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Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β 
(TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. 
Recently, BMP signaling has been found to have diverse effects on different types 
of tumors. In this review, we summarized the effects of BMP signaling on gyneco-
logic cancer. BMP signaling has tumor- promoting effects on ovarian cancer (OC) and 
endometrial cancer (EC), whereas it has tumor- suppressing effects on uterine cervi-
cal cancer (UCC). Interestingly, EC has frequent gain- of- function mutations in ACVR1, 
encoding one of the type I BMP receptors, which are also observed in fibrodysplasia 
ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the 
relationship between BMP signaling and other gynecologic cancers. Tumor- promoting 
effects of BMP signaling in OC and EC are dependent on the promotion of cancer 
stemness and epithelial– mesenchymal transition (EMT). In accordance, BMP receptor 
kinase inhibitors suppress the cell growth and migration of OC and EC. Since both 
cancer stemness and EMT are associated with chemoresistance, BMP signaling acti-
vation might also be an important mechanism by which OC and EC patients acquire 
chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients 
even if they become resistant to standard chemotherapy. In contrast, BMP signal-
ing inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have 
not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, 
depending on the types of gynecologic cancer. Therefore, targeting BMP signaling 
should improve the treatment of patients with gynecologic cancer.
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1  |  INTRODUC TION

Bone morphogenetic proteins belong to the TGFβ superfamily 
(Figure 1A). BMPs perform crucial roles in organogenesis.1 BMP li-
gands bind to type I and type II cell surface kinase- associated recep-
tors.1 Each BMP ligand has a different binding affinity to these two 
receptors (Figure 1B). BMP antagonists such as Noggin and Gremlin 
block ligand binding2 (Figure 1C). The coordination of BMPs and 
antagonists is important for embryonic development and disease 
progression.2 For instance, concentration gradients of BMP4 and 
Noggin define the dorsoventral patterning of vertebrate embryos.3 
A Gremlin– BMP axis modulates renal fibrosis in humans.4 Type 
I receptors consist of ACVRL1, ACVR1, BMPR1A, and BMPR1B, 
whereas type II receptors consist of ACVR2A, ACVR2B and BMPR2 
(Figure 1B). Upon ligand binding, type II receptors phosphorylate 
and activate type I receptors to induce SMAD1/5 phosphorylation, 
as well as the activation of non- SMAD signaling pathways, includ-
ing phosphatidylinositol- 3′- kinase (PI3K)/AKT and MAP kinase 
pathways (Figure 2). Phosphorylated SMAD1/5 translocate to the 
nucleus and activate transcription after forming complexes with 
SMAD4 (Figure 2). The ID family genes are well known downstream 
targets.5– 7 SNAIL and SLUG, EMT transcription factors, are also in-
duced after BMP stimulation in OC and EC cells.8,9

Endothelial cell differentiation, as well as arterial/venous and 
lymphatic specification, require BMPs.10 As ACVRL1 is mainly ex-
pressed on endothelial cells among type I receptors, BMP9 and 

BMP10 with high affinity to ACVRL1 play pivotal roles in angiogen-
esis.11 Accordingly, the loss- of- function ACVRL1 mutation causes 
hereditary hemorrhagic telangiectasia (HHT).10 A loss- of- function 
mutation of GDF2 encoding BMP9 is also the cause of HHT.10 
Furthermore, a BMPR2 loss- of- function mutation causes pulmonary 
arterial hypertension (PAH).10 Because both BMP9 supplementation 
and blockade improve PAH in a rodent model,11 the relationship be-
tween BMP signaling and PAH remains to be elucidated. Several an-
giogenesis inhibitors, impinging on the vascular endothelial growth 
factor (VEGF) pathway, have been used to treat cancer patients.12 
However, they have shown limited survival benefits. Dalantercept, 
an ACVRL1- Fc fusion protein that blocks BMP signaling, has been 
developed as a novel angiogenesis inhibitor. Unfortunately, dalan-
tercept has also displayed limited efficacy in several types of cancer, 
including endometrial and ovarian cancer13 (Table 1).

Gynecologic cancer, which includes ovarian, endometrial, uterine 
cervical, vaginal, and vulvar cancer, has increasing importance be-
cause it threatens fertility. The ovary, fallopian tube, uterus, and the 
upper third of the vagina originate from Müllerian ducts. In contrast, 
Müllerian ducts regress in male fetuses due to apoptosis induction by 
anti- Müllerian hormone (AMH), which also belongs to the TGFβ su-
perfamily and shares type I receptors with BMPs.14 Loss- of- function 
mutations of AMH and AMHR2 encoding type II receptor cause per-
sistent Müllerian duct syndrome (PMDS).14 PMDS patients retain both 
male and female reproductive organs, from which malignant degener-
ation occurs. As gynecologic cancer arises from Müllerian duct- derived 

F I G U R E  1  BMPs belong to the TGFβ superfamily. (A) The TGFβ superfamily is mainly divided into three subfamilies including TGFβ, BMP, 
and the Activin family. Other TGFβ family proteins also exist such as Nodal and anti- Müllerian hormone (AMH). (B) BMP ligands, classified 
into three groups, have different binding affinities for type I and type II receptors. (C) BMP antagonists are shown based on sequence 
similarity.
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organs, AMH has been anticipated to function as a tumor suppressor. 
Consistently, several studies have shown that AMH suppresses the 
proliferation of ovarian, endometrial, and uterine cervical cancers.15– 17 
Conversely, recent reports have shown that AMH promotes gyneco-
logic cancer cell growth and migration,18 and several anti- AMHR2 an-
tibodies have been demonstrated to exert tumor suppressive function 
on OC.19,20 As BMPs share type I receptors with AMH,1 BMP signaling 
may have an influence on gynecologic cancer.

In clinical settings, BMP ligands have been applied to patients, 
especially with orthotopic bone defects. Among BMP ligands, BMP2 
is the most widely used. The Infuse™ bone graft (Medtronic, Dublin, 
Ireland), which contains recombinant human BMP2, is approved for 
anterior lumbar interbody fusion, acute tibial fractures, and maxillofa-
cial reconstructions as an osteogenic device.21– 23 The OSTEOGROW, 
another osteogenic device, is based on recombinant human BMP6.24 
Clinical trials are underway for this device.24 Conversely, BMP inhibi-
tors have also been developed for diseases with BMP signaling activa-
tion, including fibrodysplasia ossificans progressiva (FOP) and diffuse 
intrinsic pontine glioma (DIPG) with a gain- of- function ACVR1 muta-
tion.25 Several studies have shown the efficacy of ACVR1 inhibitors in 
preclinical models of FOP and DIPG.26– 28 Like ACVR1 inhibitors, most 
of the BMP inhibitors are BMP type I receptor kinase inhibitors.25

In this review, we focus on BMP signaling in gynecologic cancer. 
This knowledge will help developing a new molecular- targeted ther-
apy for gynecologic cancer patients.

2  |  BMP SIGNALING AND GYNECOLOGIC 
C ANCER

2.1  |  BMP signaling and ovarian cancer

Among gynecologic cancers, the relationship between BMP sign-
aling and OC has been best studied. OC is the most lethal gy-
necologic cancer as it disseminates via EMT.29 High- grade serous 
carcinoma (HGSC) is the most common subtype, accounting for 
70% of OC. Although HGSC is highly sensitive to chemotherapy, 
it frequently relapses. The mechanism of recurrence is unclear, 
but the involvement of cancer stem cells has been suggested.30 
The Cancer Genome Atlas (TCGA) dataset analyses revealed that 
mRNA expression for most BMP ligands and receptors increased 
and that high BMPR2 and BMP7 mRNA expression levels corre-
lated with poor survival in OC patients.8,31 BMP2 expression 
was detected by immunohistochemistry, especially in HGSC with 
psammoma bodies.32 Both BMP2 and BMP9 proteins were more 
abundantly expressed in OC than in normal ovarian surface epi-
thelium.33,34 High BMP2 protein expression was associated with 
poor survival in OC patients.35 Furthermore, secretion of BMP4, 
as well as BMP2 from OC cells was detected, suggesting that BMP 
signaling is intact in OC.5,8 In accordance, SMAD5 phosphoryla-
tion was confirmed by immunohistochemical staining and corre-
lated with poor prognosis,36 indicating the tumor- promoting role 

F I G U R E  2  Overview of BMP signaling. Upon ligand binding, type II receptors phosphorylate and activate type I receptors to induce 
SMAD1/5 phosphorylation, as well as in the activation of certain non- SMAD signaling pathways. Phosphorylated SMAD1/5 translocate to 
the nucleus and activate transcription after forming complexes with SMAD4. TF, transcription factor.
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of BMP signaling. In addition, the secretion of BMP2 and BMP4 
has been found in carcinoma- associated mesenchymal stem cells 
(CA- MSCs) as well as OC cells.37 A positive feedback loop was 
identified between CA- MSC- derived BMP4 and OC- secreted 
Hedgehog (Figure 3A).38

In mice, double knockout of SMAD1/5, BMP- specific SMADs, 
caused ovarian granulosa cell tumors.39 PDGFA was produced by 
SMAD1/5 double knockout granulosa cells by antagonizing with 
Sp1 on its promoter.40 Therefore, not only suppression of BMP sig-
naling but also the activation of PDGF signaling may be involved 
in the development of ovarian granulosa cell tumors. BMPR1A/1B 
double knockout mice also developed ovarian granulosa cell tu-
mors, suggesting the tumor- suppressing function of BMP signaling 
in these tumors.41 However, BMP signaling has been reported to 
have tumor- promoting roles in other OCs. Although BMP2 was ini-
tially reported to inhibit the colony formation of OC cells,42 recent 
studies have shown that it promotes OC cell growth.8,36 This dis-
crepancy may be attributed to its concentration. BMP2 suppressed 
OC colony formation at 1000 ng/ml, a supraphysiological concen-
tration.42 Using high concentrations of recombinant growth factor 
preparations carries the risk that the observed effects are due to 
contamination in preparation of another potent growth factor. Such 
contamination has been observed, e.g., in preparation of GDF15.43 
In contrast, 20 ng/ml of BMP2 enhanced OC proliferation.8 BMP2 
was indispensable for OC organoid culture and Noggin, a BMP an-
tagonist, attenuated initial organoid formation44 (Table 2). Similarly, 
autocrine BMP9 promoted OC proliferation in an ACVR1- dependent 
manner.34,45 Notch1 signaling activation was also involved in BMP9- 
stimulated OC growth.45 We have identified that BMP2- induced OC 
proliferation was attributed to c- KIT induction.8,46 Since c- KIT is a 
well known OC- associated stem cell marker,47 BMP signaling could 
enhance OC stemness. Accordingly, BMP2 promoted OC sphere for-
mation.8 Interestingly, RNA sequencing revealed that BMP2 induc-
tion of c- KIT was partially triggered by FN14, a tumor necrosis factor 
(TNF) receptor superfamily46 (Figure 3A). FN14 has been shown to 
increase in OC and to promote OC cell migration and invasion.48,49 
Therefore, a combination of BMP/c- KIT/FN14 signaling blockade 
might be efficient for the treatment of OC patients.

BMP signaling drives EMT in OC. Both BMP2/4 induced SNAIL 
and SLUG, EMT transcription factors, in OC cells.8,35,50 Accordingly, 
E- cadherin expression was suppressed by BMP2/4 stimulation, 
leading to EMT- like morphological changes.8,50 Consequently, both 
ligands enhanced OC cell migration and invasion8,50 (Figure 3A). 
Chordin, a BMP antagonist with decreased expression in OC, con-
versely, inhibited migration and invasion51 (Table 2). Indeed, high 
BMP2 expression correlated with lymph node metastasis,52 suggest-
ing that BMP signaling triggers OC metastasis through EMT induc-
tion. We have proved that BMP2- enhanced migration and invasion 
were dependent on SLUG induction.8 Furthermore, SLUG induction 
was FN14 dependent, as was c- KIT46 (Figure 3A). Consistently, FN14 
knockdown inhibited BMP2- induced cell migration.46 Considering 
that FN14 is a downstream effector of BMP signaling, dual BMP/
FN14 signaling inhibition might efficiently suppress OC metastasis. TA
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As an FN14 blocking antibody has been developed,53 it may act ef-
fectively for OC patients with activated BMP signaling.

At present, a combination of platinum- based carboplatin and 
paclitaxel is a first- line chemotherapeutic regimen for OC. Once 
patients become resistant to platinum- based chemotherapy, only 
limited treatment options remain. As the promotion of cancer 
stem cells and EMT are related to resistance, novel agents limiting 
the numbers of cancer stem cells and the potency of EMT may be 
useful.29,30 As previously described, BMP signaling modulates both 
stemness and EMT of OC.8 Thus, BMP signaling activation might 
lead to chemoresistance. Accordingly, carboplatin, a key chemother-
apeutic agent, enhanced BMP2 secretion from OC cells.8 Similarly, 
another platinum- based cisplatin increased BMP4 mRNA expression 
in OC cells.54 Although the mechanism of chemotherapy- induced 
BMP secretion is unknown, these results suggest that BMP sig-
naling inhibition might reverse chemoresistance. To date, several 
BMP inhibitors, including dorsomorphin, DMH1, and LDN193189 
have been developed.25 These compounds suppress BMP signaling 
through kinase inhibition of type I receptors.25 The efficacy of BMP 
inhibitors has been shown in OC31,36,55 (Table 1). As previously de-
scribed, dalantercept, an ACVRL1- Fc fusion protein, demonstrated 
limited efficacy in OC patients.13 This might be due to lower ACVRL1 

expression in OC. In contrast, dorsomorphin efficiently attenuated 
OC cell proliferation and migration, leading to prolonged survival of 
xenografted mice.36,55 DMH1 also inhibited OC cell proliferation in 
vitro.31 Although LDN193189 inhibited OC cell proliferation and mi-
gration as well,8 it had no effect on xenografted mouse survival.55 
We recently demonstrated that RK783, a newly developed BMP re-
ceptor kinase inhibitor, suppressed SMAD1/5 phosphorylation and 
OC cell growth in orthotopic xenografted mice8 (Table 1; Figure 3B). 
Moreover, DMH1 enhanced the sensitivity to cisplatin and regulated 
gene expression involved in platinum resistance in OC31 (Table 1). 
Thus, BMP inhibitors are promising for OC, regardless of sensitivity 
to standard chemotherapy.

2.2  |  BMP signaling and endometrial cancer

The significance of BMP signaling in uterine receptivity has been re-
cently shown.56,57 As BMP signaling modulates uterine decidualiza-
tion, uterine endometrium- specific deletion of BMP- related genes 
leads to infertility via implantation failure in mice.56,57 However, 
endometrial carcinogenesis has not been evaluated. As EC devel-
ops from infertile endometrium, BMPs may exert important roles 

F I G U R E  3  Model of BMP signaling in ovarian and endometrial cancer. (A) BMP secretion from cancer cells and carcinoma- associated 
mesenchymal stem cells (CA- MSCs) is triggered by chemotherapy and cancer- secreted Hedgehog, respectively. Secreted BMPs enhance 
cancer proliferation and stemness via c- KIT induction. BMPs also trigger EMT through SNAIL/SLUG induction, leading to the enhancement 
of migration and invasion. These effects are partially attributed to FN14 induction. (B) RK783, a newly developed BMP receptor kinase 
inhibitor, suppressed SKOV3 OC cell growth in orthotopic xenografted mice; adapted from Fukuda et al.8

TA B L E  2  Effects of BMP antagonists on gynecologic cancer

Antagonist Cancer types In vitro effects In vivo effects Reference

Noggin Ovarian cancer Organoid formation↓ 44

Chordin Ovarian cancer Cell migration↓, cell invasion↓ 51

Gremlin2 Endometrial cancer Cell proliferation↓ 61

TWSG1 Endometrial cancer Sphere formation↓, cell migration↓ 9

BMPER Cervical cancer Unknown (expressed in tissues) 69

Gremlin1 Cervical cancer Sphere formation↑ Correlation with worse survival 
and larger tumor volume

70
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in endometrial carcinogenesis. Both endometrial stromal cells and 
vascular endothelial cells of the uterine corpus retained BMP2.58,59 
Therefore, BMP2 is able to stimulate EC. Different from BMP2, 
BMP7 is present in both endometrial epithelium and stroma.58 
Interestingly, BMP2 secretion from endometrial stromal cells was 
attenuated in women with uterine leiomyoma.60 We have reported 
the tumor- promoting effects of BMP2 in EC.9,46 BMP2 promoted 
sphere formation and cell migration of Ishikawa EC cells through the 
same mechanism as in OC9,46 (Figure 3A). BMP2 enhanced sphere 
formation through c- KIT induction, whereas it provoked migration 
via SLUG- dependent EMT induction.9 These effects were canceled 
by FN14 knockdown.46 In contrast, Gremlin 2, a BMP antagonist, in-
hibited EC cell growth61 (Table 2). Reports also showed that TWSG1, 
another BMP antagonist, reversed EC sphere formation and migra-
tion by antagonizing BMP79 (Table 2). Furthermore, DNA hypometh-
ylation of BMP4 and BMP7 genes was associated with poor survival 
in EC patients.62 These results indicated that BMP signaling inhi-
bition is promising for the treatment of EC patients as well as OC 
patients.

2.3  |  BMP signaling and uterine cervical cancer

Uterine cervical cancer is caused by human papillomavirus (HPV) 
infection.63 Furthermore, HPV vaccines effectively prevent uter-
ine cervical carcinogenesis worldwide.63 Nevertheless, the mecha-
nisms of UCC progression are not fully understood. TGFβ has been 
reported to attenuate UCC growth.64,65 Similarly, BMP7 inhibited 
UCC growth by causing telomere shortening through hTERT inhi-
bition.66 BMP4 suppressed UCC growth via a different mechanism 
than BMP2.67 BMP4 inhibited tumor angiogenesis via VEGF at-
tenuation in a thrombospondin- 1- dependent manner.67 Although 
the expression of BMPs has not been elucidated, the expression 
of several BMP antagonists has been shown in UCC.68– 70 BMPER, 
a BMP antagonist, is expressed in UCC at both the protein and 
mRNA levels69 (Table 2). However, the function of BMPER has not 
been shown. Gremlin 1, another BMP antagonist, is also expressed 
in UCC68,70 (Table 2). High Gremlin 1 mRNA expression is corre-
lated with poor survival and larger tumor volume, indicating the 
tumor- promoting functions of Gremlin 1.70 Accordingly, exogenous 
Gremlin 1 enhanced sphere formation and the proportion of side 
population cells in CaSki cells, indicating that Gremlin 1 promotes 
cancer stemness.70 These effects were partially attributed to Nanog 
induction.70 These results suggest that BMP signaling might sup-
press UCC, unlike OC and EC.

2.4  |  BMP signaling and other gynecologic cancer

Diethylstilbestrol exposure in utero triggers vaginal adenosis, 
from which clear cell adenocarcinoma can arise.71 As BMP4 coor-
dinates with fibroblast growth factor and Activin A to define vagi-
nal cell fate, disruption of BMP4 signaling plays an important role 

in diethylstilbestrol- triggered vaginal carcinogenesis.72 Considering 
that BMP4 is also important for external genitalia formation,73 
BMP4 might inhibit vulvar cancer as well as vaginal cancer. Further 
studies are needed to clarify the importance of BMP signaling in 
these cancers.

3  |  CONCLUSION

BMP signaling has tumor- promoting effects on OC and EC, whereas 
it has tumor- suppressing effects on UCC. Little is known about the 
relationship between BMP signaling and other gynecologic cancers.

The tumor- promoting effects of BMP signaling in OC/EC are de-
pendent on the promotion of stemness and EMT. As both stemness 
and EMT are associated with chemoresistance, BMP signaling acti-
vation might be an important mechanism by which OC/EC patients 
acquire chemoresistance. Therefore, BMP inhibitors are promis-
ing for OC/EC patients even if they become resistant to standard 
chemotherapy.

In contrast, BMP signaling inhibits UCC growth. Because UCC 
causes osteolytic bone metastasis, osteogenic devices such as the 
Infuse™ bone graft and OSTEOGROW may be useful for patients 
with bone metastatic UCC.

In conclusion, BMP signaling has a variety of effects on differ-
ent types of gynecologic cancer. Targeting BMP signaling should 
improve the treatment of gynecologic cancer patients. Clinical trials 
targeting BMP signaling in gynecologic cancer patients are desper-
ately needed.
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