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a b s t r a c t

The aggregation of epitopes that are also able to bind major histocompatibility complex (MHC) alleles raises 
questions around the potential connection between the formation of epitope aggregates and their affinities 
to MHC receptors. We first performed a general bioinformatic assessment over a public dataset of MHC class 
II epitopes, finding that higher experimental binding correlates with higher aggregation-propensity pre
dictors. We then focused on the case of P10, an epitope used as a vaccine candidate against Paracoccidioides 
brasiliensis that aggregates into amyloid fibrils. We used a computational protocol to design variants of the 
P10 epitope to study the connection between the binding stabilities towards human MHC class II alleles and 
their aggregation propensities. The binding of the designed variants was tested experimentally, as well as 
their aggregation capacity. High-affinity MHC class II binders in vitro were more disposed to aggregate 
forming amyloid fibrils capable of binding Thioflavin T and congo red, while low affinity MHC class II 
binders remained soluble or formed rare amorphous aggregates. This study shows a possible connection 
between the aggregation propensity of an epitope and its affinity for the MHC class II cleft.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative

commons.org/licenses/by/4.0/).

1. Introduction

The Major Histocompatibility Complex class II (MHC-II) is a key 
receptor involved in the human adaptive immune response [1]. 
MHC-II is a promiscuous peptide binder having affinities for a di
verse set of peptides, as shown in the massive public databases 
[2–4]. A key aspect of the binding process is the peptide-bound 
stability, which assesses the time the peptide is bound to the MHC-II 
cleft. One expects that high-affinity and high-stability binding pep
tides to MHC-II are crucial to improve immune responses, and 
consequently enhance the effect of immunotherapies [5]. But what 

are the determinant biophysical and structural properties of pep
tides to tightly bind to MHC-II?

The prediction of MHC-II binders is a common task in epitope 
prediction algorithms and the design of potential vaccines [6,7]. 
Most available protocols rely on the sequence-based identification of 
motifs in antigen regions, supported by machine learning models 
able to filter epitopes of different sizes by predicted binding affinities 
[2]. Other research has focused on structural information of peptide/ 
MHC-II complexes (pMHC-II) that study the effect of the peptide 
conformations in the binding process [8,9]. Known properties of 
MHC-II peptide binders are the presence of neutral amino acids in
teracting with key binding pocket positions [3], the formation of a 
bound polyproline-like II secondary structure in the MHC-II cleft 
[10,11], and the importance of the peptide binding stability to trigger 
subsequent immunological effects [12].

In addition to peptide binding affinity, other properties to eval
uate are their solubility and aggregation propensity. In principle, 
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protein aggregation can hamper different processes related to pro
teins/peptides usage, hence, design strategies that control those 
characteristics are essential to further immunotherapy optimization 
[13,14]. Many proteins and peptides in solution can aggregate into 
amyloid fibrils (AF), a type of aggregate that can accumulate in or
gans and tissues causing diseases such as Parkinson’s and Alzhei
mer’s [15]. This is the case of P10 (QTLIAIHTLAIRYAN) [16], a 15-mer 
epitope derived from the glycoprotein 43 (gp43) of Paracoccidioides 
brasiliensis (Pb), a dimorphic fungus that lives in the ground and can 
infect the host by inhalation [17]. Interestingly, this peptide is also a 
highly binding epitope of MHC-II in the nanomolar (nM) range to
ward a set of MHC-II alleles [18]. The epitope is found in the region 
181–195 of gp43 and has been extensively studied in vitro and in 
vivo, protecting mice against Pb infection as effectively as using the 
full gp43 for immunization [19]. In 2021, it was reported that in 
solution P10 can aggregate into insoluble AF. The formation of P10- 
composed AF depends on the peptide concentration, pH and tem
perature. AF seeds (fragments of mature AF) of P10 were able to 
induce the aggregation of another gp43-derived peptide used as an 
immunogenic agent [20].

Here, we study the correlation between MHC-II peptide binding 
and aggregation propensity using P10 as a benchmark system. We 
first performed a bioinformatic assessment of the Immune Epitope 
Database (IEDB) to relate MHC-II affinity to aggregation via com
putational predictors, finding that high-affinity peptides have a large 
aggregation propensity. Then, we used the PARCE protocol [21] to 
design new variants of the P10 peptide with diverse binding affi
nities for the human MHC-II allele DRB1*01:01, providing a range of 
affinities to relate with aggregation. After implementing different 
design strategies, we obtained a list of 18 candidate peptides that 
were tested experimentally with the Proimmune REVEAL® binding 
assay. For 11 of these, including P10, we evaluated their aggregation 
capacity in vitro by using Thioflavin (ThT) and Congo red binding 
assays and transmission electron microscopy (TEM). Our findings 
suggest that a peptide's tendency to aggregate into amyloid fibril 
might modulate the binding affinities to MHC-II.

2. Methods

2.1. Aggregation propensity and binding to MHC class II

To overview potential aggregation propensities for MHC-II pep
tides, we used a set of peptides having approximately 44,000 ex
perimental binding affinity endpoints, available at the Immune 
Epitope Database (IEDB) [2]. We selected four MHC-II alleles: 
DRB1*01:01, 03:01, 04:01 and 15:01. For each allele, we used the 
most populated cluster composed of 15-mer peptides with a wide 
range of IC50 values. We created two sets: the top binders (top 10 % 
ranked with the IC50 - Top10) and lowest affinity binders (lowest 10 
% - Low10). The number of peptides included for both sets per allele 
were 1,256 for 01:01, 284 for 03:01, 328 for 04:01, and 318 for 15:01. 
The distributions for each dataset were plotted and normalized 
based on the number of peptide binders. We used the Aggrescan 

server [22] to calculate their aggregation propensities. The Ag
grescan method is a bioinformatics strategy where experimental 
aggregation-propensity values per amino acid are used to calculate 
average values based on the input amino acid sequence. Specifically, 
an average value, using the four neighboring residues (i.e., two from 
the left and two from the right in the sequence), is calculated for 
each amino acid. Then, all the amino acid averages are summed, then 
normalized by the number of total residues in the input sequence 
and multiplied by 100. The final normalized value is used to compare 
sequences. We used as a reference value the Aggrescan score ob
tained for P10.

2.2. Design of P10 variants

2.2.1. Modeling of P10 bound to a MHC class II allele
The starting complex to design P10 variants was the structure of 

MHC-II allele DRB1:01*01 with PDB id 1t5x. The bound peptide with 
sequence AAYSDQATPLLLSPR was used as a template to structurally 
model the P10 15-mer sequence QTLIAIHTLAIRYAN. We modelled 
the sequence by aligning 9-mer core regions of the peptides and 
mutating position-by-position using the package fixbb from Rosetta 
[23]. To predict the 9-mer core regions of both peptides, we im
plemented the NetMHCIIpan-4.0 tool [4]. The side chains of the 
complex were relaxed using Rosetta with the protein backbone 
fixed. Then, the refined protein-peptide structure was subjected to 
200 nanoseconds (ns) molecular dynamics (MD) simulation with 
previous minimization and NVT/NPT equilibration, using GROMACS 
version 5.1 [24]. Two replicas with different random starting velo
cities were performed.

To run the simulations, the Amber99SB-ILDN protein force-field 
[25] was chosen, given previously validated results using the MHC-II 
and other protein-peptide systems as reference [21]. A TIP3P water 
model [26], a modified Berendsen thermostat [27], and a Parrinello- 
Rahman barostat [28] were used during the equilibration and pro
duction phases. The protein-peptide complex was solvated in a cubic 
box of water with periodic boundaries at a distance of at least 8 Å 
from any atom of the protein. Counterions of Na+ and Cl− were in
cluded in the solvent to make the box neutral. The electrostatic in
teractions were calculated using the Particle Mesh Ewald (PME) 
method, with 1.0 nm short-range electrostatic and van der Waals 
cutoffs [29]. The equations of motion were solved with the leap-frog 
integrator [30], using a timestep of 2 femtoseconds (fs). A tem
perature of 310 K was chosen to perform the simulations. A sum
mary of the parameters is available in Table 1.

2.2.2. Verification of β-strand region at the N-terminal region of P10
To check the formation of the β-strand in the peptide, we mod

elled P10 bound to allele DRB1*03:01 using the crystal structure 
with PDB id 1a6a, and bound sequence PVSKMRMATPLLMQA as 
template for the structural modelling of P10. The modelling and si
mulations were performed following the same steps described in the 
previous section. In addition, we mutated in the DRB1*01:01 crystal 
structure (PDB id 1t5x) only the TLIA fragment in the same aligned 

Table 1 
List of parameters and configurations used for the MD simulations. 

Parameter/configurations Value/details

Temperature 310 K
Force field AMBER99SB-ILDN [25]
Solvation TIP3P water model [26]. Cubic box with periodic boundaries of at least 8 Å and counterions
Electrostatic interactions Particle Mesh Ewald with 1.0 nm cutoff [29]
Integrator Leap-frog with timestep of 2 fs [30]
Minimization Gradient-descent (1000 steps)
Equilibration (NVT) 100 ps using modified Berendsen thermostat [27]
Equilibration (NPT) 100 ps using Parrinello-Rahman barostat [28]
Production 200 ns (initial simulation). 100 ns (post-design simulations).
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region and ran the MD simulation using the described parameters. 
Observables such as the peptide secondary structure and the gen
eration of interactions with MHC-II chains were annotated.

To analyse the role of the β-strand in the MHC/peptide binding 
process, we extracted a set of 23 crystal structures from the PDB of 
various MHC-II alleles bound to peptides. The peptides were sub
jected to the DSSP software in order to annotate their secondary 
structure when bound to the MHC-II. This allowed us to verify how 
common is the formation of the encountered β-strand.

2.2.3. Design protocol
To design the P10 variants, we used the PARCE protocol [21] that 

employs a stochastic search over the sequence of the peptide to 
efficiently explore the sequence space. At each step, the protocol 
selects a position in the peptide chain and an amino acid to mutate 
to. After the point mutation is generated, the system is subjected to 
all-atom MD simulations in explicit solvent to sample the con
formations of the mutated peptide. After performing the mutation, a 
first minimization of the predicted side chain alone is performed. In 
order to relocate overlapping atoms and avoid clashes, a second 
minimization is run with the new amino acid and the water mole
cules surrounding it within 2 Å. Finally, a minimization of the full 
system is performed with a subsequent NVT equilibration of 100 
picoseconds (ps). Then, the new system is sampled for 5 ns using the 
MD setup explained in Section 2.2.1, and a new mutation is per
formed following the same rules.

The acceptance of the mutation is based on a consensus by vote 
of six scoring functions evaluated over the structures from the MD 
simulations [31], which were Pisa [32], Firedock [33], BACH [34-36], 
ZRANK [37], IRAD [38] and BMF-BLUUES [39,40]. If a particular 
number n of scoring functions agrees with negative scoring differ
ences between peptide A (original) and peptide B (mutated), then 
the final consensus will accept the change between the peptides. 
Based on previous studies, a threshold of three (from six scoring 
functions), was defined to accept or reject the mutations. The 
starting structure of the protocol was the last frame of the P10 bound 
to the MHC-II allele DRB1:01*01 simulation (described above). More 
details of the protocol’s main steps are explained in the Supple
mentary Notes 1 and 2.

We defined two modification strategies and two sets of positions 
on the peptide to be modified. The first set of positions involved 
modifying only the TLIA fragment of P10, responsible for the β- 
strand formation found with the MD. The second included the same 
fragment (TLIA) plus the peptide flanking regions of P10 based on 
the 9-mer core prediction (see Section 2.2.1), which were found 
useful for multiple-allele MHC II peptide engineering [31]. After 
selecting the two sets of positions, we performed two different de
sign runs defined according to the following filters for each:

Design run 1: New amino acids are selected randomly at the se
lected two sets of positions without filters. The methodology aims to 
explore the sequence space without bias.

Design run 2: Selection of amino acids able to decrease the po
tential peptide hydrophobicity, as well as increase the chances of 
being synthesized and solubilized during experimental phases. To 
fulfill the conditions, three bioinformatics filters were applied. Two 
consisted of empirical rules to account for solubility and synthesis 
issues associated with peptides. The rules describe violations raised 
by certain patterns or amino acid types found in the peptide se
quence (see Supplementary Note 3 for details) [41]. The larger the 
number of violations, the lower the possibilities to validate the 
peptides experimentally. The third filter was the calculation of a 
peptide hydrophobic score using the Eisenberg hydrophobicity scale 
defined for proteinogenic amino acids [42]. In this strategy, we 
perform a uniform random mutation at the predefined sets of po
sitions. The mutation is selected if the new sequence maintains the 
hydrophobic score lower than 3, the number of violations to the 

synthesis rules lower than 5, and the number of violations to the 
solubility rules lower than 2. The thresholds were selected after 
applying the three metrics in a group of known peptide binders of 
the MHC-II allele DRB1:01*01 [43].

2.3. Selection of P10 variants for experimental testing

In the PARCE protocol single mutations are accepted following a 
consensus-based approach with a set of scoring functions (see 
above, Supplementary Note 1 and 2). After finalizing the design runs, 
we used the scores to obtain an average rank per peptide per each 
design strategy. Specifically, all the accepted peptides were ranked 
using each scoring function, and the average rank over the six 
functions was calculated. Then, based on the average rank, and hy
drophobicity and Aggrescan scores lower than the P10 reference (see 
Supplementary Figure 3), we prioritized 18 sequences with poten
tially better affinities and better properties than P10.

The prioritized peptides were subjected to additional MD simu
lations of 100 ns using the same setup explained in Section 2.2.1. The 
last half of the trajectory (i.e., the last 50 ns) was used to calculate 
the average score using the same six scoring functions. With the 
final averages, a new average rank was calculated and used to re- 
rank the candidates for subsequent experimental validations. For the 
experiments, we also included the P10 original sequence, and the 13- 
mer Influenza peptide (PKYVKQNTLKLAT) as a control, which has 
been demonstrated is a good binder against the DRB1*01:01 allele 
[44]. The control peptide bound to MHC-II was also subjected to 
100 ns MD simulation using the same crystal structure (PDB id 1t5x) 
to model the complex.

2.4. In silico aggregation analysis

The intrinsic aggregation and amyloid formation propensities 
were evaluated with the Aggrescan server employing default set
tings [22]. The Cordax algorithm [45] (https://cordax.switchlab.org/), 
a structure-based machine learning algorithm that models hex
apeptides into a β-sheet fibril cores, was used to generate models of 
the amyloid core as steric zippers for a subset of ten P10 variants. 
Cordax uses complementary computational alternatives to de
termine the structural layout of putative amyloid fibril-forming 
segments based on 1402 hexapeptide sequences available in its li
brary. Only the peptide/protein sequence is necessary to use this 
algorithm, and the server does not allow changes in any parameter. 
The output PDB files were visualized and edited with PyMOL.

2.5. Experiments

2.5.1. Rate binding assays
The selected peptides were subjected to a gold-standard rate- 

binding assay against the MHC-II allele of reference. The Proimmune 
REVEAL® binding assay was used for that purpose, which uses an
tibody-labelled peptides that emit a signal if native conformations of 
the complexes are detected. Based on a control provided by 
Proimmune, we obtained per peptide a score (between 0 and 100) 
that measures a proxy affinity toward the MHC-II allele with two 
data points, one at 0 h and a second after 24 h. Based on these two 
measures a stability index is assigned. The peptides were synthe
sized using the Prospector PEPscreen® technology with high purity 
standards based on quality controls obtained by MALDI-TOF mass 
spectrometry [46].

2.5.2. In vitro aggregation assays
For in-vitro aggregation assays, P10 and a total of ten selected P10 

variants were purchased from Genscript with purity above 95 % and 
diluted in DMSO (Sigma-Aldrich code D8418) 100 % to a final con
centration of 5 mM (stock solution) and kept at −20ºC for storage.
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P10 and its variants stock solutions were diluted in PBS at 20 μM; 
pH 7.4 at 37ºC for 18 h under agitation. To measure light scattering 
(LS), samples were excited at 320 nm while emission was collected 
at 320 nm in the spectrofluorometer Jasco FP8200 (Jasco Corp., 
Tokyo, Japan). Aliquots of the aggregation suspension were diluted in 
the presence of Thioflavin-T (Sigma-Aldrich code T3516) (ThT; 50 μM 
and peptide 20 μM), a specific fluorescent probe for AF. ThT fluor
escence emission was measured at 485 nm by exciting the samples 
at 450 nm. Congo red (Sigma-Aldrich code C6767) binding assays, 
another amyloid specific probe, were performed according to 
Palhano [47]. The samples (50 μL) were centrifuged at 17,000 X g for 
30 min, and the pellet was incubated with 10 µM Congo red solution 
for 5 min. The absorbance was measured at 540 and 477 nm and the 
fraction of bound Congo red was determined by the following for
mula [mol of bound Congo red/mol of protein = OD540/25,295 – 
OD477/46,306].

2.5.3. Transmission electron microscopy (TEM)
5 mL of each peptide suspension (100 µM) was absorbed onto 

200-mesh carbon-coated copper grids (Pelco, Ref: 01800 F) for 5 min 
and then blotted to remove excess material. Negative staining was 
performed by adding 5 mL of 2 % (w/v) uranyl acetate. Samples were 
dried on air for 3 min. The grids were imaged with a Jeol 1200 
electron microscope (Jeol Ltd.) operating at a 60 kV acceleration 
voltage.

3. Results

3.1. High-affinity MHC-II epitopes are more disposed to aggregate in 
silico

To characterize the connection between the aggregational profile 
and affinity of different MHC-II epitopes, we used sequences from 
peptides available on the IEDB database that have an experimentally 
measured binding affinity to MHC-II. We assessed their aggregation 
propensity using Aggrescan, which predicts an aggregation pro
pensity score using the primary sequence [22]. The higher the Ag
grescan value the higher the tendency to aggregate (i.e., Amyloid-β 
1–42 peptide = 6.4). As seen in Fig. 1, the top 10 % (Top10; blue) of 
the highly-binding epitopes (ranked with the experimental data) 
have higher Aggrescan scores when compared with the 10 % worst 
(Low10; red) epitopes. The Low10 class has predominantly negative 
scores for all alleles. For example, the Top10 binders to DRB1*01:01 
shows an Aggregation Propensity Average (AggP) of 14.91, while 
Low10 epitopes show AggP of −23.88 (Fig. 1A). The same is shown for 
the other alleles (see the other AggP values in each panel).

These results indicate a potential correlation between aggrega
tion propensity (as determined by Aggrescan) and MHC-II epitopes 
binding, which were found for different HLA alleles. To validate these 
in silico results regarding MHC-II affinities and aggregation propen
sities, we selected the P10 peptide as a template for designing var
iants with different binding affinities and aggregation propensities 
to search connections.

3.2. Modelling of P10 and MD simulations

To design variants of P10 that vary in their affinity to MHC-II and 
aggregation propensities, we used the PARCE protocol to modify 
specific positions on the sequence bound to the MHC-II allele 
DRB1*01:01 (see Methods). A key aspect previous to designing the 
variants was to perform a large conformational sampling of the in
itial complex MHC-II/P10 complex using MD and looking for con
vergence of the peptide interactions. For that purpose, we started 
with a PDB template of the MHC-II bound to a 15-mer peptide 
(Fig. 2A). The predicted core region of the peptide template aligns at 
the same position of P10 core, which facilitated the replacement 

point-by-point of the new amino acids. Interestingly, after running 
200 ns of MD simulations, we observed the formation of a short β- 
strand in the 2TLIA6 fragment of P10 with a segment of the MHC-II α- 
chain, namely the segment 53SFAE56 (circle in Fig. 2B). This region 
interacts with the peptide β-strand fragment in the cleft that un
dergoes a α-helix to β-strand transition. For the two independent MD 
replicas, this β-strand is formed and the RMSD of the peptide core 
region remains stable (Fig. 2C).

Given the behaviour of P10 using the DRB1*01:01 allele, we 
decided to verify if the β-sheet would be generated by modelling P10 
with a different allele, in this case DRB1*03:01 (PDB id 1a6a). After 
200 ns of simulation, we observed the formation of the same β-sheet 
in the 2TLIA6 fragment of P10 in complex with this new allele (see 
Supplementary Figure 1A). We speculate that this P10 fragment 
could be responsible for inducing this β-sheet formation, in
dependent of the remaining amino acids in the peptide sequence. To 
validate the latest, we inserted the TLIA fragment onto the original 
15-mer template generating the sequence AATLIAATPLLLSPR. After 
running the 200 ns simulation with DRB1*01:01, we observed again 
the formation of the same β-sheet (see Supplementary Figure 1B), 
which hints to the role of this region not only for binding, but also 
for the potential aggregation of P10, since β-strands are enrolled in 
amyloid fibril formation as was observed with P10 in solution [20].

To complement the analysis, we searched for PDB crystal struc
tures of multiple MHC-II alleles bound to peptides of different 
nature. After a detailed revision of the peptides secondary structure, 
most of them did not form the β-sheet at the N-terminal region, 
except for one peptide from influenza virus (PGMMMGMFNMLST
VLGVSIL; PDB id 6qza) that has a very high Aggrescan score (51) and, 
in principle, tends to form aggregates (see Supplementary Table 1).

3.3. Design of P10 variants

Based on these findings, we decided to generate peptide variants 
by modifying the TLIA region and flanking amino acids of P10 to 
evaluate whether aggregation propensity and affinity to MHC-II 
would correlate.

3.3.1. Design run 1
The initial design run involved random mutations using two sets 

of positions: the TLIA region alone and TLIA together with flanking 
amino acids of P10. For the first set, we attempted 50 mutations, and 
for the second, 100 mutations, with an acceptance ratio in both cases 
around 20–30 %. The accepted sequences, sorted based on the 
average ranks using the six scoring functions, are available for the 
TLIA region, and for both TLIA and flanking regions position sets in 
Supplementary Table 2 and 3, respectively. The evolution of the six 
scoring functions mutating only the TLIA region is shown in Fig. 3, 
and for the TLIA plus flanking amino acids is shown in 
Supplementary Figure 2.

As shown in Fig. 3, the scoring functions are, on average, mini
mizing their value through the trial of multiple mutations. None
theless, due to the nature of the stochastic search and the consensus 
criteria, the scores can also increase to overcome local barriers. In 
the case of modifying TLIA and the flanking amino acids, we found 
that many accepted sequences had many hydrophobic and charged 
amino acids, which can affect the synthesis and evaluation of their 
activity, as well as the probabilities to aggregate (see Supplementary 
Table 2 and 3). To solve that, we included additional filters to guide 
the mutation strategies for improving their physico-chemical prop
erties.

3.3.2. Design run 2
For this strategy, we used the same two sets of peptide positions, 

but we filtered the mutated sequences using some amino acid 
properties, including hydrophobicity scores and two empirical rules 
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to infer potential violations to synthesize and solubility (see 
Methods Section 2.2.2). We obtained a similar 20–30 % acceptance 
ratio, and the accepted sequences were sorted based on the average 
rankings (Supplementary Tables 4 and 5). In this scenario, we ob
tained less hydrophobic sequences that can have higher chances of 
success in synthesis during the experiments. In addition, we com
pare the hydrophobicity values for each peptide with the aggrega
tion scores predicted with Aggrescan, finding a correlation between 
the two (see Supplementary Figure 3). This allowed us to filter less 
hydrophobic and potentially less prone to aggregation P10 variants 
for further experimental phases.

3.3.3. Final ranking
From both design runs, and after calculating the average ranks, 

we found 46 sequences with potential better affinities for MHC-II 
than the reference peptide P10. From there, we selected 18 se
quences with lower hydrophobicity scores than P10, which poten
tially have lower chances to aggregate (see Supplementary Figure 3). 
The prioritized 18 sequences in complex with the MHC-II receptor 
were subjected to longer MD simulations of 100 ns, and a similar 
average rank was calculated. The final set of peptides with their 
corresponding Aggrescan scores, hydrophobicity values and viola
tion of empirical rules are shown in Table 2.

For all the peptides, we verified the final bound conformations 
after running the long MD simulations. We found that all of them 
miss the β-region at the N-terminal part suggesting that the strong 
binding potential of P10 to MHC-II might be disrupted. For five of the 
selected peptides, we show the bound conformation in 

Supplementary Figure 4. We also show for the 18 peptides, curves of 
the RMSD during the 100 ns simulations (Supplementary Figures 5, 6 
and 7) in order to assess their conformational stabilities. None of the 
peptides reported RMSD values over 5 Å, and no significant con
formational changes of the binding poses were observed.

3.4. Experimental rate binding assays

The peptide candidates, the P10 sequence and an Influenza 
peptide control were synthesized and analyzed using the 
ProImmune REVEAL® MHC-peptide binding assay to determine their 
level of incorporation into the MHC-II allele DRB1*01:01 (see 
Methods). Binding to MHC molecules was compared to an additional 
T-cell epitope used as a positive control peptide with strong binding 
properties. The experimental values indicating the proportion of 
assembled complexes that have remained after the 24 h incubation 
is available in Fig. 4.

Five of the designed P10 variants (V6, V11, V13, V14 and V16) 
remain with a similar activity to P10 at 0 h despite the modifications 
that disrupt the β-strand (Fig. 4A). On the other hand, if we focus on 
the stability index, a similar subgroup has high stability (Fig. 4B). 
Interestingly, there is a diverse range of binding and stability results. 
We selected a list of ten peptides that were divided into two sub
families (SF) based on the experimental affinity scores: SF-high in
cludes the peptides with high affinity for MHC-II (P10, V6, V10, V11, 
V14 and V16), and SF-low, which includes the peptides with low 
affinity for MHC-II (V1, V3, V5, V7 and V15). These were prioritized 
for the aggregation analysis.

Fig. 1. Aggregation-propensity distributions for high and low binders MHC-II epitope sets. Aggrescan scores were used as an aggregation propensity measure for the higher 
(Top10; blue) and lower (Low10; red) affinity binders to MHC-II alleles (A) DRB1*01:01, (B) DRB1*03:01, (C) DRB1*04:01 and (D) DRB1*15:01. The frequency values were 
normalized based on the number of peptide binders per dataset. The Aggregation Propensity Average (AggP) values are displayed in parenthesis in each panel.
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3.5. In silico model of steric zippers

AF are mainly formed by the cross-β fold in which the core forms 
an interdigitated structure, named steric zippers [48] because the 
lateral chains of the amino acids from a β-strand intercalated with 
the lateral chains from the amino acids from the β-strand in front of 
it creating a tight, dry interface. Interestingly, these zippers have 
been observed in AF extracted from patients with amyloidosis [49].

Since P10 aggregates into AF in vitro, we investigated whether the 
peptides probed with ProImmune REVEAL® binding assays were able 
to form amyloid aggregates as well. To address this question, we 
initially submitted the ten selected sequences of the P10 variants 
(V1, V3, V5, V6, V7, V10, V11, V14, V15 and V16) to Cordax, an 
amyloid structure predictor able to model a given structure into 
steric zippers common to amyloids. For most of these P10 variants, 
regardless of their SF, at least two types of consensus steric zippers 
encompassing the sequence 7(H)TLAIR(Y)13 were predicted. The ex
ception was V11, which has a leucine replacing the tyrosine 13, 
which leads to the formation of 8TLAIRL13, 9LAIRLA14, and 3LQAIHT8 

zippers (Fig. 5A and B). Besides the two zipper types observed in all 
peptides (henceforth consensus zippers), V14 and V16 from SF-high 
can form zippers in the regions 2TYHAIH7/ 3YHAIHT8 and  
2MLHAIH7/3LHAIHT8, respectively. Regarding the SF-low, in V1, V5 
and V15 additional zippers were observed (Fig. 5A): V1: 2TLLDIH7 

and 4LDIHTL9; V5: 4QDIHTL9 and V15: 2NHHAIH7 and 3HHAIHT8 

(Fig. 5B). It is important to highlight that V3 and V7 from SF-low and 
V6 and V10 from SF-high are not depicted in Fig. 5 because they only 
form the two consensus zippers 7HTLAIR12 and 8TLAIRY13. Regarding 
the P10 zippers structure, it was previously shown that its regions  
2TLIAIH7, 3LIAIHT8, 4IAIHTL9, 7HTLAIR12 and 8TLAIRY13 are able to 
interact and form steric zippers as well [20].

3.6. In vitro aggregation experiments with P10 variants

Cordax modeling has shown that the P10 variants can, in prin
ciple, form steric zippers, in some cases in more than two sequence 

regions, suggesting that these peptides could form amyloid fibrils in 
solution. Regarding Aggrescan analyses, peptides from SF-high pre
sented higher aggregation propensity score (AggP = 7.38), when 
compared with SF-low peptides (AggP = −0.22; Aggrescan score for 
P10 = 28.3; Table 2). The ten peptides and P10 were synthesized for 
aggregation studies. Peptides were diluted at 20 μM; pH 7.4 at 37ºC 
for 18 h. Afterward, light scattering (LS), Thioflavin T (ThT) and 
Congo red (CR) binding were evaluated. These two probes are spe
cific for amyloid fibrils. As seen in Fig. 6A, with the exception of V10, 
the peptides from the SF-high presented high values of LS compar
able to P10 suggesting the formation of aggregates. Regarding ThT 
binding, in some cases the peptides bound even more ThT than P10, 
except for V6 and V10 that did not bind this amyloid-specific probe. 
However, all peptides from this SF-high group bind CR, including V6 
and V10. Altogether, these data suggest that the peptides that dis
played higher affinities for MHC-II (SF-high) underwent aggregation 
when in solution. Curiously, the peptides from SF-low did not pre
sent an increase in LS, ThT or CR binding, when diluted in aqueous 
solution, except for V1, which behaved like P10. Thus, except for V1, 
the peptides that displayed lower affinities from MHC-II (SF-low) 
seem to be soluble under these conditions.

TEM imaging was performed to gain insights into the archi
tecture of the aggregates formed in solution (Fig. 7). As seen, all 
peptides from SF-high formed mature amyloid fibrils, even V6 and 
V10, which did not bind ThT but bound Congo red. It is possible to 
see some differences in fibril morphology; some of them, like those 
from V14, have a ribbon-like appearance. Interestingly, the peptides 
from SF-low, when diluted in solution, did not form mature amyloid 
fibrils, but only amorphous aggregates. It must be emphasized that 
we had to search TEM grids exhaustively in order to find these 
amorphous structures. In accordance with Aggrescan scores and 
tinctorial experiments, V1 is an exception and amyloid fibrils were 
observed in the images (Fig. 7B).

Fig. 2. Summary of the modelling and MD simulation of P10 bound to the MHC-II allele. (A) Crystal structure of the complex template (PDB id 1t5x), and the mutation strategy to 
generate the bound P10 sequence by replacing position-by-position the amino acids from the peptide template. (B) Formation of the β-sheet fragment between P10 and MHC-II 
after 200 ns MD simulation (highlighted by a circle). (C) C-alpha RMSD of the peptide core from the initial structure for two MD replicas.
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4. Discussion

A motivation of this work was to assess if P10’s aggregation be
haviour could have a relevance to its great antigenic potential via the 
binding to MHC-II [20]. This prompted us to explore deeper whether 
there is a connection between aggregation propensity of a given 
peptide and its binding affinity and stability to MHC-II. First, we 
studied a set of MHC-II epitopes from the IEDB database split into 
high and low binders with different ranges of aggregation propen
sities. We observed statistically significant differences between the 
two sets in terms of the aggregation propensities and the affinities to 
multiple MHC-II alleles, prompting us to use P10 as a benchmark for 
further detailed analysis.

P10 presents in its sequence the main epitope domain HTLAIR 
that interacts with MHC-II and induces a protective immune re
sponse [50]. After running MD simulations of P10 bound to MHC-II, 
we found that the segment 53SFAE56 from the MHC-II α1 subunit 
underwent a marked conformational change by assuming a small β 
strand. This strand forms a β-sheet with the segment of P10 2TLIA6. 
This conformational change is likely related to this specific fragment 
of P10, given a similar adoption of a β-strand after it was inserted 
into a different peptide that was originally bound in an extended 
conformation. Searching in several structures of MHC-II bound to 
different peptides in the PDB, we found only the case of a CD4+ T cell 

Fig. 3. PARCE score evolution for the design run 1 using the TLIA fragment of P10 associated with the formation of the β-strand. A total of 50 mutation attempts were tried using 
the six scoring functions: (A) Pisa [32], (B) Firedock [33], (C) BACH [34,35], (D) ZRANK [37], (E) IRAD [38] and (F) BMF-BLUUES [39,40].

Table 2 
List of final peptides selected after running 100 ns MD simulations and calculating the 
average rank. The peptide sequence, Aggrescan score prediction, hydrophobicity value 
and number of violations to empirical solubility and synthesis rules are included. The 
P10 sequence is in bold. The N-terminal region that is different among all the peptides 
are underlined. 

Peptide Sequence Aggrescan Hydro Sol. rules Syn. 
rules

V1 QTLLDIHTLAIRYAN 12.7 1.88 1 1
V2 QNLHAIHTLAIRYAN -0.7 1.21 2 1
V3 QPFPDIHTLAIRYAN 0.6 1.24 2 1
V4 QPFCDIHTLAIRYAN 8.1 1.41 1 2
V5 QPFQDIHTLAIRYAN -6.6 0.27 1 1
V6 QTLTAIHTLAIRYAN 12.4 2.29 1 3
V7 QGLPAIHTLAIRYAN 9 2.99 2 3
V8 QMHHAIHTLAIRYAN -5 1.17 2 2
V9 QPFVDIHTLAIRYAN 16 2.2 1 1
V10 QGLKAIHTLAIRYAN 4.2 1.37 2 1
V11 QTLQAIHTLAIRLAN 5.3 2.29 2 3
V12 QSHHAIHTLAIRYAN -11.4 0.35 2 1
V13 QLLHAIHTLAIRYAN 13.6 3.05 2 1
V14 QTYHAIHTLAIRYAN 3.9 1.14 1 1
V15 QNHHAIHTLAIRYAN -16.8 -0.25 2 1
V16 QMLHAIHTLAIRYAN 11.1 2.63 2 2
V17 QTTISIHTLAIRYAN 16.3 1.81 1 3
V18 MTGDHIHTLAIRYFN -2.3 1.9 1 1
P10 QTLIAIHTLAIRYAN 28.3 3.72 2 3
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epitope named GMF (PGMMMGMFNMLSTVLGVSIL) from the poly
merase basic-1 protein (PB-1) of the influenza virus [51] to adopt a 
similar β-sheet conformation. When GMF binds into the cleft of 
MHC-II, the segment 6GMF8 adopts a β-strand, which forms a β-sheet 
with the residues SFA from the α-subunit of MHC-II. The question 
that remains open is whether this β-strand transition (induced by 
these peptides upon binding) is a particular case, or a plausible 
determinant for a stronger affinity of a given peptide to the MHC-II. 
Interestingly, the Aggrescan score of GMF is 51, a value even higher 
than that of P10 (28.3).

To study more in detail the relation between aggregation and 
MHC-II binding, we designed 18 peptides from P10 using PARCE [21]. 
Their experimental affinity and stability to MHC-II allele DRB1*01:01 
was probed using the Proimmune REVEAL® binding assays. We split 
the peptides into two subfamilies (SF): the one that presented low - 
or no- stability/affinity (SF-low), and the other SF had high stability/ 
affinity toward the MHC-II allele (SF-high). Most of the peptides 
from the SF-low presented negative Aggrescan scores (exceptions 
are V1, V4, V7 and V9 out of 10 peptides) while the Aggrescan scores 
for the peptides from SF-high were positive (exception is V2 out of 7 
peptides). This initial analysis corroborates what we observed with 
the massive analysis of the IEDB database, where we noticed a po
sitive correlation between aggregation propensity and affinity for 
MHC-II.

By experimentally probing the aggregation, we found that all 
members of the SF-high, including P10, bound ThT, Congo red or 
both, and presented, as seen by TEM, a fibrillar morphology con
firming they form amyloid fibril when in solution. We do not have an 
explanation of why V6 and V10 did not bind ThT, a property common 
to most amyloid fibrils [52]. It is possible that the AF formed by these 
two peptides are unable to accommodate the benzylamine and 
benzathiole rings of ThT in their grooves, which gives this probe a 
high quantum fluorescence yield. V6 and V10 are the only two 
peptides from the SF-high that are predicted to form only the two 
consensus zippers. More structural information would be necessary 
to understand why these fibrils do not bind ThT. Except for V1, all 
members of the SF-low did not bind ThT or Congo red and did not 
show the presence of amyloid fibrils by TEM. Only amorphous ag
gregates were observed but they seem to represent a minor fraction 
of the population in solution. V1, which has an Aggrescan score of 
12.7, is the only peptide from SF-low that kept some sequence si
milarities with P10 (P10 → QTLIA; V1 → QTLLD). This could explain 
why V1 kept some of its aggregation propensity.

Overall, there are several factors that determine whether a 
peptide is displayed or not in MHC-II, including its uptake route, 
accessibility of the native antigenic protein to proteases, con
centration, as well as structural properties such as size, primary 
sequence, and complementarity to the MHC-II pockets. Here, we 
describe an additional layer of information that could be used to 

Fig. 4. Experimental REVEAL binding score at 0 h (orange) and at 24 h (green) (A) and stability index (B) for the selected peptides (# 1–18), the reference P10 sequence (#19) and 
the Influenza control (#20). The variants are assigned to the number given in Table 2. Each peptide in the x-axis is represented by the design strategies explained in Methods 2.2.3.
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predict good and poor epitope-binders to MHC-II, which is its ag
gregation propensity. According to the Aggregation hypothesis of 
antigen selection as enunciated by Forsdyke [53,54], homoaggrega
tion of antigenic peptides, predominantly an entropy-driven process 
favoured by an increase in temperature (pyrexia), would colocalize 
identical peptides, thus facilitating their collective presentation. As 
shown in our previous study of P10 [20], its aggregation into amyloid 
fibrils was more prominent at neutral pH than at acidic pH. There are 
studies proposing that aggregation of antigens might be a strategy of 
phagocytic cells to concentrate and preserve the integrity of these 
antigenic peptides before their insertion into the MHC-II cleft and 
displacement of CLIP from the cleft. Interestingly, the core sequence 
of CLIP is a nine-residue fragment (MRMATPLLM) with an Aggrescan 
score of 20.1, suggesting it has an aggregation propensity similar to 
the high affinity peptides here reported. The affinity of CLIP for MHC- 
II can vary largely and this variation could be associated with the 

ability of a peptide to displace it from the cleft. When released from 
the MHC-II cleft, it would be possible that CLIP undergoes ag
gregation for storage. In principle, it is counterintuitive why a pep
tide with a high aggregation propensity would present a higher 
affinity for MHC-II cleft, but in the light of the "Aggregation Hy
pothesis" for antigen selection it might have physiological sig
nificance.

In the last years, progress has been made in the development of 
bioinformatics tools to estimate and predict binding affinities be
tween MHC-II alleles and antigenic peptides, although false positives 
remain. It is possible that the lack of an accurate algorithm has to do 
with the MHC-II’s fluctuations/dynamics that influence epitope re
cognition and stable binding. Most of the X-ray structures so far 
resolved only capture the ground state of the MHC-II and they pre
sent structural similarity. Complementary techniques such as MD 
simulation, H-D exchange and NMR among others are necessary to 

Fig. 5. Cordax modeling of steric zippers predicted to form by P10 variants. (A) Zippers common to all sequences except V11 (*). (B) Steric zippers predicted in SF-high composed 
of peptides V11, V14 and V16 (V6 and V10 are not shown because they have only two predicted consensus zippers). (C) Steric zippers predicted in SF-low composed of peptides V1, 
V5 and V15 (V3 and V7 are not shown because they have only two predicted consensus zippers).
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build the overall picture of the intimacy of MHC-II in the free and 
bound states. This task scales in complexity when we envision a 
large number of MHC-II alleles and the repertoire of possible epi
topes to bind them. Moreover, there are other partners that stabilize 
pMHC-II such as HLA-DM (DM), which influences peptide editing 
and biases a peptide-exchange reaction. DM is a peptide-exchange 
factor that removes CLIP from the cleft of MHC-II replacing it with an 
antigenic peptide to be displayed at the plasma membrane.

By using mass spectrometry in combination with plasmon re
sonance binding experiments and crystal structure determination, 
Painter and colleagues [55] described an intermediate state of HLA- 
DR1 in the region of the 310 helix (α45–50) and the adjacent ex
tended region (α51–54) of the α-subunit, a region that includes the 
structural modifications here observed. This study showed a pro
minent role of αF54, which displays important sensitivity to DM- 
mediated peptide release. For example, the variant of MHC-II αF54C 
resulted in a protein with greater susceptibility to DM-mediated 
peptide release, revealing the structural alterations that make MHC- 

II more receptive to DM. In an additional study, Painter and collea
gues [56] mapped the conformational heterogeneity of 41 peptide- 
MHC-II complexes (pMHC-II) and their data showed again that the 
310-helical region (α45–54), the kink region in the β1-helix (β62–71) 
and the β2-domain (β105–112) were the most heterogeneous regions 
of the protein upon binding. Our MD simulation data pointed to a 
determinant role of the region of the α subunit of MHC-II nearby 
segment 53SFAE56 that is close to these previously characterized 
dynamic regions.

Because of the "Aggregation Hypothesis" and the pH effect, we 
envision that P10 and other antigenic peptides, when cleaved from 
their harbouring protein during antigen processing in early/late 
endosomes (pH > 5), might form aggregates very fast inside these 
compartments until the pH is acidified by the fusion with lysosomes, 
generating the endolysosomes (pH < 5). This brings about the dis
sociation of the peptides from the aggregates to bind into the MHC-II 
cleft, followed by migration to the cell membrane and presentation 
to another immune cell. It has been shown that several peptidic 

Fig. 6. In vitro aggregation profile of the ten peptides derived from P10 belonging to SF-high (high affinity for MHC-II; red) and SF-low (low affinity for MHC-II; green). 20 μM of 
each peptide was incubated in PBS, 37 oC for 18 h and Light Scattering (A and B), Thioflavin-T (ThT; C and D) and Congo red (CR; E and F) binding were measured. Data were 
analysed by one-way ANOVA. Significant difference relative to control group: **** p  <  0,0001, *** p  <  0,0009, ** p  <  0,0025 and * p  <  0,05.
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hormones are stored as AF in the cells being released promptly when 
necessary [57]. Together with other peptides and proteins that adopt 
an amyloid fold with biological function, they are called functional 
amyloids. The data presented suggest that antigenic peptides can 
aggregate into AF, at least in vitro, constituting a reservoir of optimal 
antigens to MHC-II leaving the soluble peptides more susceptible to 
proteolysis. This would represent another example of functional 

amyloids here described for the first time. How general this phe
nomenon is an object for further investigations.
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