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It is increasingly important for technical systems to be able to interact flexibly,
robustly and fluently with humans in real-world scenarios. However, while
current AI systems excel at narrow task competencies, they lack crucial inter-
action abilities for the adaptive and co-constructed social interactions that
humans engage in. We argue that a possible avenue to tackle the correspond-
ing computational modelling challenges is to embrace interactive theories of
social understanding in humans. We propose the notion of socially enactive
cognitive systems that do not rely solely on abstract and (quasi-)complete
internal models for separate social perception, reasoning and action. By
contrast, socially enactive cognitive agents are supposed to enable a close inter-
linking of the enactive socio-cognitive processing loops within each agent, and
the social-communicative loop between them. We discuss theoretical foun-
dations of this view, identify principles and requirements for according
computational approaches, and highlight three examples of our own research
that showcase the interaction abilities achievable in this way.

This article is part of a discussion meeting issue ‘Face2face: advancing
the science of social interaction’.
1. Introduction
Modern AI (artificial intelligence) systems are capable of achieving astonishing
performances in a variety of tasks, e.g. classifying objects in video images, solving
complex control problems, or turning language descriptions into artistic visual-
izations. But to leverage these abilities in many socially important domains, AI
systems also have to master real-world encounters with humans. For example,
autonomous vehicles need to navigate traffic situations involving human ped-
estrians or car-drivers, collaborative robots are supposed to work alongside
human workers on assembly lines, or personal assistants should give recommen-
dations for travel or healthy living and explain those to individual users. Thus, it
is crucial for intelligent systems to be able to engage in extended, meaningful
interactions to support, assist, cooperate with, or learn from humans.

A large body of work has been directed to enabling interaction of humans
withmachines, robots or nowAI technology, and dedicated sub-fields specialized
in finding technological and design solutions to this. Early work in those fields
has focused on making technical systems ‘ready for use’, with a human user
being in full control and in charge of driving the task towards a solution. With
the advent of intelligent autonomous systems with abilities complementing or
exceeding those of humans, this focus has shifted towards making systems
‘ready for cooperative interaction’ with humans. Yet, equipping AI systems
with the required social interaction intelligence, in addition to their task intelligence,
remains a key challenge [1].

The literature on robotics and artificial social agents increasingly argues that
systems need to be more ‘aware’ of their human user, the specific situation, or
the larger social context. Correspondingly, there is a growing number of proposals
to make AI systems context-aware, socially aware or even human-aware [2].
The term social awareness has been used to denote a machine’s interpretation
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of the social context that is inferred from detected signals and
taken to provide the necessary information to appropriately
interact with peers [3]. Human-awareness is used to refer to
the development of systems that can understand the mental
states of humans, provide proactive support, or give cogent
explanations of their actions [2]. Technically speaking, this
work involves developing computational methods to recog-
nize contextually significant behavioural or situational
features, infer latent world states, or determine action decisions
that reconcile task-specific needs with effects on a human user.
For example, approaches to the so-called ‘human-aware plan-
ning’ [4] try to equip robots with an approximate model of
what a human user wants or knows about the environment,
and then to respond to this either by generating behaviour
that is readily understandable (explicable) to the user, or by
deriving explanations that would alter the human’s model
and hence make the robot’s action more understandable.

Despite this progress in promising and important
directions, a core ingredient for artificial systems to be truly
‘interaction-ready’ in a human-compatible form is still missing.
Existing approaches aim to identify and solve the perception,
reasoning, and decision-making problems in interactions
with other agents as if they were similar to those in non-
social tasks. But controlling a robot in a factory environment
is different from communicating with an elderly user to
figure out what he/she needs and provide support that she
understands and accepts. Yet, although the problems are fun-
damentally different, current approaches are similar and
focus on training specialized models that, e.g. recognize a
user’s emotional state or degree of understanding from social
cues, or describe action policies that maximize predetermined
task-level or social cost functions. The shortcomings of this
approach arise from the

— separation of social perception, reasoning, decision-
making and action in order to come up with modular,
specialized solutions for these (in fact, inseparable) sub-
problems. As a result, current systems excel, for instance,
in social signal processing or natural language conversa-
tion but get complex and clumsy when plugging these
heavy-weight modules together.

— neglect of the subjective mental perspectives of the inter-
acting agents that come to be mutually established and
extended through social interaction. While previous
work has tried to formalize the relevant internal states
of human users and interactive agents, their mental per-
spectives towards each other’s mental states along with
a suitable notion of sharedness of goals, beliefs or attitudes
still have not been accounted for sufficiently.

— neglect of predictive and embodied cognitive processes in
social interaction. As a result, current systems rely on
complex internal models to process rich information,
but are hardly able to respond fluently or align quickly
to verbal and nonverbal behaviour of human users.

— neglect of (i) the dynamics of socio-cognitive processes
within the interactants’ minds, (ii) the dynamics of the
social interaction and the couplings between them, and
(iii) the interplay between these two kinds of closed-loop
dynamics. As a result, systems are not able to co-adapt con-
tinuously with individual users over the course of a single
interaction taking place in a specific situational context.

— detachment of the construction/learning of social signals
or communicative behaviour from their use in online
interaction, during which they would need to be continu-
ously modulated or adapted to meet the specific needs of
the interactants and their situational context.

We argue that one approach to overcome these limitations is by
building artificial intelligent agents that incorporate principles
of ‘socially enactive cognition’. By this we mean cognitive sys-
tems that are not solely based on ‘cognitivist’ computations
over complex representational models of social situations
inside an agent. By contrast, we emphasize the view that artifi-
cial interactive systems additionally need to be equipped with
perceptual and socio-cognitive abilities that are grounded in
dynamic meaningful relationships arising from an adaptive
two-way exchange between the systems and the social environ-
ment they inhabit and actively shape [5]. The goal is to build
artificial systems that can engage in interactions in which a
social loop couples interaction partners via dynamical reciprocal
processes of communication and coordination, while being bi-
directionally interlinked with the intra-agent cognitive loops
such that this two-way exchange is meaningfully effective
within and between the agents. We conjecture that this can
yield an interaction quality that makes artificial intelligent
systems significantly more human-compatible.

In the following, we formulate possible avenues for tack-
ling the corresponding modelling challenge by embracing
interactive theories of social understanding. We start by dis-
cussing theoretical foundations, identify important tenets
for respective computational approaches, and highlight
examples of our own research that showcase the interaction
abilities achievable in this way. Finally, we will discuss miss-
ing steps towards intelligent systems that can engage in
human-compatible interaction and cooperation.
2. Socially enactive minds for interactive
intelligent systems

What are socially enactive cognitive systems and how canwe go
about building interactive systems, artificial assistants or robots
based on these principles? We first clarify what we mean
by socially enactive minds, by discussing relevant theoretical
and empirical foundations. Based on this, we will propose
corresponding computational principles and approaches for
building artificial systems that exhibit similar qualities in
social interactions with human users.
(a) Theoretical foundations: enactive cognition in social
minds

A large body of research has been directed to studying the
phenomenology of human social interactions and the human
abilities for social cognition. But only in the last decade have
researchers started to realize the importance of studying both
together [6,7]. Up to then investigation of social cognition
wasmostly focused on individualmechanisms,mainly consid-
ering the third-person perceptual and inferential processes of
determining subjective mental states of other agents (their
beliefs, intentions, goals, attitudes, etc.). This so-called menta-
lizing or Theory of Mind (ToM) [8] requires an observer to
have a good model of the acting agent and has traditionally
been described as a form of theory building or simulation.
Theory-theory
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(TT) views ToM as a separate system that enables reason-
ing about (folk) psychology—a framework of concepts that
allow explanations to be derived from a set of laws and
rules that ‘[·· ·] connect the explanatory conditions with the
behaviour explained’ [9, p. 68]. Simulation theory (ST), in
contrast, assumes that we do not have a separate black-box
system to answer psychological queries. Rather, we reason
about ourselves to simulate the minds of others. Most often
this process is described as a form of simulation where the
own social perception apparatus is taken offline to run simu-
lations with pretend mental states, to reach conclusions about
the other agent’s behaviour [10].

These classical views of social understanding have been cri-
ticized substantially. For one, they focus on social perception
or action tasks but these have been studied mainly in isolation.
Correspondingly, these paradigms assume that social inter-
action is reducible to the understanding of mental states that
people entertain when they interact [11] and that those
mental states are ‘hidden, pre-existing, unaffected by the inter-
action, owned by each participant and opaque to the other’ [12,
p. 4]. Further, when adopted to explain how humans under-
stand other minds, these paradigms subscribe to the largely
refuted ‘sandwich model’, according to which socio-cognitive
processes lie in-between perception (as input from the world
to the mind) and action (as output of the mind) [13].

Notions such as direct social perception, enactive cogni-
tion and participatory sense-making [14] have been put
forward as alternatives. Direct social perception refers to
the view that socially relevant mental states are often directly
perceivable (e.g. motor intentions from motion) and thus
need not be inferred. This relies heavily on a perception
that is smart in a way that allows the individual to extract
what usually are described as hidden mental states, and that
is ‘innately (or very early) tuned to socially relevant aspects
of the world’ [15, p. 540].

On a more general note, embodied cognitive views have
rejected the sole importance of internal mental representations
for many tasks. In particular, enactive cognition assumes that
cognition in the individual is constituted by sensorimotor
activity [16] and that perception is active sense-making that
arises from embodied engagement with the environment and
prepares for action. That is, just like an organism is driven by
the need to maintain biological balance, cognition is shaped
by a form of autopoietic interaction with the information
environment [17,18]. The underlying notion of self-construc-
tion of an individual’s reality was applied to social reality
early on, most prominently in Bruner’s theory of instruction
[19] and Vygotsky’s social constructivism, according to
which people learn internal social reasoning from external
social interaction [20].

Extending the enactive view to social cognition leads to
understanding social interaction—contingent perception and
action in a social situation—as being essential for the cognitive
capacity of understanding others. This view has led to the
interactive brain hypothesis (IBH) [12,21], stating that social
understanding capabilities are a result of the skilful use of
social interaction capabilities acquired during an individual’s
upbringing. The IBH was put forward from an enactivist per-
spective focusing on autonomy, (participatory) sense-making
and embodiment [22] with a number of assumptions: first,
our skills constituting social understanding are developed
through our experience of social interaction, developmentally
predisposed by a readiness to interact [12] and to attend
others [23]. Secondly, social interaction is a contextual factor,
where meaning that becomes only apparent in interaction
can influence the meaning of individual presumptions.
Thirdly, processes in the individual brain during social inter-
action are not fully constitutive of social cognition [21], rather
the acts and meanings cognized during social interaction are
irreducible and emergent properties of the interaction: ‘To cog-
nize socially, in the enactive understanding of the term, is to
skilfully engage in the multiple demands and possibilities of
the social world, many of which are directly or indirectly emer-
gent from social interactions’ [21, p. 6]. The autonomy aspect of
the IBH relates to the autopoietic view andmakes it compatible
with a predictive processing perspective according towhich an
autonomous agent brings forth its own action–effect couplings
with the environment in a sense-making process that strives to
minimize prediction errors [24].

Despite the potential of enactivist positions (such as IBH)
for improving artificial social systems (see below), it is impor-
tant to note that radical views of enactive cognition, which
ultimately reject notions of mental states and representations
in cognition altogether, can hardly account for one basis of
communication and social interaction, namely, the construal
and sharing of information about non-present or even
imaginary entities. We underscore the role of mental rep-
resentations for a cognitive system to be able to establish
social understanding. In particular, the ability to differentiate
between subjective mental perspectives, such as my beliefs
versus your beliefs or our common we-beliefs, is essential for
effectively tracking the (non-)success of social understanding.
This is a notion of implicit mentalizing where the we-mode
[25] or we-beliefs [26,27] are a form of sharedness that helps
to bootstrap the commonly assumed recursive nature of
mental state attribution.

In sum, we ground the idea of artificial, socially enactive
cognitive systems upon theories of autopoietic enactive
cognition in the domain of social understanding and inter-
action [17]. As we will specify below, social understanding
in such systems results from a bottom-up process of interac-
tive sense-making, grounded in dynamic interaction
with the social world, and a top-down process of ongoing
skilful interaction enrichment through the individual’s
experience with social interactions as well as the individual
interaction partner.
(b) Towards artificial socially enactive minds
The hallmark and linchpin of socially enactive artificial sys-
tems is their ability to engage in a social interaction in
which the dynamics of enactive socio-cognitive processes
(within interactants) and the communicative–coordinative
processes (between them) unfold in parallel and in close
relation to each other. Crucially, this relation is seen as bi-
directionally constitutive. On the one hand, social under-
standing and cognition should be directly grounded in, and
to some extent arise from, the running social interaction.
On the other, social interaction, and its intricate complexity
of various communicative cues and signals being produced
and perceived simultaneously, are driven by the underlying
socio-cognitive processes of the interactants. To answer
how this quality could be attained in artificial systems, one
must address this interplay from both sides: by asking
what dynamic interaction phenomena are characteristic of
the social loops we are aiming for, and by asking how socially
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Figure 1. Socially enactive cognitive systems engage in two coupled dynamic processes: the social loop (red arrows) consists of mutual adaptation, communication
and coordination processes between the agents. It arises from, and is constitutive of cognitive loops (blue arrows) that unfold within each agent. Each cognitive loop
links resonance-based perception and generation of social signals with differential mentalizing processes through hierarchical prediction-based processing (for
explaining and predicting one another’s behaviour). This allows interlinking of online social cognition and social interaction, e.g. by creating and testing
mental state attributions through reciprocal coordination and alignment processes. (Online version in colour.)
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enactive minds operate in this and how it can be modelled
computationally.

As regards the social loop dynamics, elsewhere we have
discussed the various forms of inter-agent coordination and
mutual adaptations that constitute a socially resonant inter-
action [28]. The main degrees of freedom of these processes
result from the ability of socially enactive systems to perceive
and produce communicative signals, such as speech, prosody,
gaze, facial expression, gesture, body posture, etc. (cf. [29]).
This involves behaviours transferred via different sensory
modalities (e.g. verbal, vocal, non-vocal), serving different
functions (e.g. to convey content, emphasize, demonstrate
emotions, provide feedback, negotiate turns) with different
degrees of intentionality and awareness (e.g. unaware
indicators, intended displays, intended-to-be-recognized-as-
displayed signals [30]) and often as part of a larger multimodal
delivery. Through the adaptive use of these polysemiotic commu-
nicative systems, human interlocutors have been found to
mutually coordinate and socially resonate in various ways
(cf. [28]): from a strategic convergence on verbal-acoustic
styles (as in Speech Accommodation Theory [31]) or the joint
activity of grounding linguistic constructions [32], to a
priming-based alignment of prosodic or lexico-grammatical
choices [33], to an automatic mimicry [34] or temporal
entrainment of nonverbal behaviour [35].

It is noteworthy that these mutual adaptation and coordi-
nation processes, though sometimes being implemented
individually and explicitly (cf. [36]), are not yet found as
emerging systematically in embodied human–agent inter-
action. We argue that this is due to the lack of the ability of
artificial systems to operate in socially enactive cognitive
ways. Figure 1 illustrates this view of interlinked cognitive
and social loops. Note that we do not require (nor assume)
perceptual, cognitive, affective or motor processes to be iden-
tical in humans and artificial systems. What we do argue,
however, is that these intra-agent processes incrementally
give rise to and arise from multimodal signals that are com-
municated for the purpose of mutual adaptation and
coordination, and that artificial systems ‘ready for coopera-
tive interaction’ must support both kinds of dynamic
processes for their human users. To that end, they must be
built with corresponding guiding principles in mind. As will
be explained next based on work of others as well as our-
selves, we conceive of those as perceptual or motor
resonances that result from incremental, hierarchical
prediction-based processes on (possibly false, but repairable)
representations of conditional mental state attributions.

(i) Resonance-based behaviour perception and generation
One guiding principle for building artificial agents that sup-
port a more enactive approach to social understanding looks
into the mechanistic underpinnings of action understanding
in social encounters. From studies of the neural basis of
action understanding, so-called motor resonances are known
to occur in the brain of action observers [37]. One source of
explanations for such resonances is mirror neuron activity,
which is a strong indicator for the involvement of the
motor system in deriving predictions and evaluating hypoth-
eses about incoming observations. In humans, mirror
neurons have been found in different parts of the brain
[38,39] and a debate has arisen around whether their origin
is either evolutionary or a form of associative learning [40].
For theories of behaviour understanding, they have spawned
discussions about the so-called perception–action links,
common coding [41] and event coding [42]. In addition,
from a dynamic systems perspective, correlated neural acti-
vation found in parts of the brain of interacting humans fits
well with an embodied cognition view where our nervous
system is coupled with the environment through our bodies
and bodily senses. In social environments, one’s social acts,
perceived by all participants of an interaction, lead to sym-
pathetic resonances in their respective nervous systems and
hence attune the way they interact. Recent evidence even
suggests that interacting individuals show interpersonal coup-
ling or even alignment of resonating neural dynamics
underlying cognitive and affective processes [43,44]. While
the actual mechanisms and effects of this kind of coupling
are still not fully understood, it adds evidence for the view
that automatic resonances of perceptual and motor processes
may be a basis for inter-agent adaptation and coordination. It
is also in line with classical accounts such as Adaptive Reson-
ance Theory [45], which introduced predictive coding as
underlying computational mechanism and led to a Bayesian
perspective on the mirror neuron system as a source for
social understanding in work on predictive processing [46,47].

(ii) Hierarchical prediction-based processing
A second guiding principle that computational models
should try to follow is to overcome the strict separation of
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input processing and behaviour generation, as well as the
dichotomy of lower-level and higher-level processing. De
Bruin & Strijbos [48] argue that principles of predictive pro-
cessing and, in particular, the so-called Free Energy
Principle (FEP) provide a perspective toward social cognition
that overcomes the classical sandwich-model-based views on
social understanding and social interaction. The FEP was
developed as a theory for perception under the framework
of predictive coding, wherein probabilistic distributions
over latent variables in generative models are inferred for
the observed sensation by minimizing the prediction error
(the free energy) [24,47,49].

Later, a corollary of the FEP, active inference, was devel-
oped as a framework for action generation wherein action
policies as well as the probabilistic distribution of future
latent variables in generative models are inferred by minimiz-
ing the so-called expected free energy (uncertainty with
respect to goal-directed action outcomes). The major advan-
tage of this approach for goal-directed action, compared
with conventional forward models, is that the model can
cope with uncertainty in a stochastic environment by incor-
porating a Bayesian framework. Active inference describes a
process of decision-making and action production in which
the environment is affected to reduce uncertainty about an
agent’s beliefs about the world [50]. As in the Bayesian
brain perspective, where predictions about sensory stimuli
are continuously formed and evaluated in a generative pro-
cess, this generative process is inverted to predict next
actions and thus attenuates prediction errors [51]. This is an
affordance competition process, i.e. action selection is based
on possible goals achievable through that action [52].

The FEP gets rid of the perception–cognition distinction by
seeing perception as unconscious inference (going back to
Helmholtzian perspectives on perception). Also it accepts
perception to be driven by expectations, i.e. priors that are
constantly formed in the brain and contrasted against per-
ceived sensory evidence. Only the interesting (information-
carrying) aspects of the input, the prediction errors, are
passed up the hierarchy for further (more abstract) proces-
sing. As a result, this account mitigates the perception–action
distinction as we no longer need constant deep inferential
processing in a processing hierarchy if the input is already
expected. Ideas of direct social perception, which claim that
we can directly perceive some of our interaction partner’s
mental states, have also been based on this view [15].
(iii) Differential, good-enough mentalizing
A third key principle for interactive systems is the ability to
differentiate between subjective mental states of the interaction
partners (i.e. their subjective beliefs, intentions, goals, attitudes,
etc.). This amounts to forming an online theory ofmind for other
agents, which is necessary to sufficiently characterize the state
of an interaction between cognitive agents (e.g. cooperative or
competitive) to propel communication forward in order to,
e.g., extend or adjust another agent’s knowledge, or identify
and repair communication problems. We particularly empha-
size the importance of the latter, i.e. a goal-directed and
flexible management of uncertainties of (mis-)understandings.
For this to be possible in human–machine interaction settings,
artificial systems need deep (as opposed to shallow) models
of the cognitive processes that playout during social interaction.
Yet, today’sAI systems are onlyable to account for these aspects
offline and in narrow toy scenarios.

Classical approaches to dialogue modelling have looked
into formal models of the so-called conversational records
or information states [53,54], which describe the information
that is currently private or shared (grounded) between inter-
locutors. However, a socio-cognitive approach to distinguish
mental perspectives is rarely adopted. For one thing, this is
due to the fact that modelling nested beliefs and trying to
infer them as hidden states gets complex and quickly even
intractable. Thus, we argue for artificial socio-cognitive sys-
tems to follow a good-enough or ‘satisficing’ approach to
mentalizing, by employing minimal ToM models when poss-
ible and more complex ones when needed [55]. For example,
a minimal model would differentiate between three perspec-
tives: my own beliefs (first-person), the interlocutor’s beliefs
(second-person) and our shared beliefs (first-person plural).
The latter corresponds to mental states that every interactant
believes to hold for all interactants, including oneself. This
model was shown to be able to account for basic initiation
as well as repair phenomena found in social interaction
[26]. In the model implementation examples presented
below, the first example describes a model where prediction
errors during inference of social information are accounted
for as false beliefs, which leads to repairs and other reciprocal
belief coordination behaviour through communication [27], a
notion similar to what has even been called the running
repair hypothesis [56]. More complex problems of miscom-
munication, however, like figuring out that the other has
expected you to say something else or disagrees, demand
more complex social reasoning and mutual coordination
processes (as shown in the second example).

Friston & Frith [57] describe a solution to the ToM. This sol-
ution replaces the problem of inferring another’s mental state
with inferring what state of mind one would be in to produce
the same sensory consequences (similar to ideomotor theory).
The basic idea is that internal or generativemodels used to infer
one’s own behaviour can be deployed to infer the beliefs (e.g.
intentions) of another, assuming both parties have sufficiently
similar generative models. Indeed, previous literature dis-
cusses a readiness to interact, a we-mode, we-belief or a prior
belief about the similarity of conspecifics [12,25,26,58,59],
which all can be interpreted and modelled as an ‘abductive
bias’ during mentalizing.
(iv) Incremental processing loops
A final and increasingly adopted principle is incremental pro-
cessing, both in the social loop and in the cognitive loop.
Previous work has shown that incrementality and the respon-
siveness it enables improve the fluidity and smoothness of
conversational interaction (cf. [60]). For example, speakers are
producing their verbal utterance in a step-wise fashion while
being able to re-plan remaining part(s) of their communicative
plan, suspend it, inject a sub-dialogue and continue at a later
point in ways adapted to the addressees’ needs. They can do
so in such an effortless, smoothly coordinated and seemingly
natural way that it is not even apparent that difficulties were
paid attention to or that plans were changed mid-way. It is
important to note, however, that incremental processing goes
well beyond producing behaviour step-by-step. In particular,
it requires the cognitive loop to be able to run simultaneously
at multiple levels of a processing hierarchy, often operating on
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Figure 2. Two ‘agents’ interact with each another by reciprocally perceiving and performing the handwriting of digits. Each agent is based on a hierarchy of nested
generative processes, spanning main sensorimotor levels (M, V, S, C) as well as levels associated with mentalizing (CS, G, PM). Across these levels, the generative
processes predict the activity of the next-lower level, while prediction errors determined from visual input (V) and proprioceptive feedback traverse the hierarchy back
upwards. By coupling these models through their interaction, agents reciprocate by writing what they believe they have understood and that way coordinate their
beliefs dynamically and incrementally until they reach a mutual understanding. (Online version in colour.)
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premature hypotheses and being able to quickly adapt when
they are updated based on incoming sensory input. Such an
incremental processing naturally follows from the hierarchical
predictive-processing principle, when partial (bottom-up)
interpretation hypotheses are combined with the evaluation
of (top-down) predictions about, e.g., an interlocutor’s next con-
tribution. Taking this further to socially enactive processing
means that a system is not only able to process and produce
socio-communicative behaviour incrementally, but also to do
this at different multi-layered coordination loops, which are
maintained with one another to establish mutuality of, e.g.,
contact, understanding or goals.
3. Example implementations and results
In the following, we will present three examples of actually
implemented computational systems that embody (parts of) a
socially enactive approach to social understanding and inter-
action. For each of them, we outline the scenario, the
implemented modelling approach, which of the above
principles they are based on, and results obtained in this way.

(a) Online predictive processing of communicative
behaviour

We have explored how predictive processing can foster
online social interaction. Two artificial social agents were
independently equipped with a computational model that
dynamically forms predictive beliefs during the online percep-
tion and production of communicative signals (here, the
writing of digits). Based on these beliefs, the agents were
enabled to reciprocally react to each other in order to reach a
joint (mutually aware) understanding of a digit [27,61]. The
model consists of a hierarchyof nested generative sensorimotor
perception and action processes and is based on the free-energy
principle with active inference [46,47,51]. Active inference sees
action as a form of inference over possible ways to make the
environment meet the agent’s predictions, here about the
inferred mental states of the social interaction partner.
See figure 2 for a sketch of two models interacting
with one another through their perceiving and acting of the
handwriting of digits. Each model consists of a nested hierar-
chy of specialized generative processes that each predicts
the activity of its next-lower level, where predictions of the
motor control model (M) lead to overt action. The success
of predictions as well as prediction errors evaluated on
visual input (V) and proprioceptive feedback traverse the
hierarchy upwards towards levels that are associated with
mentalizing (CS, G). This enables a process for belief coordi-
nation similar to the we-mode proposed by Frith [62]: an
implicit form of mentalizing that bootstraps the attribution
of mental states, which seems automatic, where contextual
information and prior information can influence behavioural
understanding top-down.

We argue that nested high-level representations that
enable belief coordination do not only act as attentional
mechanisms to minimize uncertainty during perception and
action. They also assume a form of meta-cognitive regulatory
control based on the uncertainty detected in the social inter-
action overall. That is, they can orchestrate the perception and
production of social signals and are vital in resolving uncer-
tainty in belief coordination [63]. In other words, prediction
errors during inference of social information may be inferred
as false beliefs and lead to repairs and other reciprocal com-
munication behaviour that is integral to communication [56].
Technically, the hierarchy performs a general belief-update at
each level, based on a linear Bayesian process that involves a
dynamic information gain (or ‘precision-weighting’) related
to the system’s uncertainty. This precision-weighting can be
biased by more strategic, meta-cognitive regulation mechan-
isms to allow weighted information gain and to affect the
agent’s perception, from focusing on details to ignoring
detailed prediction errors.

In simulations with three such agents in a nonverbal
communication game, we have shown that agents perform
reciprocal belief coordination that involves regulation of the
whole-nested hierarchy with sensorimotor and mentalizing
parts. The results stress the importance of balancing prior
beliefs against new information by means of a precision-
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Figure 3. (a) An ‘attentive speaker’ agent communicates with a human user while interpreting the interlocutor’s communicative feedback and adapting to it online.
(b) Results demonstrate that humans engage in this and produce significantly more feedback with the attentive speaker (AS) than with agents that do not attend
(NA) or explicitly ask for confirmation all the time (EA) [67]. Datapoints are light grey, black dots are medians, black lines are whiskers representing 1.5 × inter-
quartile range, and mid gaps are quartiles. (Online version in colour.)
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weighting bias that regulates not only perception and action,
but also more generally the gain on social information.1

This work embodies several of the aforementioned
principles for modelling socially enactive artificial systems.
Most notably, it implements resonance-based behaviour
perception and generation and an hierarchical prediction-based
processing of social representations from behaviour to
mental states, in the form of a hierarchical generative
model. This allows the agent to act upon prediction errors
about high-level beliefs about the interaction partner’s beliefs,
entailing either reciprocating inference of beliefs or attempts
to repair false beliefs as a form of active social inference.
In this sense, the model grounds its decision-making on the
principle of differential and good-enough mentalizing as it
infers beliefs that are good enough for fluent interaction, in
contrast to slow and resource-intensive optimal decision-
making. Finally, regarding the principle of incremental proces-
sing, the implemented model processes and produces social
behaviour incrementally based on partial hypotheses under-
lying current predictions. However, while strategies for
handling false beliefs are chosen as they occur, the model is
not able to self-repair and coordinate the complete hierarchy
of nested loops in the process.

(b) Adaptive coordination of dialogue through feedback
and mentalizing

Spoken-language or multimodal dialogue is a ‘collaborative
effort’ of the interlocutors who cooperatively try to establish
mutual understanding [32,64]. One prevalent mechanism
that humans use in such situations is listener feedback [65],
short unobtrusive signals that listeners produce in the
‘back-channel’, while processing verbal input produced by
speakers that in turn perceive this feedback and adapt
their own other-directed behaviour accordingly. This is an
example par excellence for socially enactive processing in
artificial systems. Feedback signals are employed to dynami-
cally coordinate an incremental social interaction, shaped by
the dynamic socio-cognitive processing of the listener, driv-
ing the corresponding processes in the speaker, which in
turn shapes his/her incremental utterance, which again
affects the socio-cognitive processes in the listener. The
social and cognitive loops in this example rely on different
(verbal and nonverbal) modalities, along with corresponding
sensorimotor processes grounded in the embodiment of the
conversation partners.

Buschmeier & Kopp [66] have presented a model that
enables feedback-based coordination between an embodied
conversational agent and a human interaction partner
(figure 3a). The implemented ‘attentive speaker agents’ are
able (1) to interpret communicative listener feedback of their
human interlocutors, taking the dialogue context into account,
and (2) to adapt their ongoing or subsequent natural language
utterances according to their interlocutors’ needs—as inferred
in (1). For this, the agent builds an internal model of the listen-
ing-related mental state of the human user, and updates it
continuously and incrementally based on the perceived feed-
back signals. That is, the model is strongly based on the
principle of incremental processing. In addition, it follows the prin-
ciple of good-enough mentalizing, as the model only specifies the
speaker agent’s beliefs about the listener’s current mental state
with respect to his/her contact, perception, understanding,
acceptance, and agreement of what is being uttered. Computa-
tionally, this is modelled as sequential probabilistic inferences
over a dynamic Bayesian network. This also allows the agent
to quantify its uncertainty about the listener’s mental state
and to actively elicit feedback by means of dedicated cues
(e.g. gazing at the listener while pausing speech) or even
explicit queries. Note that this system does not employ the guid-
ing principles of hierarchical prediction-based processing and
resonance-based behaviour perception and generation.

In evaluation studies with human users [66,67], the
attentive speaker agent was compared with agents that
either do not adapt their social behaviour to their beliefs
about listeners’ needs (lower bound) or do it incessantly
and explicitly ask about it (upper bound). That is, the first
condition decouples the social loop from the cognitive one,
while the second couples them excessively but in non-
adaptive, socially non-resonant ways. We analysed first
whether human interlocutors were willing to provide feed-
back to artificial agents at all. Results show that they only
did so if the agent was actually attentive to their feedback
and responded to it by adapting its behaviour (figure 3b).
Second, we investigated whether participants perceived the
agents to be different and whether they noted the attentive-
ness and adaptivity of the attentive speaker agent and were



HAICA

intention layer

goal layer
inferred
other’s
mental
state 

orders

goal
evidence intention

prediction

action

goal

 intention

observation
model steps success run-time time per step

HAICA 60.79 0.89 1.32 0.02
BD 36.52 0.92 2111.55 55.87

other’s action

(a) (b)
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blue ‘agent cook’). (b) Results of simulations comparing the performance of HAICA, with optimal susceptibility parameters, with a full Bayesian reasoning and
planning approach (BD) [70]. Comparison is done with regard to average numbers for required steps, joint task success rate, total run-time and time to plan
one step ahead (best marked as bold). While BD needs about half as many steps as HAICA, its computational costs are three orders of magnitude higher and
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aware of the collaborative effort that it made to the inter-
action. Results demonstrate that participants noticed that
both the attentive speaker agent as well as the upper bound
control agent were attentive and adaptive, but only the atten-
tive speaker agent was perceived as having a desire to
be understood as well as being more helpful in resolving
difficulties in participants’ understanding.
(c) Collaborative situated problem-solving
As a final example, we turn to the question how socially
enactive cognition could enable fast and robust task collabor-
ation between agents. Classical work in AI on multi-agent
coordination focuses on finding optimal solutions through
planning, prior to the actual interaction and from the point
of view of either a centralized, omniscient control unit [68]
or a decentralized one through dedicated forms of
communication between the agents. In recent work [69] we
asked whether ‘satisficing’ (in contrast to optimal) collabor-
ation can emerge without planning, only from on-the-fly
coordination between socially enactive cognitive agents that
rely on situated, prediction-based task behaviour that is
affected by their mentalizing about other agents’ intentions.
To that end, a model of ‘hierarchical active inference for col-
laborative agents’ (HAICA; see figure 4, left) was developed.
It continuously infers hypotheses about the mental states of
another agent and integrates them into own prediction-
based goal and intention formation through a mechanism
we call belief resonance. Figure 4a shows an outline of the
HAICA model, here for the agent with the green hat, with
the mentalizing component in blue and the predictive
processing hierarchy in green.

Inferring beliefs and goals of the collaboration partner is
based on a Bayesian Theory of Mind approach (BToM)
[55,71], which usually requires the evaluation of all possible
actions and expected rewards (as a likelihood). HAICA’s
belief resonance uses a simplified approximation of that like-
lihood which assumes that the other agent would behave
similar to oneself, given it finds itself in the same situation
with the same intentions and goals at its disposal. This cre-
ates a set of beliefs that are integrated into the agent’s
intention or goal posteriors. The underlying update
mechanism is modulated according to a susceptibility par-
ameter that controls how strongly the mental states of
another agent impacts one’s own predicted future behaviour.
Note that, aside from mentalizing about the other agent,
HAICA does not involve a separation of subjective goals or
intentions in its selection of actions. As a result, the model
does not afford any mechanisms for planning ahead or sup-
porting another agent with complementary actions.

Despite this quite simplifying (yet in many situations
satisficing) similarity assumption, simulation studies yield
highly informative and competitive results. Two agents
equipped with HAICA were situated in the Overcooked
game scenario, in which they have to prepare frequently
ordered meals given limited resources. Agents were not
equipped with simple-to-follow recipes. Rather, the hierarch-
ical model represents a number of intentions of observations
and actions that are chosen specifically for the Overcooked
game scenario, along with a set of possible goals (in the
form of meal orders) that influence the likelihood of inferring
specific intentions. Agents are then run to detect and act
upon afforded intentions, e.g. in response to the observed be-
haviour of the other agent or the observed availability of a
resource that is likely to be needed for the given meal order.

The simulations show that two of those socially enactive
cognitive agents, when paired together in the environment,
are able to collaboratively succeed with this task in many
situations and in a very resource-efficient manner. Achieved
team performance is comparable to state of the art deep
reinforcement learning models [70] and, although not
always being optimal, is by orders of magnitude more com-
putationally efficient than full Bayesian planning (figure 4b;
see Pöppel et al. [69] for details). These results are due to an
emergent coordination as the agents dynamically and bi-
directionally adapt to each other as well as to the shared
environment they simultaneously alter, yet without any expli-
cit coordination through communication or global planning.
This work is an example of multi-agent coordination that is
implicit and highly situated, thanks to principles of socially
enactive cognitive systems: The agents perceive the affor-
dances that their environment provides and integrate this
with social information about the other agents, following
the principle of resonance-based behaviour perception and
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generation. The underlying belief resonance mechanism
affords a form of satisficing decision-making that does not
require complex social reasoning or planning, but performs
goal and action selection by way of minimizing predictive
uncertainty (as described above) and thus is in line with
the principles of hierarchical prediction-based processing and
differential and good-enough mentalizing.
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4. Conclusion
In order for intelligent systems to be able to engage in
extended, meaningful interactions with humans we propose
to work towards ‘artificial social enactivism’, according to
which a social understanding and a social interaction are
actively co-constructed by human and artificial interactants.
In contrast to relying on complex models, long-term planning
or explicit interaction protocols, we emphasize the view that
the dynamics of the intra-agent socio-cognitive processing
loop and the inter-agent social interaction loop evolve in
parallel and in a bi-directionally constitutive fashion. We con-
jecture that humans prefer or even rely on this quality of
social interaction, and that artificial systems consequently
should enable this in order to be more human-compatible.

It is not clear yet what the best construction and compu-
tational modelling principles for socially enactive systems are
in detail. However, recent research on embodied face-to-face
interaction, enactive cognition, or social neuro-cognitive
processes like the interactive brain hypothesis allows us to
distil some of them that we deem to be implementable in
artificial systems. First, resonance-based behaviour percep-
tion and action are needed to enable fast alignment and
coordination phenomena in social environments. Second,
hierarchical prediction-based processing is put forward to
integrate perception–reasoning–action over time and over
different levels of mental state abstraction. To that end,
the FEP can be adopted to form predictions and on-
demand inferential processes while staying compatible with
theory-bound top-down mentalizing. Third, differential and
good-enough mentalizing is required for a system to be
able to differentiate between subjective mental perspectives
in an efficient manner, while allowing bootstrapping menta-
lizing processes, possibly through abductive biases (e.g.
similarity-based we-beliefs or a readiness to interact). This
rejects the radical enactive stance of getting rid of mental rep-
resentations. Instead we demand systems to make use of
complex mental representations only where required. Finally,
we endorse the principle of incremental processing to ensure
and increase a system’s responsiveness. This is thought of
here as a means of incrementally coordinating the perception
and production of socio-communicative behaviour in multi-
layered coordination loops. The implemented examples
that we have described demonstrate different features of arti-
ficial socially enactive systems by employing suitable
combinations of the described key principles, hence paving
the way for artificial social minds that ultimately enable
truly human-compatible interactions.
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