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Abstract

Objective: Smartphones have the potential for capturing subtle changes in cognition that 

characterize preclinical Alzheimer disease (AD) in older adults. The Ambulatory Research in 

Cognition (ARC) smartphone application is based on principles from ecological momentary 

assessment (EMA) and administers brief tests of associative memory, processing speed, and 

working memory up to 4 times per day over 7 consecutive days. ARC was designed to be 

administered unsupervised using participants’ personal devices in their everyday environments.

Methods: We evaluated the reliability and validity of ARC in a sample of 268 cognitively normal 

older adults (ages 65–97) and 22 individuals with very mild dementia (ages 61–88). Participants 

completed at least one 7-day cycle of ARC testing and conventional cognitive assessments; most 

also completed cerebrospinal fluid, amyloid and tau PET, and structural MRI studies.

Results: First, ARC tasks were reliable as between-person reliability across the 7-day cycle 

and test-retest reliabilities at 6-month and 1-year follow-ups all exceeded 0.85. Second, ARC 

demonstrated construct validity as evidenced by correlations with conventional cognitive measures 
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(r = 0.53 between composite scores). Third, ARC measures correlated with AD biomarker burden 

at baseline to a similar degree as conventional cognitive measures. Finally, the intensive 7-day 

cycle indicated that ARC was feasible (86.50% approached chose to enroll), well tolerated 

(80.42% adherence, 4.83% dropout), and was rated favorably by older adult participants.

Conclusions: Overall, the results suggest that ARC is reliable and valid and represents a feasible 

tool for assessing cognitive changes associated with the earliest stages of AD.
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Introduction

There have been remarkable developments in fluid and neuroimaging biomarkers that 

track the progression of Alzheimer disease (AD). AD biomarkers can identify pathological 

changes in amyloid and tau that occur well before symptom onset (Barthélemy et al., 2020; 

Bateman et al., 2012; Price et al., 2009; Sperling et al., 2011). Despite these developments, 

advances in the measurement of cognitive decline—the essence of the disease phenotype

—have lagged behind. Secondary prevention trials targeting abnormal biomarker levels in 

preclinical (pre-symptomatic) AD are determined to be successful if they stop or slow 

cognitive decline (Edgar et al., 2019; Food and Drug Administration, 2018). Because 

the declines in cognition that occur in preclinical AD are subtle, capturing declines, 

slowing of declines, or improvements requires reliable cognitive tests that are sensitive 

to AD pathological processes. However, standard cognitive assessment tools used in AD 

studies include classic neuropsychological tests that were originally designed to detect 

overt cognitive impairments or measure facets of intelligence (Sheehan, 2012; Woodford 

& George, 2007; Weintraub et al., 2009) and often place heavy burden on participants. 

This poses a critical hurdle for randomized controlled trials (RCTs) examining therapeutics 

in preclinical and early-stage symptomatic AD populations. Measures with sub-optimal 

reliability require larger sample sizes to detect cognitive benefits, particularly when the 

expected effects are subtle (Dodge et al., 2015).

Advances in smartphone technology have allowed researchers to embed brief cognitive 

measures into ecological momentary assessments (EMA). EMA methods investigate 

psychological states and behaviors as they occur in natural environments (Shiffman, 

Stone & Hufford, 2008; Smyth & Stone, 2003; Sliwinski et al., 2018). EMA is defined 

by several features: (1) data is collected as participants go about their daily lives; (2) 

assessments are randomly sampled across various occasions to characterize an individual’s 

average performance on a given variable of interest; and (3) participants perform multiple 

short assessments to capture behavioral changes over time and across different situations 

(Sliwinski et al., 2018).

Although traditional laboratory/clinical settings afford precise control over the testing 

environment, this is not representative of everyday cognitive functioning (Sliwinski et al., 

2018). The use of smartphone EMAs in cognitive research can assuage ecological validity 

Nicosia et al. Page 2

J Int Neuropsychol Soc. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concerns as participants perform assessments as they go about their daily lives. Additionally, 

repeated assessments can improve upon the reliability of conventional measures because 

they are not collected in just one testing session that may be influenced by variability in 

participants’ day-to-day stress and mood, amongst other factors (Sliwinski et al., 2018). 

In individuals with neurodegenerative disorders, cognitive performance can vary with 

time of day (Wilks et al., 2021), and day-to-day variability can be exaggerated (Matar 

et al., 2020), further exacerbating the impact of conventional measures’ low reliability. 

With EMA, aggregation across repeated measurements ameliorates effects of within-person 

variability and improves reliability by estimating average functioning (Shiffman et al., 

2008; Sliwinski, 2008; Sliwinski et al, 2018). Although ambulatory cognitive testing is not 

necessarily a replacement of gold-standard in-person cognitive testing, smartphone EMAs 

provide snapshots of cognition that may reveal unique patterns that cannot be captured with 

conventional testing.

Smartphone-based assessments may offer a more practical and logistically plausible solution 

for large-scale studies and clinical trials of AD. Allowing individuals to participate in 

research studies unsupervised, in familiar environments, and using their own devices can 

increase engagement, reduce experimenter effects (e.g. demand characteristics, “white coat” 

testing effects), bolster sample size and diversity, and make participation more accessible 

and inclusive for individuals who may otherwise be unable to come into the laboratory 

or clinic. Indeed, interest in smartphone studies is growing and several studies have 

demonstrated the feasibility and validity of smartphone-based assessments for use in older 

adults and individuals with preclinical AD (Güsten et al., 2021; Hassenstab et al., 2020; 

Lancaster et al., 2020; Mackin et al., 2018; Öhman et al., 2021; Papp et al., 2021; Nicosia et 

al., 2021; Wilks et al., 2021), as well as the potential for high-frequency in-home monitoring 

to substantially increase the statistical power of therapeutic trials (Dodge et al., 2015).

The purpose of the present study was to evaluate the reliability, validity, and feasibility 

of unsupervised, high-frequency cognitive testing using participants’ personal smartphones. 

Tasks assessed associate memory, processing speed, and working memory in older adults 

and individuals with preclinical and early symptomatic AD. If the Ambulatory Research in 

Cognition smartphone application (ARC) is a reliable, valid, and feasible measure, ARC 

should: (1) demonstrate high between-subjects and retest reliability; (2) have construct 

validity (indexed by correlations with correlations with conventional cognitive measures); 

(3) demonstrate sensitivity to age and AD-related biomarkers; and (4) be well-tolerated by 

older adults regardless of technology familiarity.

Methods

Participants:

We recruited participants enrolled in ongoing studies of aging and dementia at the Charles 

F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) at Washington 

University School of Medicine in St. Louis. ARC was designed to be sensitive to subtle 

changes in cognition in participants at risk for, or in the earliest stages, of AD, thus 

enrollment in the ARC study was limited to those with a Clinical Dementia Rating® 

(CDR®; Morris, 1993) of 0 (cognitively normal) or 0.5 (very mild dementia). In-person 
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enrollment began in February of 2020 and was halted in March 2020 due to the SARS-

CoV-2 (COVID-19) pandemic. Therefore, beginning April 2020, the majority of participants 

were enrolled remotely. All participants provided informed consent, and all procedures were 

approved by the Human Research Protections Office at Washington University in St. Louis 

and the research was conducted in accordance with the Helsinki Declaration.

Clinical Assessment.

Clinical status was determined with the CDR which uses a 5-point scale to characterize 

six domains of cognitive and functional performance (memory, orientation, judgment 

and problem solving, community affairs, home and hobbies, and personal care) that are 

applicable to AD and other dementias (Morris, 1993). CDR scores are determined through 

semi-structured interviews with the participant and an informant (i.e., family member or 

friend). A CDR score of 0 indicates cognitive normality, 0.5 = very mild dementia, 1 = mild 

dementia, 2 = moderate dementia, and 3 = severe dementia.

Conventional Cognitive Assessments.

Conventional cognitive measures included measures of verbal fluency (Animals, Vegetables, 

Verbal Fluency), episodic memory (Wechsler Memory Scale Paired Associates Recall, Free 

and Cued Selective Reminding Test (FCSRT) Free Recall, Craft Story 21 immediate and 

delayed recall), language (the Multilingual Naming Test; MINT), processing speed (Number 

Span Forward, Number Symbol Test1), and working memory (Number Span Backwards; 

see Hassenstab et al., 2016 and Weintraub et al., 2018 for additional information). A global 

composite similar to the Preclinincal Alzheimer’s Cognitive Composite (PACC; Donohue et 

al., 2014; Papp et al., 2017) was created by averaging the standardized scores from FCSRT 

free recall, Animal naming total score, Craft Story 21 delayed recall, and the total correct 

score from the Number Symbol test such that higher scores indicated better performance 

(Weintraub et al., 2009).

Ambulatory Research in Cognition (ARC) Application.

The ARC smartphone application is based on principles from ecological momentary 

assessment (EMA) and administers brief tests of associative memory, processing speed, 

and working memory up to 4 times per day over 7 consecutive days. Sampling frequency 

and duration were chosen based on reliability, validity, and effect size estimates reported in 

Sliwinski et al. (2018). ARC is programmed to run on major operating system (OS) versions 

(currently iOS 12.0+ and Android OS 8.0+) on iOS and Android devices. Participants were 

encouraged to use their personal smartphones as long as minimum technical requirements 

were met. Individuals interested in participating who did not own a smartphone or whose 

smartphone did not meet our criteria were supplied a device (either iOS or Android) 

for the duration of the study. Device exclusion criteria included software issues, limited 

phone storage, physical damage, battery problems, or poor responsivity. A trained study 

coordinator (M.T.) provided participants with detailed instructions regarding the ARC 

1A computerized task developed and validated at the Knight ADRC that assesses similar constructs as the Wechsler Digit Symbol 
Substitution task.
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application, and additional guidance on smartphone basics (including device setup and 

operation) was given to participants who were less familiar with smartphones. Throughout 

the study, the study coordinator provided extensive support for participants via phone, 

videoconferencing, email, and text messaging. Participants are reimbursed at a rate of $0.50 

per completed assessment session. To incentivize participation consistency, participants 

receive bonus payments for completing all 4 sessions any given day ($1.00 per occurrence, 

max of $7.00), completing at least 2 assessments per day for 7 days ($6.00), and completing 

at least 21 assessments over 7 days ($5.00). The maximum compensation possible for one 

7-day assessment visit was $32.00.

ARC assessment notifications were administered pseudorandomly throughout the 

participant’s self-reported awake hours, with at least two hours between each testing session. 

For example, if a participant reported waking up at 7am and going to bed at 10pm, they 

would receive four test session notifications between 7am and 10pm, separated by at least 

two hours (see Figure 1, top). The ARC cognitive tasks, Grids, Prices, and Symbols (see 

Figure 1, bottom), were administered in a random order during each session.

Grids is a spatial working memory task in which high resolution images of three common 

objects (key, smartphone, and pen) are displayed on a 5 × 5 grid, and participants are 

asked to remember the locations of the items. After encoding the locations of each item, 

participants perform a distractor task (identify Fs in grid of Es) before moving to the 

retrieval phase. At retrieval, participants are asked to tap the locations where the items 

were shown2. Participants perform two trials during each test session (lasting approximately 

30–40s) and, across sessions, stimuli are placed at random locations to protect against retest 

effects. Scores reflect a Euclidean distance estimate, agnostic to item, such that a higher 

score indicates retrieval placement farther away from the encoded locations (i.e., higher 

score indicates worse performance; Sliwinski et al., 2018).

Prices is an associate memory task with a learning and recognition phase. In the learning 

phase, participants are shown 10 item-price pairs for 3s per pair and asked to remember 

the items and their corresponding prices. Items were common shopping items (food and 

household supplies), and the prices were randomly assigned 3-digit prices containing no 

repeated digits and no more than two sequential digits. In the recognition phase, participants 

were presented with two prices and asked to choose which was shown with the item during 

the learning phase. The price choices were separated by at least $3.00 to avoid ceiling and 

floor effects (Hassenstab et al., 2018). To protect against retest and interference effects, 40 

items, chosen without replacement, are never repeated within the same day, and item-price 

pairs are never re-presented over the 28 sessions. Trials last approximately 60s and scores 

reflect the proportion of recognition trial errors such that higher scores indicate worse 

performance.

2Two versions of the Grids task are included in the present analyses which differed slightly in their retrieval phase instructions. In the 
original version, participants were asked to tap the locations of the items from encoding. In the new version, participants are shown 
the items from encoding one at a time and asked to tap the location of that item from encoding. We used a scoring procedure that 
was agnostic to item such that scores reflect the shortest Euclidian distance between participants’ taps at retrieval and the encoded 
locations regardless of which item they were placing. Nevertheless, to test whether participants’ scores differed across versions, 
several t-tests were run to determine if this change in task administration did not dramatically affect participants’ performance. 
Participants’ scores for the old and new versions did not significantly differ at visit 1, p = .07, or visit 2, p = .14.
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Symbols is a processing speed measure based on a task used by Sliwinski et al. (2018). 

Participants are shown three randomly assigned pairs of abstract shapes and asked to 

determine as quickly as possible which of two pairs match one of the three target pairs. To 

protect against retest effects, item pairs are randomly assigned for each session. Participants 

complete 12 trials during each session, lasting approximately 20–60s (duration varied based 

on participants’ response times). Scores reflect response times (RTs) on correct trials such 

that higher scores indicate worse performance. An “ARC composite score” was created in 

two steps. Z-scores for each task were calculated by subtracting raw scores from the cohort’s 

mean score and dividing by the cohort’s standard deviation. The z-scores were then averaged 

together to form the ARC composite score. Similar to the individual measures, a higher 

ARC composite score indicated worse performance.

Feasibility and Tolerability Measures.

Technology familiarity was assessed with a novel measure described in Nicosia et al. 

(2021). Briefly, the assessment combined objective measurements of technology knowledge 

(technology-related icon recognition) and self-reported ratings of (1) the frequency with 

which they perform certain smartphone tasks; and (2) how difficult it would be for 

them to perform various technology-related tasks. For the purposes of this study, we 

report participants’ technology icon recognition, average frequency of smartphone task 

performance, and average difficulty performing technology-related tasks (for more details 

see Nicosia et al., 2021).

ARC user experience was assessed with a 10-question survey using a 5-point Likert scale 

to rate aspects of user experience regarding installation, test instructions, frequency of 

testing, and overall tolerability. Objective measures of feasibility and tolerability included 

ARC adherence and drop-out rates. Adherence was defined as the number of completed 

test sessions divided by the total number of assessment sessions (i.e., a participant who 

completed 21 of 28 sessions would have a 75% adherence rate).

Cerebrospinal Fluid Collection and Processing.

Most participants underwent lumbar puncture (LP) to collect cerebrospinal fluid (CSF) 

following overnight fasting. Participants at the Knight ADRC undergo LP approximately 

every three years, however, CSF collection was postponed in March 2020 due to the 

pandemic, eliminating the possibility of acquiring more recent samples. Therefore, we 

limited the use of CSF data to those collected within five years of ARC testing (see Table 

1; collected on average 2.64 +/− 1.11 years from the first ARC assessment). Twenty to 

thirty mL of CSF was collected in a 50 mL polypropylene tube via gravity drip using 

an atraumatic Sprotte 22-gauge spinal needle. CSF was kept on ice and centrifuged at 

low speed within 2 hours of collection. CSF was then transferred to another 50 mL 

tube. CSF was aliquoted at 500 μL into polypropylene tubes and stored at −80°C as 

previously described (Fagan et al., 2006). Prior to analysis, samples were brought to 

room temperature per manufacturer instructions. Samples were vortexed and transferred 

to polystyrene cuvettes for analysis. Concentrations of Aβ40, Aβ42, total tau (tTau), and 

tau phosphorylated at threonine 181 (pTau) were measured by chemiluminescent enzyme 

immunoassay using a fully automated platform (LUMIPULSE G1200, Fujirebio, Malvern, 
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PA) according to manufacturer’s specifications. A single lot of reagents were used for all 

samples.

Neuroimaging:

Neuroimaging data was required to be collected within 5 years of ARC (see Table 1; 

Amyloid PET mean 2.59 +/− 1.04 years, Tau PET mean 2.50 +/− 0.96, and MRI mean 

2.55 +/− 1.05 years from the first ARC assessment). Briefly, MRI data were acquired on 

3T Siemens scanners and processed using Freesurfer (Fischl, van der Kouwe et al., 2004) 

to derive regional volumes and thicknesses. Volumes were adjusted for total intracranial 

volume (ICV) (see Raz et al., 2008) and a summary thickness composite was calculated 

(Singh et al., 2006).

Amyloid PET imaging was performed with either florbetapir (18F-AV-45) or Pittsburgh 

Compound B (PiB). Data were processed with an in-house pipeline using regions of interest 

derived from FreeSurfer (ttps://github.com/ysu001/PUP; Su et al., 2013). A summary 

standardized uptake value ratios (SUVR) measure was converted to the Centiloid scale (Su 

et al., 2018 & 2019) in order to combine PiB and florbetapir data. Tau PET imaging with 

flortaucipir (18F-AV-1451) was summarized using the average SUVRs of the of bilateral 

entorhinal cortex, amygdala, inferior temporal lobe, and lateral occipital cortex (Mishra et 

al., 2017). SUVRs used a cerebellar cortex reference and were partial volume corrected.

Statistical Analyses.

Statistical analyses were completed using R (v4.1.0). To characterize the reliability of ARC, 

descriptive statistics were examined for all ARC and conventional measures. Correlations 

were used to examine whether ARC captured age-related cognitive declines comparable 

to conventional cognitive measures. ARC test-retest reliability was assessed based on 

participants who completed follow-up testing ~6 months (“visit 2”; on average 6.07 +/− 

1.23 months between assessments) and ~1 year later (“visit 3”; on average 11.84 +/− 0.84 

months between assessments). Pearson correlation coefficients with an r of 0.80 to 0.90 were 

considered “good” reliability (Price et al., 2015). Intraclass correlations (ICC), which show 

how strongly units within the same group resemble each other, were computed to examine 

test-retest reliability and between-person reliability such that ICCs between 0.75 and 0.90 

indicate “good” reliability (Bruton et al., 2000). ARC and conventional cognitive measure 

correlations were used to examine construct validity. Finally, feasibility and tolerability 

were assessed by examining (1) adherence and drop-out rates; (2) correlations between 

technology familiarity measures and ARC performance and; (3) descriptive statistics from 

an ARC user experience survey.

Results

Participant Characteristics.

Of the 316 participants who completed at least one ARC session, 26 were removed due to 

either low-quality data or unacceptable rates of missing data (>75% missingness) resulting 

in a sample size of 290 participants (268 CDR 0s and 22 CDR 0.5s) ranging 61 to 97 years 

of age. As shown in Table 1, all three ARC tasks showed good discrimination between 
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CDR 0 and CDR 0.5 participants3. Additionally, ARC performance, as indexed by the ARC 

composite score, did not differ as a function of gender, t(181.46) = 0.63, p = 0.53, or race, 

t(28.096) = 1.92, p = 0.06, and was modestly associated with education, r = −0.18, p = 0.01.

Descriptive Statistics.

Table 2 shows the descriptive statistics for the ARC and conventional cognitive measures 

as well as adherence and drop-out rates. The t-tests comparing ARC task performance of 

CDR 0 and 0.5 individuals (significant ts 2.12–3.52) were comparable to comparisons with 

conventional cognitive measures (significant ts 2.17–4.96). CDR 0s and 0.5s in this sample 

did not differ on Number Span Forward, Number Span Backward, or the MINT. Adherence 

and drop-out rates did not differ as a function of CDR status (ts < 0.38).

Between-Person Reliability.

As mentioned above, aggregation of EMA scores across sessions boosts reliability compared 

to conventional “one-shot” approaches (Shiffman et al., 2008). Unconditional multilevel 

mixed models using restricted maximum likelihood were employed for each ARC task to 

compute between-person reliability scores (Raykov & Marcoulides, 2006; Sliwinski et al., 

2018). The reliabilities of scores aggregated across ARC sessions were quite high: 0.81 for 

Prices, 0.90 for Grids, and 0.98 for Symbols (see Table 3). These reliabilities are based 

on 21 (75%) sessions of ARC assessments, which reflects the average number of sessions 

participants completed.

Next, we conducted follow-up analyses to determine how many sessions would be required 

to obtain reliabilities of aggregated scores that ranged from 0.80–0.90. Following Sliwinksi 

et al. (2018), we fit a series of unconditional multilevel mixed models and calculated 

reliabilities. These results indicated that 19 sessions (or ~ 5 days) of Prices, 9 sessions (or 

~ 2 days) of Grids, and 2 sessions (or ~1 day) of Symbols are required to attain reliabilities 

greater than 0.80 (see Table 3 and Figure 2).

Test-Retest Reliability.

As of manuscript preparation, a subset of participants also completed testing ~6 months (N 

= 185) and ~1 year (N = 83) after their initial visit. Figure 3 displays test-retest reliability 

for the 6-month and 1-year follow-ups for the individual tasks and ARC composite score. 

ARC demonstrated high test-retest reliability for individual ARC tasks as well as the ARC 

composite score at both follow-ups (all ICCs > 0.85). Considering retest effects (Table 4), 

there were small but significant improvements from visit 1 to visit 2 on Prices, Symbols, and 

the ARC Composite, but not on Grids. There were no practice effects evident between visits 

2 and 3, suggesting that practice effects diminish after completion of the first testing cycle. 

A detailed analysis of practice effects will be considered in future studies.

Construct Validity.

As shown in Figure 4 (right), the ARC composite score was correlated with the global 

composite score created from the conventional measures (r = −0.53; this was also the case 

3See Supplemental Table 1 for information on intraindividual variability for the three ARC tasks.
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in the CDR 0 sample, r = −0.47), indicating good construct validity. Additionally, Figure 4 

(left) displays correlations between ARC and conventional cognitive measures (raw scores), 

and the top row shows the correlations with age. ARC tasks showed similar correlations 

with age as the conventional cognitive measures and exhibited convergent validity such 

that measures were correlated within the same domains. Note that correlations between 

the conventional and ARC measures are negative because higher scores on the ARC tasks 

indicate worse performance, whereas higher scores on the conventional cognitive measures 

indicate better performance (except for the Trailmaking Test Parts A & B), thus the negative 

correlations displayed in Figure 4 (left) are in the hypothesized direction. Specifically, the 

Prices task was correlated with conventional memory measures (WMS Associates Recall: 

r = −0.24, FCSRT free recall: r = −0.32, Craft Story immediate recall: r = −0.22, Craft 

Story delayed recall: r = −0.27), the Grids task was correlated with all of the conventional 

cognitive measures (r’s = −0.15 to −0.36), and the Symbols task was correlated with all 

the conventional cognitive measures but particularly the fluency tasks and the Number 

Symbol test (Category Fluency Animals: −0.36, Category Fluency Vegetables: −0.40, Verbal 

Fluency: −0.36, Number Symbol test: −0.57).

Criterion Validity.

Criterion validity of ARC was examined by comparing ARC and global composite score 

correlations with AD biomarkers. As shown in Figure 4 (right), the ARC composite score 

was correlated in the predicted directions with all AD biomarkers. All correlations remained 

significant after controlling for age, rs > 0.20, ps < 0.02, except for the relationships with 

the neurodegeneration and tauopathy measures, ps > 0.18. We also examined correlations 

between the ARC composite score and AD biomarkers with only CDR 0 participants. 

Correlations in the cognitively normal subsample (CDR 0 individuals) were weaker than 

in the full sample (see Supplemental Materials Figure 1), as expected, but were consistent 

with the magnitude of values seen in other studies which have explored such relationships 

(for example, see Papp et al., 2021 amongst others). Additionally, the correlations were 

comparable to, though slightly weaker than, correlations between the global composite score 

and AD biomarkers. Specifically, Fisher’s z test indicated that, compared to the global 

composite score, all correlations with the ARC composite score were not significantly 

different except for the correlations with CSF pTau:Aβ42 (z = −1.96, p = 0.049), 

Hippocampal Volume (z = −1.99, p = 0.045), and PET Tau (z = −2.20, p = 0.03), which were 

only marginally to slightly weaker. There were no significant differences in correlations 

between AD biomarkers and the two composite scores in the CDR 0 subsample.

Feasibility and Tolerability.

Of the 290 participants included in the present analyses, a subset (N = 220) completed the 

technology familiarity survey. Figure 5 displays the correlations amongst age, adherence, 

the technology familiarity measures, and ARC performance. Greater technology-related icon 

recognition was associated with better performance on Grids (r = −0.16) and Symbols (r = 

−0.14), but not on Prices (r = −0.02). Self-reported frequency performing smartphone tasks 

was unrelated to ARC performance, but perceived difficulty performing technology tasks 

was related to worse performance on all ARC measures (r’s 0.17–0.24). Adherence was 

correlated with performance on all three ARC measures (though only weakly for Prices), 
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and the ARC composite score, such that participants who completed more sessions tended to 

perform better on ARC.

A subset of participants (N = 228) also completed a user experience survey after their 

first ARC visit4. As shown in Figure 6, participants reported an overall positive experience 

with the ARC application, and most reported that they preferred ARC over conventional 

assessments. Participants reported little difficulty installing the ARC app, were generally 

unconcerned about privacy, and that completing 2 weeks of ARC testing per year would not 

be difficult.

Finally, as shown in Tables 1 and 2, adherence rates were quite high at 81% and 79% for 

CDR 0 and 0.5 participants, respectively. Drop-out rates were low for both groups as well 

- 4.9% for CDR 0s and 4.5% for CDR 0.5s. The high adherence and low drop-out rates 

suggest that ARC was well tolerated by older adults, even those with very mild dementia.

Discussion

The present study demonstrates that EMA cognitive assessments conducted on individuals’ 

personal smartphones can be reliable, sensitive to age and AD biomarkers, and are well-

tolerated by older adults regardless of technology experience. There were several main 

findings: First, between-person reliability of the ARC tasks across the 7-day protocol 

all exceeded 0.85. Second, individual ARC tasks and the ARC composite score showed 

exceptionally good test-retest reliabilities at 6-month and 1-year follow-ups (ICCs > 0.85). 

Third, both the individual ARC tasks and the ARC composite score were correlated with 

conventional measures of the same domain (r’s = −0.22 to −0.57). The composite scores 

from ARC and conventional measures were also highly correlated (r = −0.53). Fourth, the 

ARC composite score showed similar validity to the global composite in predicting AD 

biomarkers. Finally, both cognitively normal older adults and individuals with very mild AD 

successfully participated in the ARC study remotely, without supervision, and had extremely 

low drop-out rates. Overall, the results of the present study suggest that high-frequency 

smartphone-based assessments are promising tools for assessing cognition in clinical studies 

of aging and neurodegenerative diseases.

Although classic neuropsychological tests, such as episodic memory and executive 

functioning tests, are regarded as the most sensitive to AD pathology, they were not 

designed for frequent assessment and can have poor reliability (Calamia et al., 2013). 

Using measures with suboptimal reliability can impact statistical power and necessitate 

larger sample sizes or increased measurement frequency. Our results suggest that a high-

frequency EMA approach to cognitive assessments may help overcome these challenges. 

When averaged across sessions, all three ARC tests had excellent between-subject reliability 

(r’s > 0.85), consistent with Sliwinski et al. (2018). The results also demonstrated that good 

between-person reliabilities can be achieved with < 7 days of assessments (averaging across 

4Because participants completed the user experience survey voluntarily and a subset of 62 participants (21.38%) chose not to 
complete the survey, it is possible that the survey results may be influenced by selection bias. To test this possibility, we examined 
ARC task performance and adherence as a function of whether participants completed the user experience survey. These analyses 
indicated that there were no significant differences in either ARC task performance, ps > 0.24, or adherence, p = 0.82.
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5 days produced reliabilities > 0.80 for all ARC tasks). The Symbols test achieved excellent 

reliability in just 3–5 sessions, which is remarkable considering that each session requires 

~30–40s to complete. Although conventional cognitive measures would also receive a boost 

in reliability if averaged across repeated assessments, it is impractical and burdensome to 

assess participants at a frequency sufficient to overcome suboptimal reliability. Using an 

EMA smartphone protocol, researchers can efficiently obtain repeated measurements to 

boost reliability.

Test-retest reliability studies in AD samples have indicated “adequate” to “excellent” 

reliability (e.g., Benedict et al., 1998; Woods et al., 2006) over intervals ranging from several 

days to several weeks apart. However, cohort studies are typically conducted annually, and 

yield lower reliability estimates. Specifically, test-retest correlations for delayed memory 

tests, a cornerstone of AD clinical trials (Bateman et al., 2017; Donohue et al., 2014; 

Langbaum et al., 2014; Ritchie et al., 2016), can be particularly unsatisfactory, with 

reliabilities ranging from 0.50–0.75 (Calamia et al., 2013; Dikmen et al., 1999; Lo et 

al., 2012). The increased reliability demonstrated by high-frequency assessments like ARC 

could substantially reduce sample sizes needed in AD prevention RCTs (Dodge et al., 2015).

ARC demonstrated exceptionally high test-retest reliability for the individual ARC tasks and 

the ARC composite score at 6-month and 1-year follow-ups (all ICCs > 0.85). The Symbols 

test demonstrated exceptionally high test-retest reliability exceeding its paper and pencil 

equivalents (i.e., Wechsler Digit Symbol Substitution test and the Symbol-Digit Modalities 

test which typically have good test-retest reliabilities; Calamia et al., 2013; Pereira et al. 

2015). Test-retest reliability for the Prices test, was also good but trailed behind the Symbols 

and Grids tests. Relatedly, a version of the Prices test demonstrated good validity and 

reliability in a recent EMA study of older adults (Thompson et al, 2021), but was also rated 

the most difficult and the least enjoyable of three cognitive tasks, reflecting the challenges of 

designing repeatable episodic memory measures that are reliable, feasible, and tolerable.

Our results also support the construct and predictive validity of ARC. ARC tasks exhibited 

convergent validity as evidenced by correlations with conventional cognitive measures 

(r’s −0.22 to −0.57). Similarly, the ARC composite score was correlated with the global 

composite score (r = −0.53). Albeit smaller than anticipated, the correlations observed here 

were comparable, if not stronger, than correlations observed in other digital assessment 

studies including the Cambridge Neuropsychological Test Automated Battery (CANTAB; 

rs 0.14 to 0.39; Dorociac et al., 2021; Gills et al., 2019; Smith et al., 2013). Additionally, 

the individual ARC tasks and the ARC composite score showed comparable correlations 

with age as the conventional measures and global composite score. Given well-known 

associations between age and cognitive performance, these relationships provide evidence 

that ARC is a valid measure of cognitive aging.

ARC also demonstrated good predictive validity when assessing sensitivity to AD 

biomarkers. Worse ARC performance was associated with reduced cortical thickness 

and hippocampal volume (r’s = −0.18 and −0.19, respectively), and increased levels of 

amyloid and tau (as indexed by both PET and CSF measures; r’s = 0.11 to 0.29). 

These relationships were comparable, though smaller in magnitude, to AD biomarker 
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correlations with conventional measures suggesting that ARC captures biomarker burden 

similarly to conventional measures. Correlations in the cognitively normal subsample (CDR 

0 individuals) were on par with other studies which have examined such relationships (Braak 

et al., 1991; Papp et al., 2021; Snitz et al., 2020; Van Strien et al., 2009).

Evaluation of feasibility and tolerability of a smartphone application for use in older adults 

is critical, and especially so for applications like ARC that require unsupervised daily 

interactions. Overall, adherence was excellent at 80.42%, exceeding that seen in many 

remote studies (Pratap et al., 2020) and similar to rates observed in other cognitive EMA 

studies (Sliwinski et al., 2018). A common concern regarding technology use in older 

adults is that of technology familiarity. Our results demonstrate that greater technology 

knowledge was associated with better processing speed and visual working memory 

task performance, but not memory performance. Interestingly, self-reported frequency of 

smartphone interactions was not related to ARC performance, but those who reported 

more difficulty interacting with technology tended to perform worse on all ARC measures. 

However, when the familiarity assessment results were compared to conventional cognitive 

measures (see Supplemental Materials Figure 2), similar patterns emerged even on non-

technology-related measures like story recall, number span, confrontation naming, and 

verbal fluency, suggesting that difficulty with technology may also reflect, to some extent, 

overall cognitive ability5. Finally, considering the high adherence rates, and the overall 

favorable ratings from the user experience survey, it appears that with adequate instruction 

and support, older adults are capable and motivated participants in smartphone studies of 

cognition.

Limitations and Future Considerations.

The findings of this study should be considered in light of several limitations which may 

be addressed in future studies. First, although the benefits of EMA smartphone studies are 

clear, it can be unclear whether participants are fully engaging with the assigned tasks. To 

address this, participants are asked at the end of each session whether they were interrupted 

during the session. In the analyses presented here, sessions where participants reported 

being interrupted were removed. Similarly, many ambulatory assessments are limited when 

researchers do not collect additional contextual information. Participants were asked a 

battery of environmental questions at the end of each session, and future studies will 

investigate the impact of these factors on participants’ performance. Second, as noted in the 

Methods, if an individual did not have a device which met study criteria, they were supplied 

a device. Since it is possible this could have introduced bias, several follow-up analyses were 

run to test for differences in age, technology familiarity, and ARC performance/adherence. 

As shown in Supplementary Materials Table 2, even though individuals who were supplied 

with a device were slightly older and less familiar with technology, there were no differences 

in CDR, ARC task performance, adherence, or AD biomarkers. Third, it is important to note 

that the Prices task lagged behind the Symbols and Grids tasks in terms of participants’ 

performance and the between-subjects reliability (possibly due to the difficulty and task 

5We explored the extent to which “overall cognitive ability,” as indexed by the conventional composite score, may be associated with 
ARC adherence. As shown in Supplemental Materials Figure 3, individuals who performed better on the conventional measures also 
showed better ARC adherence.
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demands). Nevertheless, the Prices task showed good reliability and was correlated with age 

and conventional memory measures. Finally, Knight ADRC participants consist of highly 

educated and primarily White older adults motivated to engage in extensive imaging and 

fluid biomarker studies. Future work is needed to determine the feasibility of ARC in more 

diverse populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ARC Design and Cognitive Tasks
Note. Top demonstrates if a participant reported waking up at 7am and going to bed at 

10pm, they would receive four test session notifications between 7am and 10pm, separated 

by at least two hours. The ARC cognitive tasks, Grids, Prices, and Symbols are displayed on 

the bottom.
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Figure 2. Between-Person Reliabilities for ARC Tasks
Note. Between-person reliabilities for each ARC cognitive task. Following Sliwinksi et al. 

(2018), a series of unconditional multilevel mixed models were fit to determine how many 

sessions would be required to obtain good reliability. Blue line indicates 0.85 reliability 

threshold.
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Figure 3. ARC Test-Retest Reliabilities at 6 Month (top) and 1 Year (bottom) Follow-Up
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Figure 4. ARC, Conventional, and AD Biomarker Correlations
Note. Correlations amongst ARC and conventional measures (raw scores) shown on the left 

(N = 282). Correlations of the ARC composite score (higher = worse) and global composite 

score (higher = better), and AD-related biomarkers are shown on the right (Ns = 146 for 

CSF measures, 212 for amyloid PET, 173 for tau PET, 175 for AD ROI cortical thickness, 

and 290 for hippocampal volume). Significant correlations (p < 0.05) are displayed with 

colored circles, non-significant correlations are blank. Because in-clinic and ARC measures 

have opposing directionality, the negative correlations amongst the conventional and ARC 

measures are in the hypothesized direction.
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Figure 5. Age, Technology Familiarity, and ARC Performance Correlations
Note. Of the 290 participants included in the present analyses, 220 completed the 

technology familarity survey (see Nicosia et al., 2021) which assessed the frequency with 

which participants perform smartphone-related tasks, how difficult participants find various 

technology-related tasks, and how well participants could recognize technology-related 

icons. Significant correlations (p < 0.05) are displayed with colored circles whereas non-

significant relationships are blank.
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Figure 6. ARC User Experience Survey Results
Note. Of the 290 participants included in the present analyses, 228 completed the ARC user 

experience survey which assessed participants attitudes towards their experience with the 

ARC application after their first week using it.
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Table 1.

Demographic Data

CDR 0, N = 268
1

CDR 0.5, N = 22
1

p-value 2 

Age 76.6 (5.7) 77.0 (6.1) 0.76

Gender (% Female) 3 148 (55%) 6 (27%) 0.021

Race 3 0.10

 Black 45 (17%) 0 (0%)

 Other 2 (0.8%) 0 (0%)

 White 219 (82%) 22 (100%)

Education 16 (2) 17 (2) 0.74

APOE Status (% Positive) 82 (31%) 14 (67%) 0.002

Grids 0.71 (0.27) 0.93 (0.28) 0.002

Prices 0.25 (0.06) 0.29 (0.05) 0.002

Symbols 3.24 (0.95) 3.85 (1.32) 0.045

Adherence 81% (18%) 79% (20%) 0.71

Drop-out 13 (4.9%) 1 (4.5%) 0.99

CDR 0, N = 134 CDR 0.5, N = 12 p-value

CSF Aβ42 970 (400) 533 (222) <0.001

CSF Tau 347 (183) 474 (197) 0.052

CSF pTau:Aβ42 0.06 (0.06) 0.13 (0.07) 0.006

CDR 0, N = 202 CDR 0.5, N = 10 p-value

Amyloid PET (Centiloid) 18 (27) 49 (43) 0.053

CDR 0, N = 165 CDR 0.5, N = 8 p-value

AD ROI Tau PET (Standardized) 1.20 (0.15) 1.43 (0.42) 0.17

CDR 0, N = 165 CDR 0.5, N = 10 p-value

AD ROI Cortical Thickness (mm) 2.57 (0.10) 2.46 (0.14) 0.043

Hippocampal Volume (mm3) 7,790 (912) 6,983 (1,022) 0.035

1
Mean (SD); n (%)

2
Welch Two Sample t-test; Pearson’s Chi-squared test

3
Gender and race were self-reported
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