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In face-to-face interactions, parties rapidly react and adapt to each other’s
words, movements and expressions. Any science of face-to-face interaction
must develop approaches to hypothesize and rigorously test mechanisms
that explain such interdependent behaviour. Yet conventional experimental
designs often sacrifice interactivity to establish experimental control. Interactive
virtual and robotic agents have been offered as away to study true interactivity
while enforcing a measure of experimental control by allowing participants
to interact with realistic but carefully controlled partners. But as researchers
increasingly turn to machine learning to add realism to such agents, they
may unintentionally distort the very interactivity they seek to illuminate,
particularly when investigating the role of non-verbal signals such as emotion
or active-listening behaviours. Here I discuss some of the methodological
challenges that may arise when machine learning is used to model the behav-
iour of interaction partners. By articulating and explicitly considering these
commitments, researchers can transform ‘unintentional distortions’ into valu-
able methodological tools that yield new insights and better contextualize
existing experimental findings that rely on learning technology.

This article is part of a discussion meeting issue ‘Face2face: advancing
the science of social interaction’.
1. Introduction
Face-to-face social interaction is the most ubiquitous and rewarding of human
activities, yet in many ways, the science of face-to-face social interaction is
still in its infancy. Science, at its core, ‘should detail the cogs and wheels of
the causal process through which the outcome to be explained was brought
about’ [1, p. 50]. While detailing these mechanisms in the physical sciences
can be enormously challenging, at least physical processes do not have minds
that learn new mechanisms in response to external stimuli. By contrast, parties
in a face-to-face interaction form and change beliefs about their partner and the
social context, adjust their behaviour and thereby jointly create the outcome to
be explained. This fundamentally interdependent nature of social actors creates
problems for traditional controlled experiments used to establish causal
mechanisms in the physical sciences.

This article reviews some of the methodological limitations that arise from
the most common approaches used to establish the mechanisms underlying
face-to-face interaction, then highlights the emerging paradigm of using embo-
died interactive agents—such as virtual humans [2–4] or social robots [5]—as
a potential way to avoid these limitations. Developers of embodied agents
increasingly rely on machine learning methods to create high-fidelity models
of non-verbal behaviour [6] and verbal communication [7] by analysing large
datasets of face-to-face interaction. Ironically, the use of machine learning
can inadvertently reintroduce the very limitations these agents were intended
to avoid. Essentially, by their choice of learning method, the selection of
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Figure 1. The noisy iterated Prisoner’s Dilemma game. Each round, players simultaneously decide if they will try to split or steal a pot of money but their choice
may be imperfectly executed (e.g. Player A intends to split but steal is performed). Mechanisms for modelling the interaction between players can be distinguished
by their inputs (e.g. do decisions to split only depend on features of the environment, do they depend only on the partners actions, do they depend on joint
behaviours?) and whether they posit internal state such as beliefs about the partner or beliefs about the partner’s beliefs. (Online version in colour.)
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features, and the choice of training protocol, agent designers
may unintentionally distort the mechanisms they seek to
model. Further, owing to the opaque nature of some machine
learning methods, these distortions can be difficult to
recognize. When done with foresight, however, the pallet
of machine learning design choices can serve as fertile
ground for hypothesizing and testing alternative interaction
mechanisms (e.g. [8]). Here, I highlight how these issues
arise in the study of the moment-to-moment emotional
expressions and other non-verbal signals that are the
hallmark of face-to-face interaction.

The fundamental challenge in studying face-to-face inter-
action is that parties are interdependent. This observation
goes back at least as far as gestalt psychologist Kurt Lewin,
who argued that group interactions are best viewed as a
dynamic whole such that the change in the state of any
member changes the state of any other member [9]. Interde-
pendence arises even in seemingly one-sided interactions,
as when one person tells a story to a silent listener. As
Janet Bavelas et al. illustrated when testing her collaborative
theory of storytelling, the gaze and facial expressions of
active listeners serve to shape and co-construct the narrator’s
story [10]. Studies with embodied agents have replicated this
effect [11], highlighting the promise of this technology.

In seeking to explain how a narrator and silent listener can
co-construct a story, or how two negotiators can converge on a
mutually beneficial deal, a science of face-to-face interaction
must hypothesize mechanisms that underlie such interdepen-
dent behaviour and develop valid empirical and analytic
methods to contrast alternative hypotheses. Some research
emphasizesmechanisms that residewithin themindof eachpar-
ticipant. Forexample, social neuroscience seeks to find theneural
circuits that underlie social encounters [12] and cognitive psy-
chology posits abstract algorithms that ‘run’ in the brain
[13,14]. Otherwork has emphasizedmechanisms in the environ-
ment. For example, social and organizational psychology
investigates how roles, norms and rules shape how interactions
unfold [15], and embodied theories of cognition highlight how
organisms off-load cognitive work onto the environment
[16,17]. Some goes so far as to argue that social interaction
must be studied as a thing unto itself and cannot be reduced to
individual cognitive or environmental mechanisms [18,19].
To illustrate these possible perspectives, consider
figure 1, wherein two players, A and B, are engaged face-to-
face in a multi-round noisy Prisoner’s Dilemma [20]. The classic
Prisoner’s Dilemma creates a conflict between self-interest
(stealing all or most of a pot of money on the table) and collec-
tive interest (fairly dividing this money with one’s partner).
Players privately record their intention to split or steal
(though the choice is often labelled in less obvious terms),
and the reward in each round is determined by the players’
joint decision. The noisy version of the game allows for discre-
pancies between the intended and actual outcome owing to
unintended errors (e.g. Player A may choose to split the
money but, with some probability, a steal action is performed
by the game). This creates ambiguity as to a party’s true
intent, which might be resolved through communication
(verbal or non-verbal) and observation of a player’s pattern of
behaviour over time. Even without noise, ambiguity can arise
as to whether Player A stole out of a greedy disposition or as
retribution for Player B’s past behaviour, and human players
often fail to account for how their prior actions can determine
their partner’s response when resolving such ambiguity [21].

A science of face-to-face interaction should be able to
hypothesize mechanisms that explain how players coordinate
their actions to achieve win–win solutions (or successfully
exploit their partner) and discern if these mechanisms
demand complex cognitive machinery like Theory of Mind
[22], or if this complexity can be off-loaded to the environ-
ment or features of the interaction itself. Indeed, it is
possible to model human behaviour in the Prisoner’s
Dilemma by positing simple stimulus–response rules that
are triggered by observable features in the environment.

For example, Axelrod’s famous Tit-for-Tat mechanism
simply matches the previously observed action of the partner
(ignoring the player’s own behaviour). If Player A steals,
Player B steals in the next round. In one study of a large
corpus of face-to-face Prisoner Dilemma games, Tit-for-Tat
predicted player decisions with 70% accuracy, whereas a
machine learning model that incorporated a player’s history
of actions and facial expressions only improved this to 74%
[23]. Other work argues that interactional features (which
cannot be inferred from looking at one individual alone) are
crucial. For example, people have been argued to automatically
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mimic each other’s behaviour [24] or ‘catch’ each other’s phys-
iological state [25], and these patterns have been shown useful
for predicting interpersonal outcomes [26,27].

Such simple models are compelling but also ignore dec-
ades of research highlighting how behaviour often involves
rich mental representations, such as ascribing mental states
to other people to explain and predict their actions, or what
is called Theory of Mind [22]. Indeed, the noisy version of
the Prisoner’s Dilemma was developed to illustrate how
causal ambiguity (a defining characteristic of everyday
interactions) undermines the predictive value of simple
mechanisms like Tit-for-Tat [20]. Rather, theories of how
people interact in such tasks typically assume players are
fully intentional agents with Theory of Mind. For example,
Kelley [21] posited that each player has an a priori propensity
to share or steal—sometimes called their social value orien-
tation [28]—and simultaneously tries to infer their partner’s
propensity when making a decision. Thus, Player B might
see Player A’s facial expression of surprise, not as arising
from automatic mimicry or contagion, but as a communica-
tive assertion that Player A’s act of stealing was unintended
[29]. And more generally, interactions might unfold and
shift as players separately attend to their own and their part-
ner’s history of behaviour, transformed by their a priori biases
and beliefs about their partner’s biases.

Given this diversity of possible mechanisms, how can a
science of face-to-face interaction progress? In this paper,
I advocate a ‘learned-partner’ approach where hypothetical
mechanisms are learned from face-to-face human interactions
and then evaluated using experiments that incorporate these
learnedmechanisms into interactive social agents. Before intro-
ducing this approach, I first review why establishing causality
is difficult when parties are interdependent and highlight
the limitations of traditional experimental methods. While a
promising approach to address the challenges of traditional
methods, I will argue that these ‘learned-partners’ may incor-
porate design decisions that unintentionally distort the very
interactivity they seek to illuminate. I will discuss an ontology
of the (often implicit) theoretical commitments that agent-
based models incorporate and their implications for a science
of interaction. Articulating these commitments can help realize
the potential of learned-partners by guiding computer science
research and better contextualizing existing experimental find-
ings that rely on learning technology. While the fundamental
tension between interactive and experimental control is present
in any domain of social interaction, I approach these issues
from the perspective of behavioural game theory and the role
of non-verbal communication in shaping behaviour in the
type of economic games typically studied in that literature,
and the issues and solutions may play out differently in other
social contexts.
2. Establishing causality in interdependent actors
According to the traditional scientific method, several criteria
must be satisfied to establish a causal relationship [30]. First,
research must establish an association (e.g. Player B’s propen-
sity to steal is correlated with Player A’s propensity to steal).
Second, one must show temporal precedence (e.g. Player B only
stole after Player A stole first). Third, one must show the
association is non-spurious. An association is spurious if it is
due to changes in a third factor (e.g. both players’ propensity
to steal is shaped by the time of day, see [31]). Finally, most
scientists argue that a causal explanation is inadequate
unless evidence is provided for the specific mechanism that
creates a connection between variation in an experimental
manipulation and variation in the dependent measure (e.g.
the ‘cogs and wheels’).

Conventional ‘gold standard’ experimental methods
(such as randomized control trials or A/B testing) contain
several features that help establish these criteria. First, exper-
iments include at least two comparison groups that differ
according to some theoretically relevant factor (this difference
is called the independent variable). Second, some outcome
measure is defined (called the dependent variable). Third,
participants are randomly assigned to groups to rule out
spurious associations between the independent and depen-
dent variable. Many designs include additional measures
or manipulations to explicitly test mechanisms, such as show-
ing the relationship between independent and dependent
variables vanishes when a hypothesized causal mechanism
is controlled for [32] or manipulated via experimental
design [33]. As an example, an experiment could examine if
seeing one’s partner’s facial expressions (the independent
variable) impacts propensity to steal (the dependent
variable). Participants could play a 10-round Prisoner’s
Dilemma over Zoom and randomly assigned to playing
with the video on or off, and the number of times either
player steals could be the dependent measure. A hypo-
thesized mechanism might be that expressions shape the
perceived trustworthiness of the partner, which could be
measured via self-report after the game and then examined
via mediation analysis [34].

When it comes to the study of face-to-face interaction,
however, these features can be difficult to enforce without
distorting or disrupting the very mechanisms one wishes to
study. To establish the causal mechanisms underlying face-
to-face interaction, social psychologists overwhelmingly rely
on a small set of experimental methods. In group experiments,
two or more participants engage in a social interaction where
the collective is treated as the unit of analysis: i.e. independent
variables impact the entire group and dependent variables
are defined in terms of group behaviours or outcomes. In
non-contingent experiments, the individual is treated as the
unit of analysis: a participant engages with a social stimulus
that does not respond to (i.e. is not contingent upon) the
participant’s behaviour. This could simply involve asking a
participant’s impressions from watching a pre-recorded
video (so-called ‘spectator experiments’, see [35]), or a partici-
pant interacting with a confederate that produces scripted
behaviours. Contingent experiments (sometimes called ‘second
person’ experiments, see [12]) allow individual participants
to socially engage with some contingent stimuli (e.g. play
Prisoner’s Dilemmawith a Tit-for-Tat strategy), where designs
independentlymanipulate alternative contingentmechanisms.
I briefly review limitations of each.
(a) Group experiments
In group experiments, multiple individuals interact naturally
but aspects of the situation are manipulated to illuminate
the mechanisms underlying interdependent behaviour. For
example, by assigning complementary versus competitive
goals, one can show that negotiators become more synchro-
nized in posture and gesture [36], and infants and mothers
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exhibit more neural synchrony when they can engage in
mutual gaze, compared with a separate group of dyads that
can not [37]. It is tempting to conclude these group changes
tell us something of the nature of mechanisms within the
mind of each participant. For example, perhaps negotiators
mimic their partner when they are in a cooperative context
but fail to mimic when they find themselves in competition
[38,39]. Yet all one can firmly conclude is that the experimen-
tal manipulation is causing a change in the group. For
example, friends will show more neural synchrony than
strangers when watching a debate alone in their own home,
not because they respond to each other but because they
are interpreting the same environmental events with similar
goals [40]. Similarly, the fact that negotiators with comp-
lementary goals become synchronized could simply reflect
their reactions to a shared task.

The problem with inferring individual mechanisms from
group behaviour is that features of the interaction, like syn-
chrony, simply provide evidence of an association, but to
show causality it is necessary (though not sufficient) to estab-
lish temporal precedence. Thus, there is growing interest in
the use of dynamic systems methods to show temporal
precedence from dyadic data. For example, actor–partner
methods [41,42] or lag analysis [43] can show, for example,
that if Player A in the Prisoner’s Dilemma smiles, Player B
tends to also smile, with a small delay. This temporal pre-
cedence suggests Player A is the leader and Player B is
adapting their own behaviour in response. Using such
methods, Mendes and colleagues examined mixed-race
dyads and argued that African-Americans ‘catch’ the anxiety
of their European–American conversation partners, but not
vice versa, and thus concluded minorities are more vigilant
of, and more likely to adjust to their partners. While compel-
ling, the fundamental interdependence between partners
makes it hard to rule out spurious or misleading temporal
dependencies, leading others to the comfort ofmore traditional
designs when trying to make inferences about the individual.
(b) Non-contingent experiments
Non-contingent experiments allow firm inferences about the
individual by sacrificing the interdependence of natural face-
to-face interactions. Specifically, if we wish to claim that some
measure of Player A in the Prisoner’s Dilemma (our dependent
variable) is caused by some behaviour of Player B (our indepen-
dent variable), wemust ensure that the behaviour of Player B is
not, in turn, dependent on prior behaviours of Player A. Using
this approach, Van Kleef et al. [44] sought to establish that
expressions of anger by a negotiator cause concessions in the
negotiator’s partner. Each participant (Player A) engaged in a
negotiation with what they believed to be another participant
(Player B) over the Internet (figure 2a). Player A took turns
sending and receiving offers and text messages with Player
B. In fact, Player B was a scripted computer program that pro-
duced angry (or happy) statements on pre-programmed
rounds (e.g. ‘Your offer makes me angry’), and made conces-
sions according to a pre-programmed schedule (e.g. offer
$115 on round two and $120 on round three, etc.). The exper-
iment showed that participants concede more to an angry
opponent. VanKleef et al. also provided evidence for themech-
anism. They hypothesized Player B’s anger acts as a signal that
alters the participant’s belief in Player B’s willingness to
concede. This was supported via statistical mediation on
subjective reports about Player B’s limits.

Unfortunately, this increase in control over the individual
can destroy the very interactivity one hopes to study. For
example, one of the hallmarks of good negotiators is that
they can adjust to each other and co-construct mutually
beneficial solutions [45]. In a salary negotiation, both sides
might think they bring opposing interests, but through
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building trust and reciprocally revealing information about
their goals, they might discover that one side would welcome
a lower salary in exchange for a more flexible work schedule.
Study of such emergent processes is simply not possible if
one side is ignoring the other.

Perhaps a more fundamental concern for a science of inter-
action, non-contingent experiments lead people to believe they
are engaged in social interactionwhen, in fact, their attempts to
interact are ignored. Indeed, non-contingency may uninten-
tionally introduce some new factor to the experiment—e.g.
the lack of contingency could signal their partner is higher
in power [39] or unnatural [46], thus reducing ecological
validity. Indeed, studies in social neuroscience suggest
that people are highly sensitive to the contingency of their
partner’s behaviour and engage different neural mechanisms
in the presence of contingent partners [12,47]. Related to this,
non-contingent partners may also reduce some aspects of
experimental control. Specifically, non-contingent design may
fail to control subjective variables essential to understand inter-
dependent interactions as our expectations of a partner may
be formed relative to our own prior behaviour. For example,
imagine Player A has made an unfairly high offer. Player B’s
resulting anger seems understandable given Player A’s norm
violation, and we might expect Player A to repair this
norm violation by making a less ambitious subsequent offer.
Imagine instead, Player A has made a very generous offer
and Player B responds with anger. Now it is Player B’s behav-
iour that violates social norms. What this illustrates is the
meaning of Player B’s anger may be contingent on Player A’s
immediately preceding action [48]. But scripted agents seek
to control the act (e.g. expressing anger), but not the meaning
this act has for the observer.
(c) Contingent experiments
An alternative to non-contingent experiments, less common in
social psychology but popular in computer science and game
theory (e.g. [8,49]), is to introduce and independently manip-
ulate the contingency of partner behaviour. For example,
imagine a virtual human has been programmed to follow the
gaze of a participant while they are looking at different objects
on a table [50]. By independently manipulating alternative
mechanisms (e.g. follow gaze versus random gaze), these
designs seek to make valid causal inferences about the conse-
quences of interacting with specific mechanisms (e.g. joint
attention is needed to activate certain reward circuits in the
brain, see [51]).

Contingent designs have greater ecological validity for the
study of social interaction as they better approach the natural
interactivity of face-to-face interaction and they better control
themeaning of the partner’s action (e.g. a contingent negotiation
agent might show anger only if Player Amakes an unfair offer).
On the negative side, they suffer an opposite issue that can
reduce experimental control over the partner’s actions. To see
this, consider an experiment where participants play the
Prisoner’s Dilemma with a partner that mimics their facial
expressions—smiles when they smile; frowns when they
frown—versusparticipants that playwith apartner that engages
in counter-mimicry—frownswhen they smile; smileswhen they
frown [52]. Based on their propensity to smile, participants
are essentially self-selecting the expressions of their contingent
partner. While the design still allows valid conclusions
across experimental conditions (e.g. people smile more when
interacting with a partner that mimics their smiles), contingent
designs can amplify the variance arising fromparticipants’ indi-
vidual differences, requiring larger sample sizes and additional
experimental tests, such as statistically controlling for these
differences, to rule out spurious mechanisms. Practically
speaking, contingent designs may be more difficult for human
confederates to execute, allowing experimenter effects [53] to
creep into designs (wherein they unwittingly deviate from the
intendedscript).As a result, contingent designs typically involve
simple mechanisms (e.g. Tit-for-Tat) that, while improving on
non-contingent designs, may lack the nuance of actual human
behaviour and violate expectations that participants acquire
from years of socialization.

Figure 2b illustrates an example of a contingent design
examining the interactional function of facial expressions [48].
Participants were told they were playing a social task (the iter-
ated Prisoner’s Dilemma) with another participant whose
expressions were reflected on a graphical avatar. In truth, a
computer controlled the avatar’s expressions and actions, but
rather than following a deterministic script, the partner’s
emotional expressions and task decisions were contingent on
the participant’s actions. The automaton on the right of
figure 2b dictates the computer-controlled partner’s decisions
follow a Tit-for-Tat strategy: the computer-controlled partner
chooses ’split’ as long as the participant chooses ’split’, but
switches to stealing if the participant chooses to steal, and vice
versa. The expressions are similarly contingent: if the compu-
ter-controlled partner chooses ’split’ and the participant ’split’
(i.e. mutual cooperation), the computer will express joy; if the
partner chooses to steal, the computer will express anger.

Using such mechanisms, one can perform experiments
comparing how participants play against alternative contin-
gent mechanisms. For example, participants will cooperate
more with the expression policy that expresses regret after
successfully stealing from the participant (as shown in
figure 2b) compared with an expression policy that expresses
joy [48]. Perhaps most importantly, a focus on mechanisms
enables the study of interdependent behaviours and out-
comes found in group experiments, while maintaining
some measure of experimental control over the individual.
For example, in group experiments, Thompson [45] finds
that participants discover win–win deals by exchanging
information and concurrently adapting their offers to better
account for their partner’s interests, and this effect can be
replicated with contingent agents that adapt their offers to
the human participant [54]. Further, it is possible to create
more nuanced mechanisms to explore, for example, how
the discovery of win–win solutions is impacted by different
communication strategies—such as if a person is willing to
freely share their most important priorities, or if this sharing
should be contingent on sharing by the partner [54]—and
how it is shaped by hypothesized cognitive biases such as
the anchoring or the fixed-pie bias [55].
(d) Discussion
Group and non-contingent experiments are important tools for
uncovering the cogs andwheels of face-to-face interactions, but
each is problematic for those that seek to uncover the cognitive
and neural mechanisms that shape interdependent behaviour.
Dyadic experiments preserve the interdependent nature of
social interactions but only allowvalid conclusions about beha-
viours of the group. Non-contingent experiments allow strong
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experimental control over the individual, but in doing so, they
break the interdependent nature of face-to-face interactions.
Thus, they may undermine participants’ sense that they are
engaged in social interaction, lower ecological validity and
suffer the criticisms of ‘spectator experiments’ [12,35]. Contin-
gent experiments allow the study of interdependent behaviour,
but together with non-contingent experiments, often rely on
simple mechanisms that strip away much of the complexity
of actual human behaviour.
3. ‘Learned-partner’ experiments
One approach to hypothesizing complex interaction mechan-
isms is to learn them from examples of people engaged in
natural face-to-face interaction. Recent advances in machine
learning are revolutionizing the development of embodied
(and disembodied) interactive agents. This is evident with the
rapid advancement of conversational assistants like Alexa,
but the fields of Affective Computing and Multimodal Inter-
action are also making dramatic progress in recognizing and
predicting non-verbal interactional behaviours. Barquero and
colleagues [6] recently surveyed a large number of machine
learning approaches that analyse non-verbal behaviour in
face-to-face interactions. Such approaches develop models,
for example, of when and how listeners provide non-verbal
feedback to speakers [56,57], how non-verbal cues shape turn-
taking behaviour [58] and what pattern of behaviours predict
subsequent engagement or disengagement [59].

For the purpose of this article, these models can be seen
both as candidate mechanisms (i.e. the cogs and wheels) of
human interaction—as they were inferred through an analy-
sis of natural interactions—and as mechanisms that can be
incorporated into embodied agents to enhance the realism
and ecological validity of contingent experiments. This does
not come without challenges, as I will briefly revisit in the
conclusion. For example, models learned purely from behav-
iour are difficult to interpret and may discover mechanisms
that lack biological plausibility unless guided by theory
(e.g. using theoretically posited features or representations)
or ‘nudged’ to align with internal biological mechanisms
[60]. Setting these complications aside for now, I first illustrate
an example machine learning approach to modelling non-
verbal communication before taking a more critical look at
the assumptions and potential pitfalls of uncritically using
these models to study human interdependent behaviour,
including for example, if they misrepresent the necessity
of Theory of Mind in understand the function of such
non-verbal signals.

(a) An example learned-partner: active-listening agents
In Barquero et al.’s [6] review of non-verbal prediction
models, by far the most common area of progress is simulat-
ing active-listening behaviours such as ‘backchannel’
feedback and smooth turn-taking found in conversations.
Backchannels are verbal (e.g. yes), vocal (e.g. uh-huh) and/
or gestural (head movements, eyebrows movements, smiles)
produced by listeners, and associated with ‘backchannel-invi-
tation cues’ produced by speakers, such as gaze patterns,
pauses and changes in vocal prosody [61]. Backchannels
convey the listener is actively engaged and how they are eval-
uating the speaker’s words. Speakers adjust to this feedback,
thus speaker and listener are interdependent partners that co-
construct the conversation [10,62]. Such behaviour has been
studied under many names, including ’rapport’ [63], ’social
resonance’ [64,65], ’interpersonal adaptation’ [66], ’entrain-
ment’ [67], ’interactional synchrony’ [68], ’social glue’ [69],
’immediacy behaviours’ [70] and ’positivity resonance’ [71].
From an interaction standpoint, these behaviours help to pro-
mote more effective and persuasive communication (e.g.
[72,73]) and increase subjective feelings of rapport [63].

Figure 3 illustrates one approach to modelling active listen-
ers from our research group [74,75]. As a starting point, we
collected a corpus of quasi-monologues between pairs of par-
ticipants (one speaker told a story and the listener was
instructed not to speak but could freely communicate by
non-verbal behaviour such as nods or smiles). From this, we
created a set of speaker-only videos with each speaker facing
a camera (see ‘human speaker’ in figure 3). Each of these
videos was presented to multiple ‘imagined listeners’ from a
separate group of participants. These were instructed, similar
to Schilbach et al. [76], to imagine they were in a real social
interaction and behave accordingly. Using multiple imagined
listeners reveals variability in listener behaviour. For example,
certain cues of the speaker might signal a request for feedback
(e.g. pause briefly and look at the listener), but differences in
the listener’s engagement or personality might impact if they
respond to this signal. Thus, learning algorithms were trained
to predict a measure of consensus across all of the imagined
speakers such that the model would predict a high likelihood
of feedback where there was strong consensus. See the work
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of de Kok & Heylen for a similar approach [77]. Models
of backchannelling, turn-taking and smilingwere learned inde-
pendently, though more recent work emphasizes the benefit of
training these models concurrently (e.g. [57]).

Several studies have examined how people interact with
embodied agents that incorporate active-listening models
(both learned and hand-crafted). Our early research with a
hand-crafted model found that participants are sensitive to the
contingency of listener backchannelling. Participants self-
reported more rapport when interacting with a virtual human
that generated nods that were contingent on their own speech
comparedwithayoked condition [78]where theysawnods contin-
gent on a previous participant’s speech [79]. Behaviourally, they
showedmore self-disclosure [79,80], more fluent speech [79–81],
moremutual gaze [81] and improvement inperformancewhen a
contingent agent of opposite sex supervised a maths exam
[82,83]. The interactional consequences of learned models have
been less rigorously examined—it is more common just to
report fit to data or evaluate pre-recorded interactions simulated
by themodel (e.g. [84])—but a few true interaction studies show
similar results. For example, Park and colleagues incorporated a
learned backchannel prediction model into an embodied robot
and found children gaze significantly more and speak with
higher energy to a contingent robot [85].
(b) A critical analysis of active-listening agents
It is tempting to view learned models as black boxes that take
features of the interaction as input and, as the field progresses,
produce ever-more accurate simulations of real human behav-
iour. And indeed, just considering active-listening agents,
there have been considerable advances in machine learning
approaches moving from supervised machine learning tech-
niques which require costly hand annotation [86] to semi-
supervised algorithms which can augment human annotation
with massive amounts of unlabelled data [84]. But going back
to figure 1, it is important to consider the inputs and internal
representations these models consider.

Most early andmany contemporary active-listeningmodels
learn a mapping from the features of the speaker to behaviours
of the listener. For example, a simple learned model might
suggest that an embodied agent should nod when the speaker
pauses for more than 50 ms while gazing at the listener. Such a
model treats the speaker as part of the visible environment (it
serves as a simple condition–action rule that does not impute
any mental states to the speaker) and ignores any internal
state of the listener when generating a response. By contrast,
the multi-listener corpus collected by Huang and colleagues
in figure 3 begins to open up consideration of variance in the
listener’s behaviour. For example, we examined how listener
feedback varies with several personality types including the
Big Five (extraversion, agreeableness, openness, conscientious-
ness, and neuroticism), self-consciousness and self-monitoring.
We found that these traits are associated with different patterns
of listening behaviour [87]. Thus, by incorporating listener fea-
tures, it now becomes possible to create different contingent-
listeners that approximate different personality types, and one
could potentially examine if human speakers recognize or
behave differently towards these different mechanisms. It also
becomes possible for an automated speaker to use such a
model to recognize individual differences in human listeners
(by observing patterns in their listening behaviour) and adapt
its behaviour to match the human’s ‘type’ [88].

These different learning approaches (sometimes un-
intentionally) make claims about alternative mechanisms
underlying face-to-face interaction. For example, consider the
concept of Theory of Mind [22], illustrated in figure 4a. The
ability to attribute and predict mental states of others, and
act in accordance with these predictions, has been argued to
be one of the hallmarks of human social cognition. Figure 4a
illustrates a ‘cognitive hierarchy’ [89] showing different levels
of cognitive sophistication. At the lowest level, agents simply
respond to features of the environment. For example, in the
Prisoner’s Dilemma, an agent that follows a fixed policy (e.g.
splits 80% of the time and steals 20% of the time) is referred
to as a Level-0 agent. Level-0 agents might differ in how they
respond to the environment in what is called their ‘type’ in
the Theory of Mind literature. For example, referring to
figure 1, Level-0 agents might vary in their ‘propensity to
split’. A cooperative type might split 80% of the time, whereas
a competitive type might split only 20% of the time. Level-1
agents have the ability to attribute a type to their partner and
respond contingently based on this attribution.

These distinctions matter because research in social neuro-
science shows that people exhibit sensitivity to their partner’s
level of Theory of Mind. For example, Yoshida and colleagues
[90] hadparticipants playa game called the StagHuntwith syn-
thetic agents that implemented different levels of reasoning (in
the Stag Hunt, players have the opportunity to cooperate and
hunt a stag for large reward or act independently to hunt rab-
bits). Participants adjusted their behaviour based on the
estimated level of their partner’s sophistication, and these esti-
mates correlated with activity in participants’ dorsolateral
prefrontal cortex, suggesting that the alternative mechanisms
realized in computer partners lend insight into the neural
processes underlying interdependent behaviour.

Distinctions like level of Theory of Mind are routinely dis-
cussed in research on cognitive tasks like the Prisoner’s
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Dilemma but are almost universally absent from work on
non-verbal interactive behaviours like active listening. Yet
the distinctions apply to active-listening agents as well. For
example, all the active-listening agents recently reviewed by
Barquero and colleagues [6] produce backchannel actions
based on observable features of human speakers without
attributing mental state to the human speaker. This is equiv-
alent to a Level-0 agent, and as we noted in our multi-listener
work [87], listeners can have different ‘types’ (e.g. extroverted
or introverted listeners). Experiments that study how listen-
ing agents change human behaviour make causal inferences
by manipulating the listening agent’s type (e.g. typically
with the blunt manipulation of contingent feedback versus
non-contingent feedback) and show that participants are
acting as Level-1 actors (i.e. they attribute a mental state
such as ‘engagement’ to the listener and adjust their
behaviour by disclosing more and speaking more fluently).

Yet it is reasonable to posit that even silent listeners engage
in higher-order Theory of Mind. For example, backchannelling
has been argued to function in conversations as a signal to the
speaker that the listener is attentive and thereby fosters rapport
and mutual understanding. If this is indeed the function, it
could benefit listeners to condition their behaviour on beliefs
about the speaker: e.g. infer if the speaker believes the listener
is truly listening, and attenuate or accentuate backchannels
accordingly. From a theoretical perspective, several social–
functional accounts of non-verbal expressions imply a role
for the sender’s beliefs about the receiver. Tickle-Degnen &
Rosenthal’s [63] work on rapport argued backchannels will
be less common among close friends where common ground
can often be assumed. Parkinson argued anger often intensifies
until the signal is registered [91], and Leary and colleagues pro-
vide evidence that the expression of embarrassment is
conditional on beliefs about observers [92]. As illustrated in
figure 4b, Jin Joo Lee used this line of reasoning when imple-
menting one of the few active-listening agents that realizes
Theory of Mind [88]. Her models use Bayesian Theory of
Mind [93] to attribute beliefs to the speaker. Specifically, the lis-
tener’s model attends to the speaker’s gaze to predict if the
speaker believes the listener is actually listening (a Level-2
Theory of Mind), and adjusts listening behaviour accordingly.
A robot listener that incorporated this model was viewed as
more attentive than one without the higher-order model.
4. A partial ontology of learned-partners
Even for something as simple as modelling active-listening
behaviours, there is a bewildering array of machine learning
models, and if incorporated into learned-partners, partici-
pants could be presented with a range of mechanisms. For
computer scientists designing these methods, these variations
are often viewed as intermediate steps on the way to creating
high-fidelity simulations of ‘human behaviour’ (as though
there is a single gold standard to be achieved). For social
psychologists and neuroscientists interested in using these
methods, these variations present opportunities to manip-
ulate social interaction, and the models in themselves may
serve as hypothesized cognitive mechanisms. Perhaps more
importantly, encouraging social scientists to understand and
critique these learned models might profit their development,
for example, by helping shift designers away from seeking a
single gold standard and towards appreciating that different
mechanisms are possible, even within the same individual,
depending on the nature of the situation and beliefs about
the partner.

One way to facilitate this interdisciplinary dialogue is to
clarify the sometimes-unstated design choices that underlie
different machine learning approaches. Several broad distinc-
tions between models can be made. For example, do models
allow continuous adjustment—e.g. reconsider behaviour
every 30 ms [94]—or adjustment only at discrete event bound-
aries—e.g. only after a speaker completes an utterance [57] or
when they produce discrete backchannel-inviting cues [88].
Another distinction concerns which inputs help determine
contingent responses. For example, some models only learn
contingencies to non-verbal cues [95], whereas others incorpor-
ate lexical information [96]. Some models only focus on the
speaker whereas others consider how the listener’s prior
behaviour might have shaped the speaker’s responses [57].

While all these distinctions have theoretical implications,
here I emphasize two key distinctions that seem especially
relevant for resolving contemporary debates on the nature
of face-to-face interaction [18]. First is whether one person’s
non-verbal expressions are conditional on the beliefs of the
partner (i.e. depend on a Theory of Mind), and second is
whether non-verbal contingencies can be uncovered simply
through observation or if they must be learned by an agent
directly engaged in reward-seeking behaviour [12,97,98].
(a) Theory of Mind
As discussed above, learning models can differ based on
whether they simply learn regularities in surface behaviours
(e.g. an agent should nod or steal from their partner when
certain features are observed in the environment) or whether
they explicitly represent the beliefs and goals of social actors.
For example, Huang’s active-listening agent in figure 3 learns
condition–action rules without imputing mental state to the
speaker or listener. By contrast, Lee’s Bayesian Theory of
Mind approach in figure 4b hypothesizes that active listeners
hold second-order beliefs about their partner (e.g. does the
speaker believe I am listening to them?).

Here I shall not review the extensive literature on
approaches to learning Theory of Mind models, but rather
point readers to a recent and extensive review of such methods
and their use in social neuroscience experiments [8]. Three
points are worth raising about this research. First, alternative
models can be viewed as making theoretical commitments
about the nature and complexity of social mechanisms, high-
lighting their potential as a source of hypothetical interaction
mechanisms in learned-partner experiments. Second, just
because a problem can be solved with high levels of Theory
ofMind does notmean that people necessarily use thesemech-
anisms in natural interactions. For example, as discussed in §2,
finding win–win solutions in negotiation is often assumed to
require Level-1 reasoning: i.e. people form beliefs about their
partner’s negotiation priorities by exchanging information
[45]. Yet other researchers have argued that win–win solutions
can emerge through interaction without explicit Theory of
Mind. This can occur if Level-0 actors iteratively react to the
offer on the table [99,100]. Indeed, artificial intelligence (AI)
negotiation agents without Theory of Mind often exceed the
performance of those with this capacity [101]. One solution
to this debate is to contrast these perspectives via learned-part-
ner experiments. Third, none of the models or domains
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reviewed by Rusch’s review of Theory of Mind models and
domains considers the role of non-verbal communication,
suggesting an opportunity for research, as, for example, Lee’s
second-order active-listening agent shows that higher-order
models clearly have relevance to explaining the function of
non-verbal communication in face-to-face interaction

.

(b) Learning objective: fit to existing data or maximize
social reward?

Machine learning algorithms are optimization algorithms.
They attempt to find a model that optimizes some objective
function, such as minimizing prediction error or maximizing
some measure of goal attainment, such as cumulative reward.
When a learned model is used to drive the behaviour of an
embodied agent, the agent will act as though it is trying to
optimize this objective. In essence, the learning objective is
the goal of the learned-partner, even if this goal is implicit.
This choice touches on several central debates in theories of
face-to-face interaction, such as if one can learn to interact
simply by being a spectator or if acting in the world (or at
least a simulation) is required [12,97].

All the active-listening agents described above adopt a
spectatorial view of learning: their objective is to maximize
fit to an existing corpus of interaction data (i.e. minimize
error in the predicted listener responses). For example, the lis-
tening agent in figure 3 uses conditional random fields to
predict backchannel probability as a function of speaker fea-
tures. Though the model could be used in a social task, such
as eliciting self-disclosure in a clinical interview [102], any
success or failure on this task does not trickle back to shape
the learned model. Similarly, Lee et al.’s Bayesian Theory of
Mind approach, even though it argued conceptually that
backchannels achieve a social goal in conversations, trained
the model to fit an existing storytelling corpus [88]. Both
algorithms seek to maximize fit-to-data though they differ
in Theory of Mind: Huang’s approach learns essentially con-
dition–action rules without imputing mental state, whereas
Lee et al.’s approach tries to improve fit by hypothesizing
explicit beliefs and belief-update functions that would best
explain the observed data (see also [103]).

Rather than optimizing fit to pre-existing data, algorithms
such as multi-agent reinforcement [104] or belief learning
[105], optimize models by directly interacting with other
social actors (perhaps in simulation) in search of rewarding
social outcomes. It is assumed that the agent is provided
some reward from the environment, such as the value of a
final deal in a negotiation [106], or a participant’s observed dis-
closure when interacting with a listening agent (though some
approaches allow intrinsic rewards such as satisfying curiosity,
[107]). Such agents learn via exploration to discover howaction
sequences contribute to reward, but this is problematic in the
multi-agent context as reward depends on the interaction
with other interdependent partners. This is typically handled
by creating simulated users (i.e. programs that approximately
act like people) or self-play, where two or more agents are
trained against one another [108]. Besides potentially improv-
ing performance, sometimes to superhuman levels [109],
some have argued that the solutions that emerge from self-
play lend insight into face-to-face interaction, such as how
language evolves as amechanism to facilitate goal achievement
in social contexts [110].
Each of these approaches raises potential issues for learned-
partner experiments. Learning from observation diverges
theoretically from views that emphasize the importance of
learning from interaction [12,97]. Practically, the learned
models may not generalize to actual interactions (as when
participants deviate from interaction trajectories found in
the corpus). Thus, using these models for learned-actor
experiments might inadvertently misalign with participants’
expectations of actual contingent behaviour. Multi-agent
reinforcement learning approaches may learn unnatural pol-
icies for different reasons as they typically train against other
non-human actors and their behaviour depends on how the
reward function is defined. As to the former issue, co-learning
allows agents to discover social conventions that allow them to
coordinate, but these can diverge significantly from human
norms. For example, Lewis and colleagues used co-learning
to discover effective negotiation tactics, but in doing so,
agents discovered oddconventions such as saying ‘Iwant’mul-
tiple times to convey stronger interest [111,112]—though
emerging approaches aim to mitigate these effects [113].
An equally important concern is that designers typically
optimize models to objective rewards but human decision-
making involves subjective judgements [114]. For example,
typically negotiation approaches reward agents for maximiz-
ing the individual financial value of the negotiated deal, but
human negotiators attend to subjective concerns like how
well they did compared with their partner, was the process
fair, did they want to establish a long-term relationship, etc.
[115,116]. Thus, the reward function constrains an agent’s
‘type’ though most learning approaches assign a single value
function unmotivated by psychological or theoretical consider-
ations. On the positive side, the reward function becomes a
source of variability that could be used to learn alternative
interaction mechanisms.
(c) Discussion
Table 1 illustrates the partial ontology of learned-partner
approaches through three active-listening models. Most
learned-partner approaches to non-verbal communication,
such as Huang et al. [74], use Level-0 models. By contrast,
Ding and colleagues [117] developed a Level-1 model of how
clinicians backchannel during a neurocognitive assessment
that conditions its response frequency on the speaker’s ‘type’,
which is inferred during early stages of the interaction, and
Lee et al. [88] designed a Level-2 model that conditions
responses on whether the listener believes the speaker believes
the listener is listening. All three models were trained by max-
imizing fit to prior observations and I am unaware of
approaches that acquire active-listening behaviours by learning
in the context of reward-seeking behaviour. Rather these
approaches have been restricted to higher-level cognitive
tasks such as learning dialogue strategies [108,118] or playing
abstract games like poker [109]. The three models differ as to
whether they do continuous or discrete prediction. Whereas
Huang’s model does continuous prediction, Ding’s responds
at utterance boundaries and Lee’s responds to pre-defined lis-
tening cues. Only Lee’s model is ‘self-aware’ in the sense that it
considers the listener’s prior behaviour whenmaking new pre-
dictions. In terms of evaluation, Huang’s model was used to
generate simulated interactions that were judged by third
party observers, whereas Ding’s and Lee’s models were
tested in interaction with an embodied agent.



Table 1. Examples of how four learned embodied agents differ in design.

Huang et al. [74] Ding et al. [117] Lee et al. [88] Biancardi et al. [119]

mind level Level-0 Level-1 Level-2 Level-2

learning obj. fit-to-data fit-to-data fit-to-data expected reward

segmentation continuous end-of-utterance eliciting cue end-of-utterance

self-aware no no yes yes

evaluation third person with hand-crafted

control

first person with human

control

first person with Level-0

control

first person with Level-0 and

random control
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Finally, though not an active-listening agent, table 1
includes the work of Biancardi and colleagues [119] to illus-
trate an embodied agent that learns non-verbal signals
while directly engaged in reward-seeking behaviour. Loosely
based on Burgoon et al.’s Interaction Adaptation Theory [66],
the agent learns to manage its impression while speaking. It
relies on models trained offline to predict how warm or com-
petent (in the sense defined by the stereotype content model:
[120]) a human speaker finds a robot to be. Then during a live
interaction, the robot is assigned an impression management
strategy (e.g. appear competent) and learns how to control its
non-verbal cues to convey this impression. The approach
relies on the predicted beliefs of the human listener as the
reward for a reinforcement learning algorithm. Self-reported
impressions of participants interacting with this strategy,
versus a non-contingent strategy or a random control, suggest
the approach has promise.
5. Conclusion
The benefit of learned-partners for a science of face-to-face
interaction ultimately depends on whether machine learning
provides insight into the mechanisms that underlie interde-
pendent behaviour. On the one hand, I have argued that
alternative machine learning approaches can be seen as a
potential tool for hypothesizing alternative mechanisms—
by training algorithms under different processing assump-
tions, the resulting learned mechanisms can be seen as
specific proposals for how the observed social phenomenon
emerges. For example, can win–win negotiated solutions be
discovered by an algorithm that only fits to observational
data or does this require learning through (perhaps simu-
lated) social interaction? On the other hand, learned-
partners can address some of the methodological limitations
of dyadic and non-contingent experiments for the study of
interdependent behaviour. By incorporating learned mechan-
isms into embodied agents, participants can act with realistic
and contingent simulations of human behaviour that still
support controlled experiments.

To date, this project is still in its infancy. Many of the
assumptions underlying machine learning approaches are
not clearly articulated, especially in terms understandable for
those outside the field. Within the domain of non-verbal com-
munication, most experimentation of learned-partners focuses
on a small class ofmachine learningmethods that avoidTheory
of Mind reasoning and learn as passive observers (i.e. fitting to
examples of people interacting with each other) rather than
learning while engaged in actual interactions. Experiments
using learned-partners to study non-verbal communication
typically use blunt manipulations and measures, such as
whether the agent is more natural or evokes better social out-
comes than a non-contingent agent. Yet as surveyed by
Rusch and colleagues [8], this approach has proven fruitful in
hypothesizing and testing interaction theories in more cogni-
tive tasks, and these successes can serve as a road map for
informing a science of face-to-face interaction.

This paper has highlighted how learned-partners can dis-
tort natural interactive processes, but this is certainly not the
only issue surrounding the use of machine learning methods
in social science research. Machine learning is sometimes her-
alded as a way to address the failure of many laboratory
findings to generalize to real-world settings. For example,
some have argued an undue focus on six theoretically posited
emotional expressions impeded progress in facial expression
research and that bottom-up analysis of natural interactions is
an overdue antidote [121,122]. Indeed, in some settings, deep
learning algorithms with minimal assumptions can ‘redis-
cover’ theoretically posited mechanisms. For example, deep
convolutional neural networks have been found to process
images similar to how images are processed in the human
visual cortex (e.g. [123]). By analogy, there is hope that
learned-partners will recover the very same solutions enacted
by people, but this hope needs to be taken with considerable
caution. Deep learning methods are notoriously hard to inter-
pret and may settle on theoretically implausible mechanisms
[124]. Simpler learning approaches are interpretable but often
rely on theoretically derived features and representations.
Together, such arguments demonstrate the need for strong
partnerships between psychological and computational
research. Using software to study the mind is hardly a new
idea [14], but growing interdependency between compu-
tational and social research is a central feature of the
emerging science of face-to-face interaction.
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