple exchangeable forms:

Γ0 = ρ0 − ρ00 IL + ρ00JL

Γ1 = ρ1 − ρ11 IL + ρ11JL

Γ2 = 1 − ρ2, 0 IL + ρ2, 0JL

Γ2′ = ρ2 − ρ2, 1 IL + ρ2, 1JL .

Plugging in these explicit forms into our current variance expression (10) gives us 

(derivation in Web Appendix H)

Ωδ

= IT
N ΛY

1/2 ITU − TW + U2 − IV λ3 − τ3 IL + τ3JL
−1 − U2 − IV λ4 − τ4 IL + τ4JL

−1 −1ΛY
1/2, (13)

where λ3 = 1 + (N − 1) ρ0 − ρ1 − ρ2 and λ4 = 1 + (N − 1)ρ0 + (T − 1)(N − 1)ρ1 + (T − 1)ρ2 are 

two distinct eigenvalues of the (endpoint-specific) block exchangeable correlation 

structure. 3,4,5 Further, τ3 = ρ2, 0 − ρ2, 1 + (N − 1) ρ00 − ρ11  and τ4 = τ3 + T ρ2, 1 + (N − 1)ρ11
characterize the impact of the between-endpoint ICCs on the variance of intervention effect 

estimators through the MLMM. In the special case where all endpoints are completely 

independent such that ρ00 = ρ11 = ρ2, 0 = ρ2, 1 = 0, Ωδ becomes a diagonal matrix and each 

element becomes identical to the variance expression developed in Hooper et al. 3, Girling 

and Hemming 4, and Li et al. 5 for closed-cohort SW-CRTs with a univariate outcome. 

Concentrating on the diagonal elements of Ωδ gives us the following Theorem as an 

extension of Theorem 1 (proof in Web Appendix H).
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Theorem 3. Under the parsimonious parameterization with common ICC values across 

endpoints and a closed-cohort design, the l-th diagonal element of Ωδ can be further written 

in the following analytical form

var δl =
(IT /N)σY l

2

ITU − TW + U2 − IV λ4 − τ4 − U2 − IV λ3 − τ3
×

ITU − TW + U2 − IV λ3 λ4 − τ4 λ4 + (L − 1)τ4 − U2 − IV λ4 λ3 − τ3 λ3 + (L − 1)τ3
ITU − TW + U2 − IV λ4 + (L − 1)τ4 − U2 − IV λ3 + (L − 1)τ3

.

Furthermore, denote the variance of the l-th intervention effect estimator based on a 

univariate Hooper and Girling model 3,4,5 is

varHG δl =
(IT /N)σY l

2 λ3λ4
ITU − TW + U2 − IV λ4 − U2 − IV λ3

and var δ l ≤ varHG δ l  for any set of valid design parameters, with equality holds when 

τ3λ4 = τ4λ3 or ρ00 = ρ11 = ρ2, 0 = ρ2, 1 = 0 (a special case when τ3λ4 = τ4λ3).

Similar to Theorem 1, Theorem 3 shows that the diagonal element of Ωδ is always smaller 

than the existing variance expression developed in Hooper et al. 3, Girling and Hemming 4, 

and Li et al. 28 for compatible set of design parameters. Thus, the improved efficiency under 

SW-CRTs with a cross-sectional design remains under a closed-cohort design.

3.5.3. | Common Intervention Effects and Common ICC Values across 
Endpoints under Closed-Cohort Designs—Under a closed-cohort design, we can 

use model (11) and further simplify our variance expression (12) using the ICC matrices 

exchangeable forms giving us (derivation in Web Appendix I)

var δ ′ =
IT / LNλ1 λ3 + (L − 1)τ3 λ4 + (L − 1)τ4

ITU − TW + U2 − IV λ4 + (L − 1)τ4 − U2 − IV λ3 + (L − 1)τ3
,

where λ3, λ4, τ3, and τ4 are the same as previously defined and λ1 = 1 − ρ0 + ρ1 − ρ2 is 

a distinct eigenvalue of the (endpoint-specific) block exchangeable correlation structure 28 

defined for closed-cohort SW-CRTs with a univariate outcome. This variance expression can 

be used in standard power procedures for SW-CRTs with a single outcome. In the following 

Theorem, we extend Theorem 2 under a cross-sectional design to a closed-cohort design 

(proof in Web Appendix I).

Theorem 4. Under the parsimonious parameterization with common ICC values and a 

common intervention effect across endpoints under a closed-cohort design, the variance of 

the l-th intervention effect estimator (unscaled) under model (11), i.e.δl = σY lλ1
1/2δ′, is
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varboth  δl =
(IT /(LN))σY l

2 λ3 + (L − 1)τ3 λ4 + (L − 1)τ4
ITU − TW + U2 − IV λ4 + (L − 1)τ4 − U2 − IV λ3 + (L − 1)τ3

.

As shown in Theorem 3, under the parsimonious parameterization with common ICC values 

across endpoints, the l-th diagonal element of Ωδ is denoted by

varICC δl =
(IT /N)σY l

2

ITU − TW + U2 − IV λ4 − τ4 − U2 − IV λ3 − τ3
×

ITU − TW + U2 − IV λ3 λ4 − τ4 λ4 + (L − 1)τ4 − U2 − IV λ4 λ3 − τ3 λ3 + (L − 1)τ3
ITU − TW + U2 − IV λ4 + (L − 1)τ4 − U2 − IV λ3 + (L − 1)τ3

,

and varboth  δ l < varICC δ l  for any set of valid design parameters.

Just as we saw under cross-sectional designs, assuming common ICCs often leads to 

more precise estimates of the intervention effect estimator (Theorem 3) and additionally 

assuming common intervention effects further improves that precision (Theorem 4) under 

closed-cohort designs.

4 | APPLICATION TO DATA EXAMPLE

4. 1 | Shared Decision-Making in Interprofessional Home Care Teams (IP-SDM) Trial

The shared decision-making in interprofessional home care teams (IP-SDM) study is 

a SW-CRT focused on evaluating the implementation of shared decision-making in 

interprofessional home care teams caring for elderly clients and their caregivers in Quebec, 

Canada. 12 Nine Health and Social Services Centers (HSSCs) were randomized to one 

of four possible sequences (T = 5) with two HSSCs per sequence with the exception of 

sequence two which had three HSSCs. At each time period eight different elderly clients 

(N = 8) were sampled from each HSSC. The primary endpoint of the IP-SDM trial was 

the binary decision to stay at home or to move with scores on various questionnaires as 

secondary outcomes. A secondary outcome of interest was health-related quality of life of 

the elderly clients measured using the Nottingham Health Profile (NHP). The investigators 

chose two relevant and equally important subscales of the NHP, namely social isolation 

and emotional reactions. Each subscale includes multiple yes/no questions which are then 

weighted and summed to generate a total score ranging from 0 to 100.

4.2 | Sample Size and Power Considerations in the Context of IP-SDM Study

To illustrate our power and sample size methodology, we use data from the IP-SDM study to 

inform the design of a future cross-sectional SW-CRT to study the effect of the shared 

decision making model on social isolation and emotional reactions as two co-primary 

endpoints. The investigators plan to use the same number of periods (T = 5), but need 

to determine the number of clusters (I) and cluster-period size (N) required to achieve at 

least 80% power at the 5% nominal level under the IU-test as described in Section 3.1. 
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We also assume an equal number of clusters per sequence, i.e. I will be a multiple of 4. 

First, we use data from the IP-SDM study to obtain plausible estimates of the ICCs for the 

future study. To estimate the ICCs, we fit model (1) using the EM algorithm with social 

isolation designated as the first outcome and emotional reactions as the second outcome 

and use the relationship between the estimated variance components and ICCs (Table 1 ). 

Using the results of the model, we estimated σb1
2 = 0.01, σs1

2 = 3.71, and σϵ1
2 = 607.41 giving 

us a total variance of σY 1
2 = 611.13 for social isolation. For emotional reactions, we estimated 

σb2
2 = 4.74, σs2

2 = 15.69, and σϵ2
2 = 675.30 giving us a tota1 variance of σY 2

2 = 695.73. For 

the between-outcome variance components, we estimated σb12 = − 0.05, σs12 = − 1.23, and 

σϵ12 = 377.27. The negative estimates of σb12 and σs12 imply negative ICC values which 

may be reasonable in certain situations, but given the relatively small sample size of the 

IP-SDM trial, were considered as sampling error for our purposes. Given that a positive 

correlation is plausible between the the NHP subscores, we instead set σb12 = 0 and σs12 

= 0 corresponding to a between-endpoint ICC (both within-period and between-period) of 

zero. In other words, we assume that there is no correlation between different individuals 

within the same cluster measured on different outcomes. Now that we have all of our 

variance components, we can use Table 1 to generate the ICC values. Specifically, we 

estimate the endpoint-specific ICCs for social isolation to be ρ0
1 = 0.006 (within-period) and 

ρ1
1 = 0.00002 (between-period). For emotional reactions, we estimate the endpoint-specific 

ICCs to be ρ0
2 = 0.029 (within-period) and ρ1

2 = 0.0068 (between-period). We further estimate 

the between-endpoint ICCs to be ρ0
12 = ρ1

12 = 0 (within-period and between-period) and the 

intra-subject ICC to be ρ2
12 = 0.58. For demonstration, we assume that a clinically relevant 

effect size of intervention is δ1 = 0.30 × σy1 and δ2 = 0.35 × σy2, i.e. that the shared decision 

making intervention leads to an increase in each of the quality of life subscales. Using our 

ICCs, design parameters, and equations (3) and (4), we estimate that I = 16 HSSCs (clusters) 

with N = 12 clients per HSSC per period are needed to achieve 86.3% power based on the 

IU-test.

4.3 | Sensitivity Analysis to ICC Assumptions

We assess the sensitivity of our power estimate to ICC specification in Table 4 . For 

simplification, we specify all between-period ICCs using CAC and consider varying levels 

(0.0, 0.2, 0.5, and 0.8). Further, since our point estimates for σb12 and σs12 were negative, 

implying the between-outcome ICCs (ρ0
12 and ρ1

12) are negative, we include such scenarios 

in our sensitivity analysis in addition to scenarios of positive correlation.For all remaining 

ICCs, we explored values that were 20%, 40%, and 60% lower and higher than the current 

specification. Overall, we found that our predicted power (86.3%) was robust to the ICC 

values considered in our sensitivity analysis. Specifically, the predicted power was slightly 

higher for lower values of within-period endpoint-specific ICCs (ρ0
1,ρ0

2) and for higher values 

of the intra-subject ICC (ρ2
12). Further, the predicted power was fairly constant for various 

between-period ICCs (denoted by CAC) and for the within-period between-endpoint ICC 

(ρ0
12).
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4.4 | Additional Comparative Analyses

For comparison purposes, if an investigator is interested in testing whether either endpoint is 

significantly different from zero (an omnibus test), then with the same number of HSSCs (I 
= 16) and clients per HSSC per period (N = 12) researchers have around the same level of 

power, 86.5%, to detect much smaller effect sizes of δ1 = 0.052 × σy1 and δ2 = 0.102 × σy2. 

This is expected as the omnibus test would be rejecting more frequently than the IU-test due 

to a larger space of alternative hypotheses.

In addition, we carried out a comparison between the stepped wedge design and a parallel-

arm design, assuming equal total sample sizes. Specifically, if we use the same design 

parameter inputs for the IP-SDM study (standardized effect size of (0.30, 0.35)) but assume 

a typical parallel-arm cluster randomized trial design (with the same total number of subjects 

but without requiring the information on between-period ICCs), then the power would be 

91.5% compared to 86.3% under a stepped wedge design using the IU-test. Since the IU-test 

rejects the null based on the endpoint-specific test statistic, its operating characteristics are 

expected to be more similar to the conventional Wald-test for a single endpoint. From this 

point of view, the above comparison result is in agreement with the findings in Hemming 

and Taljaard 29 that a parallel-arm design can be slightly more effcient than a stepped wedge 

design (with a single endpoint) when the ICC is small. However, the omnibus test is based 

on a quadratic test statistic involving the covariance matrix of the treatment effect estimator 

and thus may be more affected by the magnitude of the between-period ICCs under a 

stepped wedge design. Indeed, with the omnibus test, if we use the same standardized effect 

sizes, (0.052, 0.102), the power under a parallel-arm design is only 12.0% compared to 

86.5% under a stepped wedge design. This finding confirms the different behaviour between 

the IU-test and omnibus test that was previously identified under a parallel-arm design.9 

We acknowledge that this is only an empirical comparison under the IP-SDM example, and 

a formal comparison between parallel-arm design and stepped wedge design with multiple 

outcomes is yet to be investigated in future work. Finally, when evaluating alternative 

designs for a specific study, the decision to adopt a stepped wedge design is often not 

exclusively based on power and can include other practical or administrative considerations; 

see, for example, broad justifications for stepped wedge designs detailed in Hemming and 

Taljaard. 1

5 | A SIMULATION STUDY

For further illustration, we validate our proposed methodology for estimating power under 

the IU-test using simulations. We consider two (L = 2) normally distributed multivariate 

outcomes under a cross-sectional design. For each endpoint-specific ICC, we chose within-

period ICCs within commonly reported ranges for parallel-arm CRTs, ρ0
l = 0.02, 0.1, 0.2 , 

and between-period ICCs using a CAC of 0.5,ρ1
l = 0.01, 0.05, 0.1 . For between-endpoint 

ICCs, we set the within-period ICC using ρ0
ll′ = 0.5 × min ρ0

l , ρ0
l′ = 0.01, 0.05, 0.1 , the 

between-period ICC using a CAC of 0.5, ρ1
ll′ = 0.005, 0.025, 0.05 , and we considered 

small to large values of the intra-subject ICC, ρ2
ll′ = 0.2, 0.5, 0.8 . We considered all 

possible combinations of our five ICC parameters giving a total of 27 scenarios. 
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To generate continuous multivariate outcomes we restrict the total variance of each 

endpoint σY 1
2 = σY 2

2 = 4  which allows us to compute individual variance components 

based on the ICC values (Table 1 ), and use the MLMM (1) introduced in Section 

2,Y ijk = β0 + βj + Xijδ + bi + sij + ϵijk. As shown in equation (2), the covariance matrix 

of the intervention effects is time invariant, therefore we only assume a minor 

and common increasing secular trend for each endpoint with β01 = β02 = 0 and 

β(j + 1)1 − βj1 = β(j + 1)2 − βj2 = 0.1 × (0.5)j − 1 for j ≥ 1. Our simulations also assumed a 

standard SW-CRT design such that an equal number of clusters are randomly assigned to 

each sequence. Motivated by the findings in a systematic review of SW-CRTS 30, we varied 

the number of clusters (I) between 8 and 30, the number of periods (T ) between 3 and 

5, and set an upper limit of 25 for the cluster-period size (N). We considered standardized 

intervention effect sizes of δl/σY l ∈ [0.1, 1]. Exact parameter values were chosen to ensure at 

least 80% power based on a one-sided nominal 5% level Wald test. To compute the predicted 

power we used (3) and (4) with critical values c1 = c2 = tα(I – 4). The empirical power of the 

Wald test was determined by the proportion correctly rejecting H0, I l = 1
2 wl > cl = 1, 

over 1000 simulated SW-CRTs, when the MLMM parameters are estimated by the EM 

algorithm. Agreement between the empirical and predicted power was used to assess the 

accuracy of our proposed method. Finally, since the maximum error rate is supposed to be 

achieved only when one of the true treatment effects is zero, we assessed the empirical type I 

error rate by setting δ1/σy1 = 0 only and then setting δ2/σy2 = 0 only to confirm the validity 

of the Wald test. In Web Table 1, we also provide the empirical type I error when treatment 

effects on both endpoints are set to zero.

In Table 5 we present the empirical power and type I error rate and predicted power of 

the Wald test for each scenario. Overall, the empirical type I error rate was conservative, 

and differences between empirical and predicted power were small, ranging between 

-1.8% and 3.9%. Thus, our power and sample size methodology either closely matched 

or slightly underestimated the true power (therefore at worst conservative). Therefore, our 

proposed method based on asymptotics is accurate and can be used to design cross-sectional 

SW-CRTs with multivariate continuous outcomes without resorting to computationally 

exhaustive simulation-based calculations.

6 | DISCUSSION

Cluster randomized trials with multivariate or co-primary outcomes are becoming 

increasingly common. Investigators often reluctantly choose a single primary outcome even 

though there could be multiple outcomes identified by various trial stakeholders as central 

to their decision-making processes. The recent review of pragmatic Alzheimer’s disease and 

related dementias trials by Taljaard et al. 7 suggested that a substantial proportion of CRTs 

had multivariate or co-primary outcomes, but appropriate methods for power analysis are not 

accessible or remain to be developed. Specifically, while methods for designing parallel-arm 

cluster randomized trials with multivariate outcomes were only recently developed 22,9, 

no such methods were available for designing SW-CRTs with multivariate outcomes. To 

fill this gap, we developed computationally efficient sample size calculations for designing 
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SW-CRTs with multivariate continuous outcomes using a MLMM. Our model specification 

includes five ICC parameters representing the endpoint-specific ICCs and between-endpoint 

ICCs, both within-period and between-period, and the intra-subject ICC. We derive the 

joint distribution of the intervention test statistics which can be used for generating power 

estimates under any specified hypothesis and provide an example using the commonly 

utilized IU-test for co-primary endpoints. We provide insights into the relationship between 

the ICCs and power. Specifically, we found that higher values of the within-period endpoint-

specific ICCs and lower values of all remaining ICCs appear to lead to conservative sample 

sizes; this may help formulate guidance that is useful when there is limited knowledge 

regarding the exact value of each ICC (for example, to understand whether larger or smaller 

ICC values can lead to conservative and therefore still valid sample size estimates in the 

design phase) but caution that the true relationship between ICCs and power could be more 

complex. We also conducted an extensive simulation study to validate our power and sample 

size methodology under small ICCs, small number of clusters, and small cluster-period 

sizes. Based on these results, we recommend for studies with small expected ICCs (intra-

subject ICC as low as 0.2 with all remaining ICCs between 0.005 and 0.02) to have at least 

12 clusters with no fewer than 25 participants per cluster-period or at least 20 clusters with 

no fewer than 15 participants per cluster-period for valid power estimates. However, this 

guidance only pertains to two co-primary outcomes (L = 2), which is arguably the most 

common case in practice; it is possible that this requirement may change under three or more 

co-primary outcomes and additional investigation is required to explore a more general rule 

of thumb for L = 3. Furthermore, we discuss power calculation under simplified scenarios, 

including common treatment effects and common ICCs, and under extensions to a more 

complex closed-cohort design. We illustrate our power formula using the IP-SDM study and 

assess the sensitivity of our ICC specifications to predicted power.

Our work assumes an immediate and sustained effect of the intervention on all primary 

endpoints, and have not considered gradually increasing or decreasing treatment effects by 

duration of the intervention (referred to as the exposure time). It is of interest to further 

explore design and analysis strategies for SW-CRTs with multivariate outcomes when 

the intervention effects are unknown functions of the exposure time. Under the SW-CRT 

design with a single primary endpoint, Kenny et al. 31 found that assuming an immediate 

treatment effect when the true treatment effect is a function of exposure time can lead to 

estimation bias and invalid inference. It is likely that the same conclusion would apply 

to the multivariate linear mixed models with more than one primary endpoint. It would 

also be of interest to develop corresponding power and sample size strategies to detect 

the existence of exposure-time treatment effect heterogeneity. In addition, we focused on 

multivariate continuous outcomes, but our method could be extended to binary or other 

distributions by changing our MLMM to a multivariate generalized LMM (GLMM). The use 

of a multivariate GLMM is complicated by the requirement of designating an appropriate 

link function. Based on the power formula for a SW-CRT with a single outcome under 

the GLMM framework, 20 we would expect the covariance matrix of the intervention 

effect estimators to depend on the period effects and may require complex integration 

to eliminate the dependence on the random effects. In future work, it is of interest to 

investigate whether the linearization approach in Davis-Plourde et al. 20 can be extended 
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to a multivariate GLMM with multivariate binary outcomes in SW-CRTs, or whether the 

generalized estimating equations approach for parallel-arm CRTs with multivariate binary 

outcomes 22 could be extended to more complex correlation structures under a SW-CRT 

design. Finally, it is also of future interest to develop suitable sample size methodology for 

SW-CRTs with a mixture of correlated continuous and binary outcomes.
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FIGURE 1. 
A schematic illustration of a stepped wedge cluster randomized trial (SW-CRT) with five 

periods and four distinct intervention sequences. Clusters are randomized to a sequence and 

typically each sequence contains the same number of clusters. Each white cell indicates the 

control condition and each gray cell indicates the intervention condition.
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FIGURE 2. 
Relationship between ICCs and power with L = 2 co-primary endpoints. ICCs include 

the within-period endpoint-specific ICCs ρ0
1 = 0.1, ρ0

2 , between-period endpoint-specific 

ICC ρ1
1, ρ1

2 , within-period and between-period between-endpoint ICCs ρ0
12, ρ1

12 , and intra-

subject ICC ρ2
12 . Various ρ2

12 values are shown on the y-axis and various ρ0
12 specifications 

are shown on the x-axis as a ratio of ρ0
1, ρ0

2 . Between-period ICCs are defined by CAC. 

Darker colors denote higher power.
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TABLE 1

Definition of intracluster correlation coeffcients (ICCs) with total variance for the l-th outcome denoted by 

σY l
2 = σbl

2 + σsl
2 + σϵl

2 .

ICC Definition Expression

ρ0
l within-period endpoint-specific ICC corr Y ijkl, Y ijk′l = σbl

2 + σsl
2 /σY l

2

ρ1
l between-period endpoint-specific ICC corr Y ijkl, Y ij′k′l = σbl

2 /σY l
2

ρ0
ll′ within-period between-endpoint ICC corr Y ijkl, Y ijk′l′ = σbll′ + σsll′ / σY lσY l′

ρ1
ll′ between-period between-endpoint ICC corr Y ijkl, Y ij′k′l′ = σbll′/ σY lσY l′

ρ2
ll′ intra-subject ICC corr Y ijkl, Y ijkl′ = σbll′ + σsll′ + σϵll′ / σY lσY l′
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TABLE 2

Glossary of notation.

Notation Meaning

L,I,T,N Number of outcomes, clusters, periods, subjects per cluster-period (balanced design)

Σb,Σs ,Σϵ ,Σγ cluster, cluster-period, error, within-subject (closed-cohort) variance components

I u ,J u u × u identity matrix, u × u matrix of ones

A⊗ B Kronecker product of the matrices A and B

A ○ B Hadamard (element-wise) product of the matrices A and B

U, V, W
i = 1
I

j = 1
T Xij, i = 1

I
j = 1
T Xij

2
, j = 1

T
j = 1
I Xij

2

ΛY diag σY 1
2 , …, σY L

2

σϵ σϵ1, …, σϵL
⊤

ω σY 1 1 − ρ0
1 1/2, …, σY L 1 − ρ0

L 1/2 ⊤
 or σY 1 1 − ρ0

1 + ρ1
1 − ρ2

1 1/2, …, σY L 1 − ρ0
L + ρ1

L − ρ2
L 1/2 ⊤

(closed-cohort)

λ1 1 − ρ0 or 1 − ρ0 + ρ1 − ρ2 (Closed-cohort)

λ2 1 + (N − 1)ρ0 − Nρ1

λ3 1 + (N − 1)ρ0 + (T − 1)Nρ1 or 1 + (N − 1) ρ0 − ρ1 − ρ2(closed-cohort)

λ4 1 + (N − 1)ρ0 + (T − 1)(N − 1)ρ1 + (T − 1)ρ2

τ2 (N − 1)ρ00 − Nρ11 + ρ2

τ3 (N − 1)ρ00 − Nρ11 + ρ2 + TNρ11 or ρ2.0 − ρ2.1 + (N − 1) ρ00 − ρ11 (closed-cohort)

τ4 ρ2, 0 − ρ2, 1 + (N − 1) ρ00 − ρ11 + T ρ2, 1 + (N − 1)ρ11

Γ0, Γ1

ρ0
1 ρ0

12 … ρ0
1L

ρ0
12 ρ0

2 … ρ0
2L

⋮ ⋮ ⋱ ⋮

ρ0
1L ρ0

2L … ρ0
L

,

ρ1
1 ρ1

12 … ρ1
1L

ρ1
12 ρ1

2 … ρ1
2L

⋮ ⋮ ⋱ ⋮

ρ1
1L ρ1

2L … ρ1
L

Γ2

1 ρ2
12 … ρ2

1L

ρ2
12 1 … ρ2

2L

⋮ ⋮ ⋱ ⋮

ρ2
1L ρ2

2L … 1

 or 

1 ρ2, 0
12 … ρ2, 0

1L

ρ2, 0
12 1 … ρ2, 0

2L

⋮ ⋮ ⋱ ⋮

ρ2, 0
1L ρ2, 0

2L … 1

(closed-cohort)

Γ2′

ρ2
1 ρ2, 1

12 ⋯ ρ2, 1
1L

ρ2, 1
12 ρ2

2 ⋯ ρ2, 1
2L

⋮ ⋮ ⋱ ⋮

ρ2, 1
1L ρ2, 1

2L ⋯ ρ2
L
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TABLE 3

Definition of intracluster correlation coefficients (ICCs) under a closed-cohort design with total variance for 

the l-th outcome denoted by σY l
2 = σbl

2 + σsl
2 + σγl

2 + σϵl
2 .

ICC Definition Expression

ρ0
l within-period endpoint-specific ICC corr Y ijkl, Y ijk′l = σbl

2 + σsl
2 /σY l

2

ρ1
l between-period endpoint-specific ICC corr Y ijkl, Y ij′k′l = σbl

2 /σY l
2

ρ0
ll′ within-period between-endpoint ICC corr Y ijkl, Y ijk′l′ = σbll′ + σsll′ / σY lσY l′

ρ1
ll′ between-period between-endpoint ICC corr Y ijkl, Y ij′k′l′ = σbll′/ σY lσY l′

ρ2, 0
ll′ within-period intra-subject ICC corr Y ijkl, Y ijkl′ = σbll′ + σsll′ + σγll′ + σϵll′ / σY lσY l′

ρ2, 1
ll′ between-period intra-subject ICC corr Y ijkl, Y ij′kl′ = σbll′ + σγll′ / σY lσY l′

ρ2
l intra-subject endpoint-specific ICC corr Y ijkl, Y ij′kl = σbl

2 + σγl
2 /σY l

2
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TABLE 4

Sensitivity of ICC specification in our application to the IP-SDM study. ICCs include the within-period 

endpoint-specific ICCs (ρ0
1 = 0.006,ρ0

2 = 0.029), the within-period between-endpoint ICC (ρ0
12 = 0), and the 

intra-subject ICC (ρ2
12 = 0.58). Between-period ICCs are defined by CAC. Assuming a total of I = 16 HSSCs 

(clusters) with N = 12 clients per HSSC per period produced a predicted power of 86.3%.

ρ2
12 ρ0

1 ρ0
2 ρ0

12 CAC power (%)

0.58 0.006 0.029 0 0.0 86.9

0.58 0.006 0.029 0 0.2 86.2

0.58 0.006 0.029 0 0.5 86.0

0.58 0.006 0.029 0 0.8 86.5

0.58 0.006 0.029 −0.004 0.2 86.1

0.58 0.006 0.029 −0.002 0.2 86.1

0.58 0.006 0.029 0.002 0.2 86.2

0.58 0.006 0.029 0.004 0.2 86.3

0.58 0.006 0.012 0 0.2 88.6

0.58 0.006 0.017 0 0.2 87.7

0.58 0.006 0.023 0 0.2 87.0

0.58 0.006 0.035 0 0.2 85.3

0.58 0.006 0.041 0 0.2 84.4

0.58 0.006 0.046 0 0.2 83.7

0.58 0.002 0.029 0 0.2 87.2

0.58 0.004 0.029 0 0.2 86.6

0.58 0.005 0.029 0 0.2 86.3

0.58 0.007 0.029 0 0.2 85.9

0.58 0.008 0.029 0 0.2 85.7

0.58 0.010 0.029 0 0.2 85.5

0.23 0.006 0.029 0 0.2 85.1

0.35 0.006 0.029 0 0.2 85.3

0.46 0.006 0.029 0 0.2 85.7

0.70 0.006 0.029 0 0.2 86.7

0.81 0.006 0.029 0 0.2 87.3

0.93 0.006 0.029 0 0.2 88.4
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TABLE 5

Estimated required number of clusters I, subjects per cluster-period N, periods T , empirical type I error 

when only setting the first effect to zero and when only setting the second effect to zero (e1, e2), empirical 

power ψ¸ predicted power ψ obtained from power formula for given effect size δl/σδl, within-period and 

between-period endpoint-specific ICCs (ρ0
l ,ρ1

l ), within-period and between-period between-endpoint ICCs (ρ0
ll′,

ρ1
ll′), and intra-subject ICC (ρ2

ll′) assuming a CAC of 0.5 with L = 2 co-primary endpoints.

ρ2
12 (ρ0

1,ρ1
1) (ρ0

2,ρ1
2) (ρ0

12,ρ1
12) (δ1/σδ1,δ2/σδ2) I N T (e1, e2) ψ ψ

0.2 (0.02, 0.01) (0.02, 0.01) (0.01, 0.005) (0.43, 0.43) 20 13 3 (3.5, 3.0) 84.5 83.0

(0.10, 0.05) (0.01, 0.005) (0.40, 0.38) 12 25 5 (3.8, 4.6) 85.2 86.7

(0.20, 0.10) (0.01, 0.005) (0.39, 0.56) 12 25 4 (3.9, 4.3) 83.6 86.2

(0.10, 0.05) (0.02, 0.01) (0.01, 0.005) (0.38, 0.33) 12 25 5 (3.5, 4.2) 82.6 85.0

(0.1, 0.05) (0.05, 0.025) (0.49, 0.98) 12 15 4 (4.3, 3.7) 85.6 88.1

(0.20, 0.10) (0.05, 0.025) (0.59, 0.99) 12 20 3 (4.6, 4.9) 84.2 84.7

(0.20, 0.10) (0.02, 0.01) (0.01, 0.005) (0.47, 0.22) 20 18 5 (5.5, 4.5) 82.2 82.3

(0.10, 0.05) (0.05, 0.025) (0.92, 0.92) 10 12 3 (3.8, 3.5) 84.1 84.8

(0.20, 0.10) (0.10, 0.05) (0.54, 0.81) 12 25 4 (4.9, 3.9) 83.9 85.8

0.5 (0.02, 0.01) (0.02, 0.01) (0.01, 0.005) (0.30, 0.28) 30 10 4 (4.8, 4.7) 84.4 84.1

(0.10, 0.05) (0.01, 0.005) (0.34, 0.88) 16 22 3 (3.3, 4.2) 82.4 81.3

(0.20, 0.10) (0.01, 0.005) (0.42, 0.83) 8 20 5 (1.2, 3.3) 86.3 86.2

(0.10, 0.05) (0.02, 0.01) (0.01, 0.005) (0.38, 0.55) 21 10 4 (4.8, 5.2) 84.0 84.7

(0.10, 0.05) (0.05, 0.025) (0.52, 0.68) 8 25 5 (3.8, 3.1) 84.8 88.7

(0.20, 0.10) (0.05, 0.025) (0.62, 0.62) 22 8 3 (5.4, 4.9) 83.9 83.9

(0.20, 0.10) (0.02, 0.01) (0.01, 0.005) (0.84, 0.29) 26 18 3 (4.9, 4.7) 84.7 86.8

(0.10, 0.05) (0.05, 0.025) (0.60, 0.60) 12 16 4 (4.7, 5.3) 85.0 85.8

(0.20, 0.10) (0.10, 0.05) (0.32, 0.84) 24 24 5 (5.1, 4.6) 85.7 86.4

0.8 (0.02, 0.01) (0.02, 0.01) (0.01, 0.005) (0.31, 0.55) 12 16 5 (4.1, 5.0) 84.4 82.6

(0.10, 0.05) (0.01, 0.005) (0.29, 0.57) 30 14 3 (4.0, 4.7) 83.1 84.6

(0.20, 0.10) (0.01, 0.005) (0.20, 0.84) 30 17 4 (4.4, 5.4) 81.4 80.2

(0.10, 0.05) (0.02, 0.01) (0.01, 0.005) (0.31, 0.62) 20 13 5 (5.1, 3.2) 84.2 83.5

(0.10, 0.05) (0.05, 0.025) (0.82, 0.92) 8 22 3 (2.9, 2.8) 85.2 87.4

(0.20, 0.10) (0.05, 0.025) (0.45, 0.45) 18 18 4 (5.2, 4.6) 83.7 85.4

(0.20, 0.10) (0.02, 0.01) (0.01, 0.005) (0.99, 0.25) 28 25 3 (5.1, 4.0) 85.6 84.9

(0.10, 0.05) (0.05, 0.025) (0.63, 0.31) 24 17 4 (4.5, 5.6) 84.1 84.6

(0.20, 0.10) (0.10, 0.05) (0.82, 0.82) 8 10 5 (3.2, 2.9) 86.1 89.4
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