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Abstract 

Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-
acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been dem-
onstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacte-
rium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response 
together contribute to organ damage accrued during infection. The collective result of this damage can be acutely 
life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These 
include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, 
and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate 
only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review 
the data that indicates damage incurred during  acute pneumococcal infection can result in long-term sequelae 
which reduces  quality of life and life expectancy among pneumococcal disease survivors.
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Introduction
Streptococcus pneumoniae (Spn) is the most common 
etiological agent of community-acquired pneumonia 
(CAP), bacteremia, and sepsis; in low or low-middle-
income countries with no immunization schedule it is 
also the leading cause of meningitis [1–3]. Accordingly, 
the pneumococcus is the leading cause of infectious 
death in both children and older adults [4–8]. Spn is 
also a common cause of non-life-threatening infections 
including sinusitis, otitis media, and bronchitis which are 
associated with major personal and socio-economic costs 
[9–13]. This opportunistic, Gram-positive bacterium 

most often resides asymptomatically in the nasopharynx 
but can be aspirated into the lungs to cause pneumonia 
[8]. From the airway, the pneumococcus can gain access 
to the bloodstream and spread to other sites, where it can 
cause disseminated organ damage [14–16]. Young chil-
dren with underdeveloped immune systems, those with 
immunodeficiencies, adults over the age of 65 with mul-
tiple comorbidities, and individuals experiencing or who 
have recently experienced a respiratory viral infection 
have increased susceptibility to both becoming infected 
with and dying from pneumococcal disease [5, 16–18].

It is worth noting that in most pneumococcal pneumo-
nia cases, i.e., those that do not require hospitalization, 
there is typically no long-term negative effect. Among 
those with severe pneumonia, and despite the dense con-
solidation that can occur, the lungs radiologically return 
to normal by 2–4 months and most patients recover fully 
from all residual symptoms within 6 to 18  months [19, 
20]. Yet, pneumococcal infections can exacerbate under-
lying pulmonary diseases, such as COPD. They can also 
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cause a tremendous amount of system-wide damage. This 
damage is attributable to cytotoxic factors released by the 
bacterium, physiological stress put on the body during 
the infection, and an overzealous inflammatory response 
[21–36]. Strikingly, individuals previously hospitalized 
for invasive pneumococcal disease typically die sooner 
than would be expected based on census data; with 
nearly a decade of mean years of life lost being [37]. This 
reduction in life expectancy can be attributed to systemic 
organ damage during the infection [37, 38].

Sir William Osler was the first to describe the triad of 
pneumonia, endocarditis, and meningitis, and observed 
the presence of ‘micrococci’ in the affected tissues and 
blood in histological specimens at post-mortem exami-
nation; these ‘micrococci’ were later classified by Rob-
ert Austrian as S. pneumoniae, which is how this triad 
of disease developed the eponym of Austrian syndrome 
[39–41]. Austrian’s work highlighted the systemic con-
sequences of pneumococcal pneumonia and that severe 
damage occurred when bacteria gained access to the 
bloodstream and invaded tissues [39, 41]. In accordance 
with this, Spn is well documented to cause acute damage 
to the middle ear, lungs, heart, and kidneys [9, 42–47]. 
Should the bacterium gain access to the central nervous 
system (CNS), there are especially devastating conse-
quences to the affected individual with a case fatality rate 
of 30% in developed countries and up to 50% in lower-
income countries [1, 7, 21, 22, 48–52]. As is discussed 
below, the damages incurred during pneumococcal infec-
tions persist well after the resolution of the acute infec-
tion and increase the risk for morbidity and mortality in 
convalescence. Many reviews on pathogenesis and  the 
immunological events that take place during pneumo-
coccal infection are available, but few have focused on 
the long-term consequences of this disease. This review 
examines the role the pneumococcus plays in tissue 
and organ damage during infection and the long-term 
sequelae associated with this damage. Sir William Osler 
famously called Spn “the Captain of all the men of death”; 
herein, we state that “the Captain lingers”.

Acute pneumonia and invasive disease are highly 
inflammatory episode
Pneumococci that are aspirated into the lungs first 
encounter the mucous layer, which serves as a protective 
mechanical barrier for the mucosal epithelium, and sen-
tinel alveolar macrophages (AMs). These early defenses 
serve to prevent the dissemination of pneumococci and 
initiate innate immune signaling and host cell activation 
[53, 54]. The mucous layer lining the epithelium traps 
bacteria in its sticky matrix and contains both micro-
bicidal and microbiostatic products such as defensins, 
lactoferrin, lysozyme, matrix metalloproteinases 

(MMPs), antibodies, surfactant, complement proteins, 
and C-reactive protein (CRP) [54–61]. Upon contact with 
Spn, secretory IgA and complement proteins, C3 and 
C5a, aggregate and opsonize Spn, respectively, facilitat-
ing physical clearance and phagocytosis of the bacteria 
[56, 62]. Lysozyme, lactoferrin, b-defensin peptides, and 
LL-37 are directly bactericidal. However, the death of 
pneumococci, either by the host or the autolysis of itself, 
not only results in bacterial clearance but also in the 
release of inflammatory agents such as the pore-forming 
toxin, pneumolysin, and bacterial cell wall particles that 
intensify local inflammation [24–26, 54, 61, 63–70].

Pathogen recognition receptors (PRRs), including but 
not limited to Toll-like receptors (TLRs) and NOD-like 
receptors (NLRs), on both somatic airway epithelial cells 
and innate immune cells, particularly AMs, recognize 
pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) present 
during infection, triggering an inflammatory response to 
clear the pneumococcus [64]. TLRs-1, 2, 6, and 9 play a 
critical role in initiating the innate immune response, and 
their activation of B and T cells also promotes an adap-
tive immune response [67–69]. TLR-1/2 and TLR2/6 
heterodimers expressed on host cells recognize teichoic 
acids and lipoproteins that are part of Spn’s cell wall 
[67–69, 71]. TLR9 detects DNA with unmethylated CpG 
motifs present in bacterial but not mammalian DNA [72]. 
TLR-4 is activated by complement and has been reported 
to detect Spn’s pneumolysin, but conflicting results have 
been published [64, 68, 73].

The binding of TLRs to their ligands engages adaptor 
molecules that transduce signals to activate proinflam-
matory signaling cascades including mitogen-activated 
protein kinases (MAPKs) and nuclear factor kappa B 
(NF-κB) [68, 71, 73, 74]. Upon TLR activation, sentinel 
AM in the airway rapidly signal to epithelial cells locally 
with cytokines and recruit neutrophils and monocytes 
via chemokines including tumor necrosis factor (TNF), 
interleukin (IL)-1β, IL-6, IL-8, CXCL1, CXCL2, and 
CCL2 [75–79]. Considerable evidence shows that Spn 
can invade host cells at low frequency, in which case the 
PAMPs from internalized Spn can interact with another 
class of PRRs, NLRs, that are found in the cytoplasm 
of host cells. NLRs have been shown to recognize pep-
tidoglycan motifs via NOD1 and NOD2 which activate 
signaling cascades and NLRP3 that serves as a compo-
nent of the inflammasome [80–83]. Upon NLRP3 detec-
tion of PAMPs or DAMPs, NLRP3 oligomerizes with 
other components to form inflammasomes, which in turn 
cleave the pro-forms of IL-1β and IL-18 to be released 
[83, 84]. IL-1β induces the production of chemoattract-
ants CXCL1, CXCL2, and IL-17A by lung epithelial and 
Th17 cells that enhance the recruitment of macrophages 
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and neutrophils [32, 85, 86]. Notably, since the pneu-
mococcus is encapsulated and therefore resistant to 
phagocytosis and intracellular killing, this inflammatory 
response does not necessarily result in bacterial clearance 
and can worsen disease [87, 88].

When pneumococci kill host cells there is a release of 
alarmins and DAMPs including S100A8/9, HSP60, IL-1α, 
and IL-33, promoting the infiltration and activation of 
neutrophils and circulating monocytes which further 
the local immune response [32, 89, 90]. In professional 
antigen-presenting cells, alarmins have been shown to 
induce upregulation of surface costimulatory (CD80 and 
CD86) and MHC (class I and II) molecules, enhancement 
of antigen presentation to lymphocytes inducing adaptive 
immune responses, and the release of proinflammatory 
cytokines and chemokines, triggering a positive feedback 
loop on pro-inflammatory innate immune responses [90]. 
Additionally, alarmins can trigger mast cell and basophil 
activation and the release of  histamine, prostaglandins, 
and leukotrienes thus, increasing vascular permeability 
and attracting neutrophils [90]. Bactericidal peptides and 
proteins released into the milieu include matrix metal-
loproteinases (MMPs); these zinc-dependent enzymes 
degrade extracellular matrix components, which then 
serve as alarmins, (e.g. hyaluronan) and thereby further 
increase the magnitude of the inflammatory response 
[58, 91–94].

Polymorphonuclear leukocytes (PMNs) are effectors of 
bacterial clearance and help to control the infection, even 
though they may be unable to phagocytize encapsulated 
pneumococci efficiently without opsonizing antibodies. 
They do this via the release of DNA and the formation of 
neutrophil extracellular traps (NETs). NETs trap and kill 
Spn with antimicrobial proteins associated with the DNA 
such as MMPs and serine proteases [31, 36, 59, 60]. Neu-
trophils also release agents that not only elicit inflam-
mation but also cause tissue damage. These include 
reactive oxygen and nitrogen species, myeloperoxidase 
(MPO), and granule serine proteases such as cathepsin 
G, proteinase 3, and neutrophil elastase [32, 36, 57, 60]. 
The neutrophil influx necessary to fight off airway infec-
tion must be scaled appropriately to avoid excessive or 
prolonged inflammation [31, 94, 95]. Excessive inflamma-
tion sets the stage for the loss of alveolar-capillary bar-
rier integrity, infiltration of additional  neutrophils and 
monocytes, and initiation of a positive feed-forward pro-
inflammatory loop.

During the early stages of pneumonia, the cytokine 
response to Spn is largely compartmentalized within the 
lung [96, 97]. However, as disease develops and becomes 
more severe, the inflammatory response in the airway 
becomes systemic with pro-inflammatory cytokines also 
becoming elevated in the blood of pneumonia patients 

[97–101]. Notably, a robust early response is vital, and 
patients who succumb to pneumonia have  higher lev-
els of cytokines and acute phase reactants in the serum 
versus the airway, indicating that failure to generate a 
robust local immune response at the site of initial infec-
tion contributes to systemic inflammation and overall 
disease severity [38, 96, 98]. TNF is one of the earliest 
and most important mediators of this local inflammatory 
response. TNF initiates inflammatory signaling cascades 
that induce a second wave of pro- and anti-inflammatory 
cytokines to advance the immune response [102]. TNF 
can also be damaging by causing increased neutrophil 
accumulation and activation, vascular dysfunction, and 
induction of necroptosis, a form of programmed cell 
death. [102–106]. Accordingly, levels of TNF in serum 
and the CNS correlate with overall disease severity and 
mortality [103, 107]. Patients who delayed going to the 
hospital > 48  h past the onset of symptoms had higher 
serum TNF levels, lower blood pressure (< 90  mmHg), 
and lower oxygen saturation levels at the time of admis-
sion; all of which are associated with poorer outcomes 
during infection [98]. Bacteremic patients have higher 
levels of TNF circulating in the serum compared to pneu-
monia alone [100, 108, 109]. Nearly all patients admitted 
to the hospital have a systemic inflammatory response, as 
measured by detectable IL-6 (98% in a study by Örtqvist 
et  al.) and CRP; moreover, higher levels are associated 
with poorer outcomes [110, 111]. Compared to survi-
vors, patients who died had higher levels of proinflam-
matory cytokines TNF, IL-6, IL-8, IL-10, and acute phase 
reactants (CRP) in serum [38, 96–98, 112]. Along such 
lines, polymorphisms in human genes involved in the 
inflammatory response to infection such as chemokines/
cytokines (TNF, IL-6, IL-1 family, macrophage migration 
inhibitory factor, and IL-10), pattern recognitional mol-
ecules (TLRs and Mannose-binding lectin (MBL)), local 
host defense of the lung (surfactant protein), and coagu-
lation cascades (plasminogen-activator-inhibitor (PAI)-1 
and factor V) have been associated with susceptibility 
to pneumonia and outcomes including sepsis, IPD, and 
mortality [113–127]. This is due to an impaired ability to 
respond to the infection, but in other instances a far too 
exuberant response.

In summation, an inflammatory response is needed 
to fight off the potentially deadly pneumococcal infec-
tion. The immune system creates a highly inflammatory 
environment at the site of infection characterized by the 
recruitment of immune cells resulting in lung consoli-
dation [128]. As the infection progresses, epithelial cell 
death and the subsequent loss of vascular integrity results 
in the leakage of pro-inflammatory bacterial products 
and cytokines into the systemic circulation that contrib-
utes to disease pathology. Scaling an appropriate immune 
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response to avoid excessive inflammation is impor-
tant to prevent damage from occurring, as an overzeal-
ous inflammatory response results in impaired oxygen 
exchange in the airway, damage contributing to organ 
injury, and increases the likelihood of poor outcomes, 
such as widespread organ failure and mortality [95, 129].

Organ damage occurs during acute infection 
with lasting consequences
Sites of pneumococcal infection include  the middle ear, 
lower airway, circulation, invaded organs, and the CNS. 
The consequences of severe infection at these locations 
can significantly and permanently alter human health 
(Fig.  1). Notably, work done in animal models shows 

unequivocally that bacterial-derived factors, as well as a 
dysregulated immune response, together contribute to 
this damage.

Middle ear
Clinical aspects & pathophysiology
Otitis media is a common malady that affects the 
majority of children, with 80% having at least one epi-
sode by 10 years of age [11]. New infections often arise 
after viral infections or allergic reactions, as conges-
tion obstructs the eustachian tube at its most narrow 
point, leading to the accumulation of middle ear secre-
tions which create a niche for Spn to multiply within 
[130]. Children with otitis media often experience ear 

Fig. 1  Consequences of pneumococcal disease during acute infection occur system-wide. Acute pneumococcal pneumonia and invasive disease 
can be life-threatening. It can also result in organ damage that results in debilitating long-term sequelae. These sequelae, in turn, contribute to loss 
of physiological resilience and early mortality
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pain, otorrhea, difficulty hearing, and headache. Fur-
thermore, ~60% of children develop otitis media with 
effusion (OME) that can persist for weeks to months 
following the resolution of the initial infection [130]. In 
the majority of otitis media cases, the tympanic mem-
brane bulges, due to inflammation and fluid accumu-
lation in the middle ear, but remains intact; however, 
spontaneous membrane perforation occurs in 4–30% 
of cases [9]. The majority of spontaneous perforations 
resolve within one month with favorable outcomes; 
however, 15% of cases become occluded, preventing 
drainage of pus from the middle ear and requiring med-
ical intervention [9]. Children with perforations are 
twice as likely to have recurrent infections, which may 
be associated with permanent hearing loss [9]. Notably, 
populations with limited access to medical care, such 
as in indigenous communities or people in developing 
countries, are prone to developing complications of oti-
tis media including labyrinthitis, mastoiditis, extradural 
abscess, subdural empyema, lateral sinus thrombosis, 
and meningitis [2, 10, 47, 130].

Bacterial factors
Swelling and death of inner and outer hair cells have 
been observed in the cochlea in experimental animal 
models as well as in human autopsies [23, 42, 131]. This 
damage was found to be dependent on the production 
of Spn’s pore-forming toxin, pneumolysin. Guinea pig 
cochleae perfused with pneumolysin had splayed hair 
bundle stereocilia and damaged, swollen hair cells that 
tore away from the supporting cells, ultimately result-
ing in hearing loss [23, 132]. Notably, chinchilla middle 
ears inoculated with purified cell wall of Spn exhibited 
the same histopathologic inflammation seen with live 
bacteria [123]. Otitis media is characterized as being 
highly neutrophilic with an abundance of neutrophil 
elastase, Cathepsin G, and lactoferrin, as well as the 
presence of NETs in middle ear effusions [133]. Mye-
loperoxidase generated by neutrophils to kill the bac-
terium has been shown to contribute to damage to the 
middle ear during otitis by generating hypohalous acids 
[30, 134].

Sequelae
Fluid present in the middle ear was shown to cause a 
hearing loss of 25 decibels (dB), similar to putting in ear-
plugs, and the loss was 10 dB greater with bilateral dis-
ease [12]. Persistent effusion of the middle ear is often 
treated with tympanostomy tubes that provide relief by 
draining middle ear secretions to remove pressure and 
restore some hearing [11, 12]. In general, hearing sub-
stantially improves after one year although full recovery 

is a relatively slow process and children with a history of 
OME had defects in binaural processing 1 to 2 years past 
hearing recovery [135]. In addition to hearing loss, otitis 
media causes issues with vestibular balance and motor 
function that mostly return to normal following tym-
panostomy tube placement [47, 136, 137]. In children, 
recurrent episodes of otitis media may result in failure 
to reach cognitive developmental milestones, delayed or 
deficient speech development, and poorer school perfor-
mance particularly in mathematics and reading [12, 13, 
130].

Lungs
Clinical aspects & pathophysiology
As pneumonia progresses, PMN infiltration occurs 
into bronchioles and adjacent alveoli with neutrophilic 
inflammation expanding into alveolar spaces in a manner 
that eventually obliterates the alveolar septa [138, 139]. 
Infection also results in the release of endogenous prosta-
glandins, which induce hypoxic pulmonary vasoconstric-
tion of pulmonary artery blood flow into the consolidated 
lung resulting in an intrapulmonary shunt and increased 
oxygen consumption by the lung contributing to edema 
and arterial hypoxemia, referred to as acute lung injury. 
Additionally, carbon dioxide exchange is disrupted, 
increasing the respiratory rate, the minute ventilation, 
and the effort needed to breathe. Impaired surfactant 
activity reduces the dynamic compliance of the lungs, 
furthering the work needed to breathe effectively [140]. 
Typically, S. pneumoniae is associated with a lobar pat-
tern that can be observed based on the pattern of opacity 
on chest radiographs. Lung congestion can be followed 
by the leakage of red blood cells (RBCs), neutrophils, and 
fibrin into the alveolar fluid, which changes the color of 
the lungs to dark red and for this reason is termed red 
hepatization [141]. Eventually, the RBCs associated with 
fibrinopurulent exudates break down transforming the 
lung from red to gray (i.e. gray heparinization) [141]. 
Resolution of infection is characterized by macrophage 
infiltration into alveolar space, clearing the exudates by 
scavenging dying neutrophils and other debris [138, 141].

During severe pneumonia, acute respiratory distress 
(ARDS) can develop. According to the American-Euro-
pean Consensus Conference, if the concentration of 
arterial oxygen in the blood divided by the inspired frac-
tion of oxygen (i.e. a PaO2/FiO2) is less than 200  mm 
Hg a diagnosis of ARDS is made with the Berlin defini-
tion stratifying the severity of disease into 3 groups: mild 
(≤ 300  mm Hg), moderate (≤ 200  mm Hg), and severe 
(≤ 100 mm Hg) [28, 142, 143]. ARDS during severe pneu-
monia can be described as occurring in stages associated 
with direct damage to the lung parenchyma along with 
indirect damage incurred from systemic inflammation 
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[28, 144]. In the first 1–6  days, there is interstitial and 
alveolar edema characterized by inflammation, thicken-
ing of the alveolar-capillary membrane, and the accu-
mulation of neutrophils, macrophages, and red blood 
cells in the alveoli with evidence of both endothelial and 
epithelial injury [28, 144]. There is both denuding of the 
alveolar epithelium and the appearance of prominent 
hyaline membranes in the alveoli [144]. During the sub-
acute phase (the next 7–14 days), some of the edema is 
reabsorbed and attempts at repair by the proliferation of 
alveolar epithelial type II cells along with infiltration of 
fibroblasts and increased collagen deposition [28, 144]. 
After 14 days, (the chronic phase), there is typically res-
olution of the acute neutrophilic infiltrate, but there are 
more mononuclear cells in the alveoli and more fibrosis 
and repair of the alveolar epithelial [28, 144]. The concen-
tration of albumin, lactate dehydrogenase, IL-6, and neu-
trophil elastase in epithelial lining fluid of small airways 
is elevated in patients with ARDS [145, 146]. The edema 
and acute inflammation of ARDS is gradually resolved in 
many patients without fibrosis occurring [28]. The pres-
ence of ARDS increases the likelihood of non-pulmonary 
organ failure including cardiovascular failure, renal fail-
ure, abnormal liver function, and hematologic abnor-
malities such as anemia and thrombocytopenia [28, 142]. 
These are discussed in more detail below. In addition to 
ARDS, other pulmonary complications of pneumococcal 
pneumonia can occur including pleural effusion, empy-
ema, multilobar infiltration, and abscesses or cavitations; 
having one or more of these complications is referred to 
as complicated pneumonia and is associated with higher 
rates of ICU admission, shock, a longer length of hospital 
stay, and treatment failure [147, 148].

Bacterial factors
Pneumolysin released from Spn causes lung damage 
through its cytolytic activity resulting in the impair-
ment of pulmonary microvascular barrier function, 
damage-mediated influx of neutrophils, and severe pul-
monary hypertension [28, 89, 106, 149–156]. Endothe-
lial cells treated with pneumolysin had increased cell 
retraction and gap formation as well as detachment; 
pneumolysin-treated human alveolar epithelial cells 
also exhibited increased cell layer permeability [156]. 
Pneumolysin has been shown to induce respiratory epi-
thelial cell necroptotic death as a result of ion dysregu-
lation, causing the release of alarmins, and stimulating 
neutrophil elastase release after neutrophilic cell death, 
all of which contribute to lung injury [43, 57, 106, 157]. 
Pneumococci, through the conversion of pyruvate to 
acetyl phosphate by the metabolic enzyme streptococ-
cus pyruvate oxidase (SpxB), produce profuse amounts 
of H2O2 [158]. This is known to induce oxidative stress, 

DNA damage, and apoptotic/necroptotic cell death in 
the lungs [158, 159]. Pneumolysin and H2O2 are espe-
cially potent together and have been implicated in the 
death of host cells [75, 77]. These molecules also have 
consequential negative effects even at concentrations 
below their cytotoxic threshold, for example slowing 
the beating of the cilia on epithelial cells [24, 25]. Nota-
bly, inhibiting macrophage apoptosis has been shown 
to decrease pneumococcal clearance from the lungs 
and promotes invasive pneumococcal disease as AM 
laden with Spn facilitate their own killing by undergo-
ing apoptotic death [75, 77, 160].

Sequelae
In most instances, individuals with pneumonia recover 
fully. However, during severe cases, the physiologi-
cal stress put on other organs and bacterial products or 
live bacteria in the circulation results in systemic organ 
damage. Patients with preexisting chronic obstructive 
pulmonary disease (COPD) were 42.3% more likely to 
experience exacerbations of disease if they experienced 
CAP [161]. Tachycardia is seen in many patients with 
pneumonia and can complicate pre-existing conditions 
to worsen cardiac function [162]. One feature of pneu-
monia, particularly in the elderly is loss of cognitive func-
tion and dementia. This is far more common and distinct 
from bacterial invasion of the CNS as discussed below. 
Many of these clinical features mirror those which are 
seen during sepsis.

Patients hospitalized for community-acquired pneu-
monia have an increased risk for long-term mortal-
ity that is nearly double that of patients hospitalized for 
all other combined causes [163–168]. Pneumococcal 
pneumonia results in a greater risk of death for at least 
10 years following the acute bout of infection with 32.2% 
of survivors dying within 10 years [169]. Increased pneu-
mococcal disease severity, as measured by the CURB-
65 (confusion, urea > 7  mmol/L, respiratory rate ≥ 30/
min, low blood pressure, and age ≥ 65 years) and/or the 
Pneumonia Severity Index (PSI) also known as the Pneu-
monia Patient Outcomes Research Team (PORT) risk 
score, is associated with greater long-term mortality [14, 
170–173].

Sepsis
S. pneumoniae is a primary cause of sepsis, and this has 
well-documented associations with poor outcomes such 
as mortality and the development of frailty. Sepsis, a life-
threatening hyperinflammatory state, occurs due to the 
host being unable to clear Spn from the airway or blood-
stream and the accompanying dysregulated host response 
to infection and organ failure [174–176]. Sepsis is a major 
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contributor to the physiological stress and organ dam-
age that ultimately leads to the sequelae following pneu-
mococcal infection due to septic-associated dysfunction 
in the respiratory system, cardiovascular system, brain, 
liver, and kidneys. Notably, many excellent reviews on 
the pathophysiology of pneumococcal sepsis are avail-
able [175–181]. The features of sepsis overlap with those 
which occur during IPD,  as in many instances these are 
often concomitant.

Invasive pneumococcal disease
IPD refers to when the pneumococcus gains access to 
previously sterile sites including the bloodstream and 
CNS. Pneumococcal bacteremia occurs in roughly half 
of patients hospitalized with pneumonia and is associ-
ated with increased length of stay, the severity of infec-
tion, mortality, and risk of developing new morbidities 
[38, 182–185]. The mortality rate of patients with bac-
teremia is around 19% [184, 186]. Importantly once in 
the bloodstream, pneumococci are not restricted to the 
vasculature and are captured by  /  can invade filtering 
organs such as the liver, spleen, and kidneys. This puts 
the parenchyma of these organs at direct risk for damage 
if overwhelmed. The importance of the spleen in elimi-
nating bacteria from the bloodstream is highlighted by 
the increased occurrence and magnitude of pneumococ-
cal disease in asplenic individuals [187]. Likewise, sple-
nectomized guinea pigs infected with Spn had increased 
bacterial titers in their blood, delayed clearance, and 
decreased survival [188]. It is now known that splenic 
CD169 + macrophages can be overcome by the bacteria 
and then serve as a “sanctuary” for replication of the bac-
teria and dissemination back into the bloodstream [189]. 
Additionally, there have been reported cases of splenic 
rupture during pneumococcal pneumonia [190]. Bacte-
ria in the bloodstream can also invade the CNS and heart 
with devastating consequence. This is the result of direct 
translocation of pneumococci across vascular endothelial 
cells into organs. 

It is worth noting that organ damage incurred dur-
ing IPD does not occur in isolation but instead accrues 
throughout multiple sites in the body simultaneously. 
This is due to the bacteria disseminating throughout the 
body. Inflammatory responses occurring concurrently 
in the lungs, vasculature, and within various organs 
exacerbate systemic inflammation and injury that can 
ultimately contribute to the development of sepsis. In 
addition to direct damage caused by the bacterium, bio-
mechanical stress caused by alterations in circulatory 
volume and vascular resistance, inflammatory stress, 
increased metabolic demand, and other stressors associ-
ated with infection contribute to organ damage amassed 
during infection [191–193].  Collectively, this organ 

damage contributes to the sequelae of pneumococcal dis-
ease and long-term risk for  mortality; survivors having 
increased risk of adverse events such as heart, renal, and 
neurological disease [49, 51, 194–196]. Accordingly, mor-
tality rates among IPD survivors are greater than for indi-
viduals hospitalized for pneumonia without bacteremia 
[169]; one-third of patients who survived past 1-month 
end up dying within the next 10  years [169]. What is 
more, one 3-decade-long study from Ajayi et. Al, found 
that most patients that recovered from IPD died before 
their anticipated life expectancy with a mean potential 
life loss of 9.936 years [37]. In other studies the presence 
of bacteremia nearly doubled long-term mortality com-
pared to blood culture-negative pneumonia [14, 37, 169]. 
Pneumococcal pneumonia in itself is a risk factor for the 
development of frailty with similar long-term mortality 
rates compared to chronic diseases, such as cardiovascu-
lar and cerebrovascular disease.

Heart
Clinical aspects & pathophysiology
The correlation between pneumococcal pneumonia 
and acute heart failure has been recognized for over a 
century [41, 197, 198]. In the early twentieth century, 
patients with pneumococcal pneumonia were rou-
tinely prescribed Digitalis, a drug used to strengthen 
heart contractility [198, 199]. Hospitalization for pneu-
mococcal pneumonia has been associated with new 
or worsened adverse cardiovascular events (CVEs) 
such as atrial fibrillation, heart failure, or myocardial 
infarction [162, 191, 192, 200]. In all, studies suggest 
that between a fifth to a third of patients admitted to 
the hospital for pneumonia develop cardiac complica-
tions [194]. Patients with preexisting cardiac condi-
tions, such as heart failure, have an increased risk of 
disease exacerbations following pneumonia compared 
to a pneumonia-free cohort [161]. Over 90% of patients 
with pneumococcal disease who did experience car-
diac complications had their first adverse cardiac 
event within the first week after admission to the hos-
pital with > 50% occurring on the very same day [200]. 
Severe pneumonia episodes, in particular those with 
IPD, are positively correlated with increased short-term 
and long-term risk for adverse cardiac events. The pres-
ence of bacteremia increased the risk of adverse car-
diac events. One of the best predictive measures of the 
severity of disease and in-hospital mortality was having 
higher troponin levels, a biomarker of cardiac damage, 
at the time of admission [162]. Supporting this notion, 
the 30-day mortality is higher in pneumonia patients 
with CVEs [200]. The increased incidence of CVEs dur-
ing or following pneumococcal disease suggests that 
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pneumococcal disease may exacerbate CVEs or even 
play a causal role.

Intense systemic inflammation present during pneu-
monia places stress on the heart which requires it to 
work harder due to decreased blood oxygen and low-
ered blood pressure that accompanies infection [162]. 
The increased levels of leukocytes, circulating inflam-
matory cytokines, CRP, coagulation factors, reac-
tive oxygen species, and vasodilating molecules may 
increase the risk for thrombogenesis, procoagulant 
activity, and decrease cardiac contractility [201–203]. 
Myeloperoxidase produced from infiltrating neutro-
phils and monocytes has been implicated in cardiovas-
cular disease as it can cause plaque rupture, damage 
artery walls, and activate MMPs causing further car-
diovascular damage [204]. Infection promotes the 
development of thrombi by activating platelets, vascu-
lar constriction, dysregulation of the coagulation sys-
tem, endothelial dysfunction, procoagulant changes 
in blood, inducing demand ischemia, and increases 
the risk for the instability and rupture of atheroscle-
rotic plaque. Increased concentrations of troponins, 
BNP, and ANP have been associated with depression 
of left ventricular function and myocarditis. Increased 
pulmonary arterial pressure and levels of thrombin-
antithrombin complexes, D-dimer, and plasminogen 
activator inhibitor along with decreased factor IX con-
tributes to increased coagulation activation that is seen 
in almost 90% of patients hospitalized for pneumonia 
[200, 205, 206]. Alongside all of this, pneumococci also 
have a direct cytotoxic effect on cardiomyocytes.

Bacterial factors
Pneumococci-derived products including cell wall, 
H2O2, and pneumolysin are cardiotoxic and able to kill 
cardiomyocytes and suppress heart function. Pneu-
mococcal cell wall components have been detected in 
the hearts of experimentally Spn-infected animals and 
shown to directly suppress cardiac contractility in a 
platelet-activating factor receptor-dependent manner 
[207]. Platelet-activating factor (PAF) activation in car-
diac tissue is associated with long-lasting negative and 
arrhythmogenic effects on cardiomyocyte contractility 
[207–209]. Pneumolysin in the circulation is also able 
to cause cardiac damage, as pneumolysin-deficient Spn 
have less circulating troponins, biomarkers of cardiac 
injury, and cardiac damage when compared to pneu-
molysin-expressing Spn [210–212].  Cardiomyocytes 
exposed to pneumolysin experience an influx of Ca2+ 
into the cytoplasm through pneumolysin membrane-
bound pores disrupting calcium signaling that is crucial 
for cardiac contractility in a dose-dependent manner 
[210]. Finally, work in non-human primates and mice 
has shown that Spn can translocate into the myocar-
dium from the circulation  in platelet-factor recep-
tor and laminin receptor dependent fashion, establish 
a niche, and replicate to cause foci of infection called 
microlesions, serving to directly deliver cytotoxic 
products, including cell wall, pneumolysin, and H2O2 
(Fig. 2) [45, 212, 213].

Fig. 2  Cardiac microlesion formation and resolution. Microlesions form in the heart as a result of an individual pneumococcus adhering to 
the vasculature in the bloodstream and invading the myocardium by crossing vascular endothelial cells. Invaded pneumococci are capable of 
replicating to form a foci of infection (left panel). Infiltrating macrophages die of H2O2 and pneumolysin-mediated necroptosis preventing further 
infiltration of immune cells. Additionally, cardiomyocytes undergo necroptotic death leaving “holes” within the heart. The resolution of infection is 
characterized by the remodeling of cardiac tissue (right panel). This includes the infiltration of fibroblasts that deposit collagen to form long-lasting 
scar tissue. Microlesion morphology based on high-resolution images of cardiac sections from mice infected with Streptococcus pneumoniae strain 
TIGR4, shown 30 h post-infection, intraperitoneal challenge
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Sequelae
The transient risk of cardiovascular events occurring, 
including myocardial infarction or stroke, is 2–10 times 
greater following an acute respiratory infection [191–
193, 200, 214, 215] and this is positively  linked to its 
severity. Notably, admission to an ICU for pneumonia 
is associated with the greatest risk of new-onset heart 
failure, myocardial infarction, and cardiac-related death. 
Beyond acute infection, heightened risk for adverse car-
diac events lingers for more than 5 years post-hospitali-
zation [162, 192]. Work with primates and mice, suggests 
that upon successful antibiotic treatment, former micro-
lesions are the site of extensive  cardiac remodeling and 
collagen deposition [43, 157, 212]. Echocardiography 
of convalescent mice rescued with antimicrobials from 
IPD still had impaired ejection fractions and fractional 
shortening 3  months after successful intervention with 
antimicrobials [216]. Blocking of pneumolysin-induced 
cardiomyocyte death in experimentally infected mice 
rescued with antimicrobials reduced cardiac collagen 
deposition and reduced the extent of heart dysfunction in 
convalescence [216].

Kidney
Clinical aspects & pathophysiology
Patients with chronic kidney disease are at increased 
risk of developing pneumococcal disease and vaccina-
tion is highly recommended in this group [217–219]. 
Independently, acute renal injury in the form of nephritis 
has been anecdotally associated with pneumococcal dis-
ease since 1872 [220, 221]. More recently, several stud-
ies have reported pneumococcal disease is damaging to 
the kidneys with consequences ranging from persistent 
proteinuria to end-stage renal disease [195]. Following 
hospitalization for pneumococcal pneumonia, one-third 
of patients experience acute kidney injury (AKI) [46, 
222]. Those with AKI have increased hospital mortal-
ity, increased risk for adverse events including myocar-
dial infarction and end-stage renal disease, and a nearly 
threefold greater rate of long-term mortality in those 
with moderate and severe injury [46, 222]. Among sur-
vivors, AKI can progress to chronic kidney disease as 
nephron loss leads to glomerular hypertrophy in the 
remaining nephrons [46, 223]. While Spn is not consid-
ered a typical agent of urinary tract infections (UTIs), it 
has been reported that children with chronic kidney dis-
ease have had urinary tract abnormalities associated with 
Spn infection and clinical UTI symptoms consistent with 
cystitis [224, 225]. Additionally, even in the absence of 
other disorders, Spn can be the causative agent of UTI, 
but due to the rarity of these causes more data is needed 
to evaluate the involvement of the pneumococci in the 
epidemiology and pathogenesis of UTIs [226].

Postulated mechanisms of renal injury during and fol-
lowing pneumococcal pneumonia include systemic hypo-
tension and hypoxemia that contributes to peritubular 
hypoxia inducing fibrosis [195, 219, 227, 228]. Post-pneu-
mococcal acute glomerulonephritis biopsy showed neu-
trophil and mononuclear cell infiltration into capillary 
loops with deposition of C3c and nephritis-associated 
plasmin receptors in the mesangial area and capillary 
loops [33]. Leukocyte-derived myeloperoxidase also con-
tributes to glomerulonephritis [204]. Notably, pneumo-
nia patients who develop acute kidney injury were older, 
had more comorbidities, and higher levels of inflamma-
tory cytokines in the blood (IL-6, TNF, D-dimer) even in 
those without severe disease [222].

Bacterial factors
Although, case reports exist of Spn causing pyelonephri-
tis and urosepsis [229, 230], there is overall a paucity of 
evidence that pneumococcal products or live Spn directly 
damage kidneys impairing function. Given what is 
known about the pneumococcus and since pneumococci 
are isolated from the kidneys of experimentally infected 
animals, it seems likely that a direct cytotoxic effect also 
contributes to the damage and therefore more research 
is warranted in this area. Along these lines, pneumoly-
sin and bacterial neuraminidase have been implicated 
in damage [231–233]. Pneumococcal cell wall increas-
ing levels of inflammation and prothrombotic molecules 
such as CRP, fibrinogen, and factor VII contribute to 
deteriorating renal function [195, 234]. Immune-com-
plex-mediated acute glomerulonephritis is a rare com-
plication of pneumococcal infection, and the pathogenic 
mechanism is hypothesized to involve the deposition 
of streptococcal antigen and formation of circulating 
immune complexes [33].

Sequelae.
Spn-associated hemolytic uremic syndrome (HUS) is an 
uncommon complication of pneumococcal pneumonia 
that develops 3–13 days after the onset of symptoms and 
is mostly observed in young children [235–237]. Pneu-
mococcal HUS has a poor outlook with a mortality rate 
of 12.3% during the acute phase and ~ 10% of recovered 
patients going on to develop end-stage renal failure [236].

Central nervous system
Clinical aspects & pathophysiology
Perhaps the most severe form of pneumococcal infec-
tion is meningitis, with case fatality rates varying from 
20–37% in high-income countries and up to 51% in 
low-income countries where patients often face poor 
access to sufficient medical care. Cerebrovascular com-
plications are very common during pneumococcal 
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meningitis, with arterial stroke occurring in up to 30% 
of patients, cerebral venous thrombosis in 9%, and 
intracerebral hemorrhage in up to 9% [1, 238]. Pneu-
mococci most likely gain access to the CNS via multiple 
sites including the blood-cerebrospinal fluid (CSF) bar-
rier in the subarachnoid space, the blood–brain barrier 
(BBB) of the cerebral cortex, and the blood-CSF barrier 
in the choroid plexus [239, 240]; this is also the result of 
bacterial translocation across vascular endothelial 
cells  and is  dependent on pneumococci binding to 
platelet-activating factor receptor and laminin recep-
tor. Additionally, children can develop meningitis, 
while having no obvious source of infection, in which 
bacteria gain access to the CNS directly from either the 
nasopharynx or middle ear. While CNS involvement 
most likely is preceded by bacteremia in adults, excep-
tions to this include those with craniofacial injury and 
hearing devices.

Much of the damage incurred during pneumococ-
cal meningitis can be attributed to the inflammatory 
response to bacterial products [241]. CSF levels of inflam-
masome-associated cytokines, IL-1β and IL-18, correlate 
with systemic complications and worse clinical outcomes 
in patients [29, 242]. Blocking IL-1β reduces PM-induced 
cerebral inflammation and disease pathology [241, 243, 
244]. MMPs released by neutrophils, neurons, and glial 
cells, among others, degrade the extracellular matrix 
contributing to decreased integrity of the subendothe-
lial basal lamina of BBB, increased leukocyte invasion, 
inflammation, and neuronal injury [245]. Increased levels 
of myeloperoxidase produced by infiltrating leukocytes 
has been indicated in various neurodegenerative pro-
cesses [204]. In experimental mouse models of pneumo-
coccal meningitis, inhibition of MMP-2 and -9 decreased 
brain injury, lowered mortality, and prevented cognitive 
impairment [246, 247]. Remarkably, inflammation and 
leukocyte recruitment into the CNS occurred during 
bacteremia prior to pneumococci being detected in the 
brain [248]. Human histopathological studies from brains 
recovered from autopsies of pneumococcal meningitis 
patients have shown parenchymal damage secondary to 
intracranial pressure, cytotoxic and vasogenic edema, 
microhemorrhages, local leukocyte infiltration, abscess 
formation, fibrin thrombi, cortical necrosis, neuronal 
apoptosis in the hippocampal dentate gyrus, and hip-
pocampal neuronal loss [48, 52]. Brain-diffuse ischemic 
axonal injury and Wallerian degeneration have been 
shown in brain autopsy and experimental pneumococ-
cal meningitis [52, 249]. Brain structural damage can 
result from vasospasms and reduced blood flow eventu-
ally causing cortical necrosis and apoptotic cell death in 
the dentate gyrus [50]. Accordingly, blocking leukocyte 
invasion either by pharmaceutical inhibition of selectins 

or antibodies against endothelial intercellular adhesion 
molecules (ICAM1) or leukocyte integrin (Mac-1), atten-
uated the increased cerebral blood flow and intracranial 
pressure seen in early meningitis, inhibited leukocyte 
accumulation, brain edema, inflammation and BBB dam-
age [29, 250, 251].

Bacterial factors
Pneumolysin, H2O2, and autolysin mediate brain cell 
mitochondrial damage and apoptosis of neurons through 
P38 MAPK activation, as well as intrinsic and extrinsic 
caspase-dependent programmed cell death [21, 22, 252–
254]. Notably, the symptoms of meningitis can be repli-
cated by injecting components of pneumolysin or Spn’s 
cell wall into the CNS; this is due to their cytotoxic prop-
erties and the inflammatory response generated in the 
CNS, respectively [255]. Meningeal inflammation signifi-
cantly increased following antibiotic treatment attributed 
to bacterial lysis and release of cell wall [255]. However, 
by reducing the inflammatory response during antibi-
otic therapy using cyclooxygenase inhibitors some of the 
damage caused by host cells was mitigated [256]. Further, 
corticosteroid treatment has been shown to reduce CNS 
inflammation, severe morbidities, and case fatality rates 
[257].

Sequelae
Up to 30% of patients that survived meningitis have some 
type of neurological or neuro-behavioral sequelae [49]. 
These include seizures, hearing and vision loss, cogni-
tive impairment, neuromotor disability, and memory 
or behavior changes [51]. In adult survivors of commu-
nity-acquired pneumococcal meningitis from a Dutch 
nationwide prospective cohort study, 34% had persis-
tent neurologic sequelae – most commonly hearing loss 
(27%). Neuro-physical evaluation revealed that patients 
who recovered from meningitis performed worse than 
controls with alertness, and cognitive flexibility with 
cognitive impairment seen in 14% of patients [22, 49, 
51, 258]. Cognitive impairment occurred in all domains 
– most commonly cognitive speed (71%) but attention 
(60%) and memory (61%) were also affected. Survivors 
had lower quality of life scores, social functioning, and 
perceived health than those who had not experienced 
pneumococcal meningitis [49, 258]. Even healthy chil-
dren and adults without apparent neurological defi-
cits are at risk for long-term cognitive deficits following 
pneumococcal meningitis [259, 260]. Early identification 
and antibiotic/corticosteroid treatment is important to 
achieve a successful return to society [51].
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Frailty
Frailty is a state of vulnerability and loss of resilience to 
a variety of stressors that increase the risk of a variety 
of health-related problems that require hospitalization, 
including pneumonia [261, 262]. There seems to be a 
bidirectional relationship between pneumonia and cog-
nitive function in which cognitive decline increases the 
risk for pneumonia while patients with pneumonia are 
at increased risk of subsequent dementia [260]. In older 
adults, hospitalization for pneumonia has been associ-
ated with a subsequent decline in physical and cognitive 
abilities along with the development of depressive symp-
toms [259]. Some patients that survived severe illness, 
such as ARDS, had persistent reduced physical quality of 
life 5 years after their illness, despite pulmonary function 
returning to normal. ICU- acquired weakness, or paresis, 
is common in survivors of critical illness and associated 
with worse outcomes, such as increased hospital mor-
tality, long-term function, and quality of life outcomes 
[263–266]. Pneumonia is not only life-threatening but 
life-altering and can trigger a cycle of increased severity 
of frailty leading to accelerated aging, functional decline, 
and mortality.

Premature mortality because of pneumococcal 
disease
While the majority of patients recover from respiratory 
symptoms within two to three weeks following infec-
tion, the general well-being of patients resolves more 
gradually [19, 267]. Many pneumonia survivors do not 
recover fully to their pre-infectious state after the cessa-
tion of antibiotics and still experience residual symptoms 
for months [19, 268–272]. Older patients and those with 
premorbid conditions take longer to recover and had a 
lower health-related quality of life as measured by physi-
cal functioning, and general and perceived health [19, 
270]. However, it is important to note that while age is an 
important predictor of long-term mortality, pneumonia 
does also appear to cause excess long-term mortality in 
young populations as well [166, 273]. For example, 10% of 
patients were hospitalized within 30 days of their pneu-
monia diagnosis and nearly three-quarters of survivors 
were hospitalized again within a 5-year period for any 
cause [173, 192, 272]. The most common cause of death 
among pneumonia survivors was cardiovascular disease, 
followed by respiratory diseases and cancer [165–167, 
173, 206, 274, 275]. Survivors are at increased risk for 
new-onset heart disease for up to 5 years post-hospital-
ization and strikingly 20% of survivors developed new or 
worsening congestive heart failure within 30 days of hos-
pitalization [173, 191, 272].

One of the greatest predictors of long-term mortality 
following pneumococcal pneumonia is the presence and 

number of comorbid chronic conditions including car-
diovascular disease, respiratory diseases (e.g. COPD), 
diabetes, kidney disease, liver disease, dementia, seizures, 
and cancer [19, 163, 185, 206, 273, 274, 276–281]. Several 
studies have found an association between the presence 
of co-morbidities and long-term mortality, with a larger 
number of co-morbidities predicting greater long-term 
mortality [163, 165, 167, 206, 273–285]. Additionally, 
a substantial body of evidence supports that advanced 
age is associated with increased long-term mortal-
ity after recovery from pneumonia [164–166, 168, 173, 
273–276, 280, 281, 283, 284, 286]. Notably, racial dispar-
ity exists with black individuals having higher rates of 
both short-term and long-term mortality as well as an 
increased likelihood of developing additional morbidi-
ties such as heart failure, gastrointestinal bleeding, frailty, 
stroke, and myocardial infarction [287]. Potential reasons 
for these discrepancies in mortality include, genetics, 
socioeconomic factors, and the presence of additional 
co-morbidities which are disproportionately higher 
among African Americans, which together raise the risk 
for severe infection [279, 288–293]. Evidence specific to 
older adults suggests that older adults exhibit excessive 
pro-inflammatory cytokine levels after acute pneumonia 
that are associated with morbidity and mortality [290, 
294–296]. In accordance with this, higher systemic levels 
of pro-inflammatory cytokines, such as IL-6 and TNF, at 
discharge can predict both short and long-term mortality 
after hospitalization for pneumonia [110, 146, 294, 295, 
297, 298]. Male sex appears to accentuate this age-related 
dysfunction in the resolution of inflammation [298–302]. 
In addition to inflammatory cytokines, several studies 
have looked into various biomarkers to attempt to predict 
short and long-term outcomes, showing that high serum 
glucose, blood urea nitrogen/albumin ratio, creatinine, 
pro-atrial natriuretic peptide, pro-endothelin-1,pro-vaso-
pressin, pro-adrenomedullin, CRP, troponins, hemostasis 
markers (such as D-Dimer, thrombin-antithrombin com-
plexes, factor IX, antithrombin, and plasminogen activa-
tor inhibitor-1), and white blood cell count, as well as low 
serum albumin and alanine aminotransferase all had a 
high predictive power for short and long term mortality, 
with pro-adrenomedullin consistently being one of the 
best indicators of outcomes [110, 167, 182, 205, 206, 273, 
284, 303–306]. The clinical power in utilizing biomark-
ers, such as pro-adrenomedullin, along with pneumonia 
severity indexes should be used to identify and guide 
treatment in patients at high risk for the development 
of new morbidities or mortality so they can be carefully 
monitored to attempt to reduce long-term consequences 
[182].
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Treatment and prevention
Currently, the most effective strategy for clinicians to 
address pneumococcal infections is prompt access to 
care, accurate diagnosis, rapid antibiotic delivery, and 
disease prevention by implementing widespread vaccina-
tion against the pneumococcus [307]. Many groups have 
published guidelines for the management of pneumo-
coccal disease, including the American Thoracic Society 
(ATS), Infectious Diseases Society of America (IDSA), 
and the British Thoracic Society (BTS) that indicates 
patients should be treated with an agent that specifically 
targets pneumococcus, recommending monotherapy 
with β-lactams for uncomplicated outpatients and a com-
bination of β-lactam and macrolide therapy for severe 
cases [308–315]. Early administration of antimicrobials is 
associated with a better prognosis and the failure to use 
antibiotics concordant with IDSA and ATS guidelines 
has been associated with an increased risk of in-hospital 
mortality and more than a five-fold increase in 30-day 
mortality [316–325].

The Advisory Committee on Immunization Practices 
(ACIP) recommended adults ≥ 65 years and adults 19–64 
with underlying medical conditions or other risk factors 
be vaccinated with a polysaccharide-conjugate vaccine, 
either a combination of PCV15 followed by PPSV23, the 
pneumococcal polysaccharide vaccine, or PCV20 alone 
[326]. Annual vaccination against seasonal influenza 
viruses is recommended in all patients as influenza infec-
tion predisposes individuals to pneumococcal infection 
[326–328]. Additionally, individuals with chronic kid-
ney disease are recommended to receive pneumococ-
cal conjugate vaccines as this has been shown to reduce 
vaccine-type IPD by 75% in these individuals as well as 
lower overall mortality especially when a pneumococ-
cal vaccine is used in combination with an annual influ-
enza vaccine [217, 218, 329]. This is crucial as patients 
with end-stage renal disease are between 10 and 16-fold 
more likely to die from pneumonia than the general 
population [217, 227, 228, 329]. Vaccination against Spn 
has also been effective in reducing meningitis however 
serotype replacement has led to an emergence of non-
vaccine serotypes that have reduced the overall effect 
of vaccination on pneumococcal meningitis incidence 
in Europe and North America [330, 331]. The Global 
Vaccine Action Plan has committed to extending the 
availability of pneumococcal vaccines to low and lower-
middle-income countries in an effort to relieve some of 
the burden of pneumococcal disease [332]. Following 
the introduction of PCV10 in Brazil, there was a 10% 
decline in pneumonia mortality in children, and similar 
large benefits are expected when PCVs are introduced in 
other low-income settings [333]. Currently, many coun-
tries routinely vaccinate adults but there is controversy 

in policies such as whether the use of PCV and/or PPV 
is clinically and cost-effective, what age groups should be 
vaccinated, and whether repeat dosing could prove ben-
eficial [334–338].

There is controversy that exists on the efficacy of pneu-
mococcal vaccination in reducing overall long-term mor-
tality and the consequences of pneumococcal disease. 
However, research has shown pneumococcal vaccination 
to be effective at preventing pneumonia and IPD in older 
adults who are at higher risk [339–346]. With an aging 
population that is expected to double by the year 2050, 
it is becoming increasingly important to extend vac-
cination for the promotion of healthy aging [347, 348]. 
Considering the drastic long-term effects that pneu-
monia can have, pneumococcal vaccination should be 
implemented to reduce pneumococcal disease burden as 
research has shown that even slight clinical effectiveness 
is highly cost-effective. Indeed, vaccination in the elderly 
has been associated with lower hospitalization rates for 
pneumonia, mortality, and medical cost [349]. PPV is 
effective at preventing IPD, even in immunocompro-
mised patients [335]. Routine infant immunization with 
PCV has reduced all-cause pneumonia hospital admis-
sions, cases of acute otitis media, IPD, and mortality in 
children under 5 [350–353]. While research investigating 
the effect of vaccination on the long-term consequences 
of pneumonia is scarce, considerable evidence does 
support the beneficial effects of the pneumococcal vac-
cination, and that wider usage of vaccination should be 
implemented.

Pneumonia is currently considered the 9th leading 
cause of death, but this estimate only takes into account 
short-term mortality of up to 30  days and likely under-
estimates the overall morbidity and mortality that results 
from the pneumococcus [354]. Evidence supports that 
Spn contributes to the new development or worsening 
life-threatening morbidities and long-term mortality in 
coming years. Further research is needed to understand 
the long-term sequelae of pneumococcal disease to come 
up with better preventatives and treatments, so this Cap-
tain of death no longer lingers.
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