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1  |  INTRODUCTION

Autophagy is the process by which cells degrade proteins or or-
ganelles through lysosomes. Intracellular proteins or organelles 
need to be cleared or renewed by autophagy or protease systems 
as the cells grow or are stimulated by external stimuli. Some small 
molecular substances or short-lived proteins are mainly degraded 
by the ubiquitin-proteasome pathway, whereas long-lived pro-
teins or damaged organelles in the cytoplasm are degraded by 
the autophagy-lysosomal pathway.1 Normally, autophagy mainly 

eliminates senescent organelles and macromolecular proteins that 
are difficult to clear by the proteasome system, which plays an im-
portant role in maintaining the intracellular homeostasis of energy 
and material metabolism.2 In the 1860s, Duve et al. observed au-
tophagy in hepatocytes. Then, in the 1980s, the signal pathway of 
autophagy was discovered in yeast cells.3 Since then, autophagy 
has gradually become the focus of research, and the liver has be-
come the main target for studying autophagy in mammals. Owing 
to its special relationship with blood supply, autophagy can be 
observed in hepatocytes under conditions of nutrient deficiency. 
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Abstract
Autophagy is one of the degradation pathways to remove proteins or damaged or-
ganelles in cells that plays an important role in neuroprotection. Different stages of 
autophagy are regulated by autophagy-related genes, and many molecules such as 
transcription factor EB (TFEB) are involved. The complete autophagy process plays an 
important role in maintaining the dynamic balance of autophagy and is crucial to the 
homeostasis of intracellular substance and energy metabolism. Autophagy balance is 
disrupted in neurodegenerative diseases, accounting for a variety of degeneration dis-
orders. These impairments can be alleviated or treated by the regulation of autophagy 
through molecules such as TFEB.
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Thus, hepatocytes have always been an ideal material for study-
ing autophagy under starvation conditions. Unlike the liver, the 
brain has priority in energy usage, which means it is difficult to 
observe neuronal autophagy even under starvation conditions.4,5 
Despite this difficulty, more and more studies have found that au-
tophagy plays an important role in the development of nerve cells6 
and the function of synapses.7,8 Abnormal levels of autophagy can 
cause damage to the nervous system, including autophagosome 
aggregation, neuronatrophy, mitochondrial depletion, and axonal 
and dendritic atrophy.9,10 Neurodegeneration is the chronic pro-
gressive degeneration and loss of neurons in the brain and spinal 
cord, which can cause Parkinson's disease (PD), Alzheimer's dis-
ease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis 
(ALS), and dementia with Lewy body (DLB). Abnormal proteins ac-
cumulate in the brain of patients with neurodegenerative disease. 
Studies have shown that neurodegenerative diseases are closely 
related to abnormal autophagy function.

2  | AUTOPHAGY AND DEGRADATION

Autophagy can be divided into 3 types: microautophagy, chaperone-
mediated autophagy, and macroautophagy. Microautophagy trans-
ports small molecules into the lysosomal cavity for degradation by 
endocytosis or budding of the lysosome itself.11,12 Chaperone-
mediated autophagy transports the target protein to lysosomes for 
degradation mainly by binding Hsc70 to LAMP2A on the lysoso-
mal membrane.13 When cells are stimulated by starvation or other 
stress, macroautophagy degrades most of the abnormal proteins 
or organelles. The autophagy described in this article refers to 
macroautophagy. The process of autophagy involves the forma-
tion of autophagosomes with bilayer membrane structure and the 
fusion and degradation with lysosomes.6,14 Autophagosomes may 
be derived from the smooth endoplasmic reticulum and extend 
and mature under the action of ATG12-ATG5 complex and ATG8/
LC3, forming a bilayer membrane structure with cytoplasm inside 
and outside. It is degraded and acidified by the inner membrane 
via endocytosis, and finally fuses with the lysosome to form a 

monolayer membrane of autophagosomes.15,16 Therefore, the ob-
servation of double-layer or single-layer cell membrane structure 
under the ultrastructure is the gold standard for the observation 
of autophagosomes.17

Abnormal aggregation of proteins or mitochondrial dam-
age9,18,19 has been found in many neurodegenerative diseases, 
such as the aggregation of α-synuclein (α-syn) in PD,20 and tangles 
of nerve fibers formed by β-amyloid and tau proteins in AD.21,22 
Abnormal aggregation of proteins can be degraded by proteasome 
or autophagy. The ubiquitin-proteasome system can only degrade 
proteins that are short-lived, are soluble, and can expand into the 
proteasome, and it is difficult to eliminate protein aggregates.6 In 
contrast, the autophagy-lysosomal pathway can degrade abnormal 
protein aggregates, and even damaged mitochondria and other 
organelles.23-25 When the function of proteasome or autophagy 
is impaired, a large number of abnormal proteins and damaged 
organelles accumulate in the cells, which disturbs the intracellu-
lar homeostasis of substance and energy metabolism (Figure  1). 
Studies have indicated that a mass of ubiquitinated protein inclu-
sions was accumulated in the brain after the autophagy-related 
gene ATG5/ATG7 was knocked out in mice.26,27 More notably, the 
specific inhibition of autophagy in the mice brain can give rise to 
neurodegenerative diseases even without the accumulation of 
disease-related mutant proteins.

3  |  REGULATION OF AUTOPHAGY

Autophagy-related genes (ATGs) regulate the autophagy process 
during different stages of autophagy.28 Various molecules of ATG ex-
pression form different protein complexes to regulate the formation 
of autophagosomes, including induction of autophagy, generation of 
autophagosomes, expansion of autophagic vesicles, recognition and 
endocytosis of substrates, and clearance of autophagosomes29-31 
(Figure  2). In mammalian cells, mammalian rapamycin target pro-
tein complex (mTOR) can sense the level of amino acids and ATP in 
the cell and thus control the autophagy activity of the cell. When 
cells are suffering from starvation or external stimulus, mTOR is 

F IGURE  1 The role of autophagy in protein degradation
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phosphorylated and autophagy is subsequently induced.32 The for-
mation of autophagosome is also known as the elongation stage, 
including the binding of ATG12 and the modification of LC3. Under 
the effect of E3 ligase, LC3-I is converted into LC3-II, binding to 
the forming autophagosomes.33 Then cargos can combine with the 
autophagosomes through the LC3-interacting region (LIR), such as 
p62. The matured autophagosomes fuse with lysosomes to form au-
tophagolysosomes, and finally, the combined cargos are degraded.29

Some important molecules are involved in the autophagy path-
way, among which the TFEB is one of the important transcription 

factors regulating autophagy (Figure  3). Normally, TFEB binds to 
14-3-3 protein in the cytoplasm34-36 under the action of mTORC1 
or MAPK1.34-37 When cells are under stress due to starvation or im-
paired lysosomal function,38 TFEB is activated by dephosphorylation 
and enters the nucleus to regulate the expression of lysosomal and 
autophagy-related molecules, thereby promoting the formation of 
autophagy and generation of lysosome.36,39 A study found that up-
regulation of TFEB expression in PD can alleviate lysosomal collapse, 
autophagic vesicle accumulation, and the aggregation of α-syn in do-
paminergic neurons, demonstrating an obvious protective effect.40 

F IGURE  2 Different stages of autophagy

F IGURE  3 Regulation of TFEB in autophagy
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Another study also showed that the activation of TFEB could rescue 
cells from the damage of injured mitochondria and reactive oxygen 
species (ROS).41

4 | MITOPHAGY AND NEURODEGENERATION

The damaged organelles in the cell are mainly degraded by selective 
autophagy, and the abnormal mitochondria in the neuron are mainly 
eliminated by mitophagy, to ensure the normal energy metabolism 
of neurons.42,43 Mitophagy can be triggered by a variety of physi-
ological or pathological factors.6 In an animal model of PD, the muta-
tion of PD-related gene LRRK2 can cause mitochondrial damage and 
induce a mass of mitophagy in midbrain dopaminergic neurons.44 
Simultaneously, dysfunction of mitophagy is also observed, suggest-
ing that abnormal mitophagy may play an important role in PD and 
other neurodegenerative diseases.9,45,46,47,48,49,50

4.1  |  PINK1-parkin pathway

The damaged mitochondria can be labeled by ubiquitin and de-
graded and cleared through the PINK1-parkin pathway51-53 
(Figure 4). Impaired mitochondrial membrane potential decreases, 
leading to the accumulation of PINK1 protein in the mitochondrial 
outer membrane,54-56 recruiting and activating the E3 ubiquitin li-
gase Parkin57 by ubiquitin phosphorylation, ubiquitinating the mi-
tochondrial outer membrane protein. It is further degraded by the 
ubiquitin-proteasome and autophagy pathway.58,59 The ubiquitin-
proteasome system also plays an important role in the degradation 
of mitochondrial outer membrane proteins, promoting the comple-
tion of PINK1-Parkin-mediated mitochondrial autophagy.58 Some 
studies have found that TFEB is also involved in PINK1-Parkin-
mediated mitochondrial autophagy after mitochondrial depolari-
zation.60 The recruitment of Parkin is regulated by TFEB, which 
is mTOR and ATG7 independent but requires the participation of 

ATG5 molecules,60,61 and the specific process remains to be fur-
ther studied.

4.2  | Other mitochondrial autophagy pathways

A variety of transmembrane receptors, including BNIP3L (Nix),62,63 
FUNDC1,64,65 and FKBP8,66 can mediate mitophagy through the 
non-PINK1-Parkin pathway (Figure 2). These transmembrane recep-
tor proteins contain LIR domains that can bind to LC3 and induce mi-
tochondrial autophagy.6 In cortical neurons and neuroblastomas, the 
researchers observed mitophagy in the non-PINK1-Parkin pathway 
mediated by cardiolipin.46 When the mitochondria are damaged, car-
diolipin is exposed to the mitochondrial outer membrane from the 
inner membrane and directly interacts with LC3 to degrade the ab-
normal mitochondria through the autophagy pathway46,67 (Figure 2). 
In addition to cardiolipin, ceramides and steroids also participate in 
the regulation of mitophagy.68,69

Thus, mitophagy-related molecules may play an important 
role in neurodegeneration. The dysfunction of mitophagy can in-
duce neuronal damage. On the other hand, the regulation of these 
mitophagy-related molecules may attenuate the impact of mito-
chondrial dysfunction. Moreover, mitophagy-related molecules can 
be used to construct animal models of neurodegeneration disease.

5  | AUTOPHAGY HOMEOSTASIS AND 
NEURODEGENERATION

5.1  |  The transport of autophagosomes in neurons

The entire autophagy process includes the formation, transport, and 
degradation of autophagosomes, and any abnormality in any of these 
steps will lead to autophagy dysfunction. Autophagosomes in neu-
rons are mainly formed at the axon ends that are growing or have syn-
aptic connections,70,71 which is closely related to the synthesis and 

F IGURE  4 Mitochondrial autophagy 
mediated by different pathways
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metabolism of synaptic vesicles.5 The newly generated autophagic 
vesicles rapidly fuse with syntaxin-17 to obtain endolysosome mark-
ers LAMP1 and Rab17.72,73 The vesicles are dependent on dynein to 
transport substances from the axon terminal to the nucleus via mi-
crotubules74 and are degraded by fusion with lysosomes.75,76 Studies 
have shown many neurodegenerative diseases to be associated with 
lysosomal dysfunction.77-79 Researchers found a mass of lysosome 
accumulation in AD models,73,80 suggesting that abnormal transport 
or degradation of autophagosomes and lysosomes may play an im-
portant role in degenerative diseases. Besides, TFEB has been shown 
to play an important role in the axonal transport of autophagosomes 
and lysosomes. Moreover, activated TFEB can transcribe lysosomal 
transmembrane proteins, which bind to dynein and exert a lasting 
effect on lysosomal transport.76

5.2  | Homeostasis in the process of autophagy

In normal autophagy process, the synthesis and degradation of 
autophagosomes are in a dynamic balance,38 whereas in neurode-
generative diseases, multiple intermediate processes of autophagy 
process may be abnormal.3,38,68,81,82 The decrease in transport, 
fusion, and degradation efficiency of autophagosomes and the 
increase in autophagy demand caused by continuous external 
stimulation all lead to an increase of intracellular autophagy pres-
sure. Once the dynamic balance between autophagy synthesis and 
degradation is broken, autophagy stress will occur,38 and induce 
abnormal autophagy. Thus, a large number of substances need to 
be transported between the neuron body and axon through micro-
tubules. However, neurons are sensitive to energy changes. Even at 
a normal level of autophagy, energy depletion or Becin1/Bcl-2 im-
balance may cause cell death when autophagy pressure increases.83 
The degeneration of dopaminergic neurons in the nigrostriatum of 
the midbrain in PD may be due to the autophagy stress resulting 
from damage to the neuron body or synapses.38,44

5.3  |  Interference of abnormal proteins with 
autophagy homeostasis

On the other hand, abnormal proteins may interfere with autophagy 
homeostasis in some neurodegenerative diseases. In normal circum-
stances, the autophagy process can eliminate abnormally aggregated 
proteins or damaged organelles in cells, and play a protective role in 
nerve cells. However, cells are damaged or even killed by autophagy 
stress when the normal autophagy process is disturbed or inhibited.38 
At the same time, mutated LRRK2 or α-syn was shown to interfere 
with chaperone-mediated autophagy in some PD models.84,85 The 
Jnk-Bcl-2 pathway was inhibited by E46K mutation,86 which impaired 
the clearance of abnormal α-syn and damaged nerve cells. Besides, 
α-syn is structurally similar to the 14–3-3 protein, the chaperone of 
TFEB,87 which binds to TFEB competitively and blocks TFEB entry 
into the nucleus, interfering with the entire autophagy process.88,89 In 

AD, ApoEε4 competes with TFEB for the lysosomal protein promoter 
SQSTM, MAP1LC3B, LAMP2, leading to abnormal autophagy.90,91 In 
neurodegenerative diseases such as PD and AD, the mutated mol-
ecules induce autophagy imbalance while causing structure dam-
age, resulting in a vicious cycle and eventually leading to cell death. 
Therefore, the complete autophagy process plays an important role 
in maintaining the homeostasis of autophagy and is essential for the 
homeostasis of intracellular substances and energy metabolism.

6 | TREATMENT OF NEURODEGENERATIVE 
DISEASES BY REGULATING AUTOPHAGY

Abnormal autophagy is closely related to neurodegenerative dis-
eases, and many studies have attempted to alleviate or treat neuro-
degenerative diseases by regulating the level of autophagy. Studies 
found that regulating the level of autophagy can alleviate or treat 
neurodegenerative diseases such as PD, AD, and HD.6 In cell or ani-
mal models of HD, drug-induced autophagy reduces huntingtin ac-
cumulation and alleviates HD symptoms in mice and Drosophila.92 
In the APP transgenic mouse model of AD, it was found that injec-
tion of the lentivirus expressing Beclin1 into the brain significantly 
reduced the accumulation of amyloid in the brain of mouse models 
of early AD.93 At the same time, Becn1 with F121A mutation attenu-
ated the inhibition of beclin1 by BCL-2, which reduced amyloid dep-
osition and improved survival rate and cognitive function in APP/PS1 
transgenic mice.94 Moreover, upregulation of ATG7 expression in 
α-syn-overexpressing transgenic mice can decrease α-syn levels.93

Neuroprotection can be achieved by increasing the level of au-
tophagy without causing autophagy stress. TFEB is involved in the 
regulation of autophagosome synthesis, transport, fusion, and lyso-
somal functions within the autophagy process, and may play an im-
portant role in the neuroprotective effects of autophagy. Therefore, 
TFEB is an ideal target for the treatment of neurodegenerative dis-
eases.39 Studies have found that upregulation of TFEB expression 
in tau-overexpressing rTg4510 model mice can reduce nerve fiber 
tangling and synaptic injury, and ameliorate neural behavior abnor-
malities.94 In the human neuroblastoma cell BE-M17, upregulation of 
TFEB attenuates lysosomal collapse in the cytoplasm and reduces au-
tophagic vesicles and α-syn accumulation simultaneously.40 In vitro 
and in some rodent models, the therapeutic effect of TFEB on var-
ious neurodegenerative diseases such as PD and AD has attracted 
increasing attention. However, the protective effect of TFEB has 
not been confirmed in non-human primates. Thus, further research 
on TFEB is needed on the therapeutic effects of neurodegenerative 
diseases.

7  |  CONCLUSION

Autophagy homeostasis is essential for the maintenance of normal 
cell function and is closely associated with the development of neu-
rodegenerative diseases. As an important autophagy-regulatory 
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protein, TFEB is of great interest. More research on TFEB-related 
pathways and drug targets is needed.
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