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Abstract

Remodelling of cell–cell junctions is crucial for proper tissue development and barrier 
function. The cadherin-based adherens junctions anchor via β-catenin and α-catenin to the 
actomyosin cytoskeleton, together forming a junctional mechanotransduction complex. 
Tension-induced conformational changes in the mechanosensitive α-catenin protein induce 
junctional vinculin recruitment. In endothelial cells, vinculin protects the remodelling of 
VE–cadherin junctions. In this study, we have addressed the role of vinculin in endothelial 
barrier function in the developing vasculature. In vitro experiments, using endothelial 
cells in which α-catenin was replaced by a vinculin-binding-deficient mutant, showed that 
junctional recruitment of vinculin promotes endothelial barrier function. To assess the 
role of vinculin within blood vessels in vivo, we next investigated barrier function in the 
vasculature of vcl knockout zebrafish. In the absence of vinculin, sprouting angiogenesis 
and vessel perfusion still occurred. Intriguingly, the absence of vinculin made the blood 
vessels more permeable for 10 kDa dextran molecules but not for larger tracers. Taken 
together, our findings demonstrate that vinculin strengthens the endothelial barrier and 
prevents vascular leakage in developing vessels.

Introduction

The semi-permeable vascular barrier between the blood 
and the surrounding tissue is maintained by a monolayer 
of endothelial cells (1). The endothelial barrier regulates 
the extravasation of leukocytes and fluid (2, 3). Changes 
in permeability induced by angiogenic growth factors 
or inflammatory cytokines are often temporal and 
reversible, ensuring recovery of the vascular barrier 
(4). Chronic disruptions of the endothelial barrier 
however, perturb vascular homeostasis and contribute 
to a multitude of pathologies, including atherosclerosis, 

cancer and inflammatory diseases (1, 5). Hence, 
maintaining a tight, yet adaptable, endothelial barrier is 
important.

The endothelium in the developing vasculature is 
exposed to multiple forces that are derived from the 
mural cells, blood pressure and hemodynamic forces from 
the bloodstream (6, 7, 8, 9). Endothelial cells sense and 
transmit such mechanical cues via their cell–cell contacts, 
which evoke proportional cellular responses to maintain 
the endothelial barrier (10). VE–cadherin-based adherens 
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junctions (AJs) are crucial adhesion structures that 
form endothelial cell–cell contacts (11, 12). Endothelial 
junction remodelling is required for collective endothelial 
migration during sprouting angiogenesis (13, 14). The 
cytoplasmic domain of the transmembrane VE–cadherin 
protein binds to β-catenin and α-catenin, which in turn 
couples to the actomyosin cytoskeleton and forms the 
core junctional mechanotransduction complex (15, 
16, 17, 18). The interaction of the VE–cadherin–catenin 
complex with the actin cytoskeleton stabilises the AJs and 
maintains endothelial monolayer integrity (19, 20, 21).

Tension on the VE–cadherin complex results in 
unfolding of α-catenin, which enhances its actin-binding 
affinity and exposes a cryptic binding site for vinculin (16, 
22, 23, 24, 25, 26, 27). The vinculin–α-catenin interaction 
drives α-catenin-mediated mechanotransduction and 
preserves junctional integrity during force-dependent 
remodelling in cultured endothelial and epithelial cells 
(22, 25, 28, 29, 30, 31). Vinculin recruitment to AJs occurs 
to different extents during agonist-induced endothelial 
barrier enhancing and disrupting processes (22, 32, 
33). In zebrafish embryos, vinculin associates with 
endothelial junctions that are remodelled by changes in 
blood flow (34) and endothelial expression of vinculin 
is important for angiogenesis in the postnatal mouse 
retina (35). Whether junctional vinculin has a role in 
endothelial barrier function remains unclear.

In this study, we found that junctional vinculin 
recruitment facilitates endothelial barrier function in 
vitro. To define the importance of vinculin for endothelial 
tissue integrity in vivo, we examined the vasculature of 
vcl-knockout zebrafish. We found that the endothelial 
cells still generated a functional and perfused vasculature 
in the absence of vinculin. Interestingly, the developed 
blood vessels in vcl mutant zebrafish were more permeable 
for small dextran molecules, whereas large dextran 
molecules did not extravasate. Taken together, these 
results point to a role for vinculin in strengthening the 
endothelial barrier in the vasculature.

Materials and methods

Antibodies and reagents

Rabbit polyclonal anti-VE–cadherin (Cat# 36-1900, 
diluted 1:200 for immunofluorescence (IF)) was from 
Thermo Fischer Scientific. Purified mouse anti-vinculin 
(clone hVIN-1, Cat# V9131, diluted 1:400 for IF) was 
from Sigma Aldrich. Rabbit polyclonal anti-β-actin 
(Cat# 4867S, diluted 1:1000 for Western blot (WB)) and 

rabbit polyclonal anti-phospho-paxillin-Tyr118 (Cat# 
69363, diluted 1:200 for IF) were from Cell Signaling. 
Mouse monoclonal anti-α-catenin (Cat# 13-9700; diluted 
1:1000 for WB) was from Invitrogen/Zymed and mouse 
monoclonal anti-GFP (B-2, Cat# sc-9996, diluted 1:1000 
for WB) was from Santa Cruz Biotechnology. Promofluor 
415 Phalloidin (Promokine, Cat# PK-PF415-7-01, diluted 
1:200 for IF) was used for IF of F-actin. Alexa Fluor 488 or 
594-coupled secondary antibodies were from Invitrogen 
(diluted 1:250 for IF). Secondary antibodies coupled to 
horseradish peroxidase (HRP) were from Bio-Rad (diluted 
1:1000 for WB). Human plasma-derived thrombin (used 
at 1 U/mL) was purchased from Sigma–Aldrich.

Cell culture

Pooled primary human umbilical vein endothelial cells 
(HUVECs) from different donors (Lonza) were cultured 
in endothelial cell growth medium 2 (EGM-2) culture 
medium supplemented with the growth medium 2 
supplement pack (PromoCell) on gelatin-coated tissue 
flasks. HEK293T cells (ATCC) were cultured in Dulbecco’s 
modified Eagle’s medium with l-glutamine and 
supplemented with 10% FCS and 1% pen/strep. Cells were 
recently authenticated and tested for contamination.

DNA plasmids and lentivirus production

To silence α-catenin expression in HUVECs, pLKO.1-
shRNA plasmid targeting human α-catenin mRNA was used 
(TRCN0000062653). ShC002 was used as shRNA control 
(Sigma–Aldrich mission library). The mouse α-catenin–
GFP and α-catenin–∆VBS–GFP lentiviral plasmids were 
previously described (22). Lentivirus was generated by 
transfecting HEK293T cells with the lentiviral expression 
plasmids and third-generation packaging plasmids using 
Trans-IT-LTI transfection reagents (Mirus) as described 
previously (42). To transduce HUVECs, the supernatant 
containing the lentiviral particles was mixed at a 5:1 
ratio with EGM-2 and incubated with the HUVECs for 
16 h. Subsequently, transduced HUVECs were selected 
for expression of the shRNA with 2.5 µg/mL puromycin 
(Sigma). shRNA-based knockdown levels were analysed at 
least 72 h after transduction.

ECIS

To measure endothelial barrier resistance, we used electric-
cell impedance sensing as previously described (43). 
Gold electrode arrays (8W10E, Applied Biophysics) were 
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Figure 1
Junctional vinculin strengthens the endothelial barrier in vitro. (A) Representative Western blot analysis of shControl and shα-catenin transduced HUVECs 
rescued with lentiviral expression of α-catenin–GFP or α-catenin–∆VBS–GFP. Blotted for α-catenin, GFP or β-actin. Bar graphs indicate the average ± s.e. 
expression levels of α-catenin–GFP and α-catenin–ΔVBS–GFP in shα-catenin-transduced HUVECs relative to endogenous α-catenin levels in shControl 
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treated with 10 mM l-cysteine (Sigma) for 15 min at room 
temperature. After washing with MQ water, the wells were 
coated with 5 µg/mL fibronectin in MQ for 1 h at 37°C and 
5% CO2. Subsequently, 120,000 cells per well were seeded 
on the arrays and the impedance was measured during 
monolayer formation at 4000 Hz using the ECIS model 
ZTheta (Applied BioPhysics).

Immunofluorescence stainings

For immunofluorescence stainings, HUVECs were cultured 
on 5 µg/mL fibronectin-coated coverslips and later fixed for 
15 min at room temperature with 4% paraformaldehyde 
in PBS++ (PBS supplemented with 1 mM CaCl2 and 0.5 
mM MgCl2). The fixed cells were permeabilised for 5 
min at room temperature with 0.5% Triton X-100 in PBS 
and blocked for 15 min in 2% BSA in PBS. Primary and 
secondary antibodies were diluted in 0.5% BSA in PBS and 
incubated for 45 min. Between incubations, fixed cells 
were washed three times with 0.5% BSA in PBS. Coverslips 
were mounted in Mowiol4-88/DABCO solution (Sigma).

Immunoblot analysis

HUVECs were lysed using reduced sample buffer 
containing 4% β-mercaptoethanol. Samples were 
denatured at 95°C for 5 min and subsequently loaded on 
a 10% SDS page gel. Gel running was performed in SDS-
page running buffer (25 mM Tris–HCl, pH 8.3, 192 mM 
glycine and 0.1% SDS) and blotted on ethanol-activated 
PVDF membranes using full-wet transfer blot buffer (25 
mM Tris–HCl, pH 8.3, 192 mM glycine and 20% (v/v) 
ethanol). Blots were blocked in 5% milk powder in 
tris-buffered saline (TBS) for 30 min and subsequently 
incubated with the primary antibodies in 5% milk 
powder in TBS supplemented with Tween-20 (TBS-t) 
overnight at 4°C. The secondary antibodies, coupled to 
HRP, were incubated for 45 min at room temperature. 

Between antibody incubations, blots were washed three 
times with TBS-t. As a final step before visualisation, 
blots were washed one time with TBS. HRP signal was 
visualised using enhanced chemiluminescence (ECL) 
detection (Supersignal West Pico PLUS, Thermo Fischer) 
with an ImageQuant LAS 4000 (GE Healthcare).

Zebrafish lines and maintenance

Zebrafish were maintained in standard housing conditions 
according to FELASA guidelines (44). All experiments were 
performed in accordance with federal guidelines and were 
approved by the Kantonales Veterinäramt of Kanton Basel-
Stadt (1027H, 1014HE2, 1014G). The vclahu10818 ; vclbhu11202 

zebrafish lines (38) were crossed into the transgenic 
Tg(fli1a:EGFP)ƴ1 line, which labels all endothelial cells (45) 
as described in (34).

Genotyping of the vinculin (vcl)-mutant lines

For genotyping of the vinculin-mutant alleles, genomic 
DNA was extracted from adult fish fin biopsies or from 
whole embryos using a standard protocol (46) with 
addition of proteinase K to the sample. The extracted 
genomic DNA was then used to genotype the vcla and 
vclb loci. Genotyping protocol for vcla or vclb alleles was 
performed as described previously (34).

Microangiography

48 hpf zebrafish embryos were anaesthetised with 1× 
tricaine (0.08%, Sigma) and were injected with 250 µg/mL 
of 10 kDa or 70 kDa rhodamine-dextran (Molecular Probes) 
in the duct of Cuvier using glass needles (Biomedical 
Instruments) and standard microinjection protocols (47, 
48). The injected embryos were transferred back to embryo 
media (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM 
MgSO4, pH 7.4) to recover and subsequently imaged 1 h 

HUVECs. n.s., non-significant (non-parametric Wilcoxon matched-pairs signed-rank test). Data are from three independent experiments. (B) 
Representative immunofluorescent images of shControl and shα-catenin-transduced HUVECs rescued with lentiviral expression of α-catenin–GFP or 
α-catenin–∆VBS–GFP. Stained for F-actin (grey) and VE-cadherin (magenta). (C) Representative IF images of shα-catenin HUVECs rescued with α-catenin–
GFP or α-catenin–∆VBS–GFP (green) that were stained for vinculin (magenta) and F-actin (grey). Colocalisation of vinculin with α-catenin–GFP or 
α-catenin–ΔVBS–GFP was analysed by line scans displaying signal intensity (arbitrary units) across the AJs and FAs as indicated. Scale bar, 10 µm. (D) 
Representative IF images of shα-catenin HUVECs rescued with α-catenin–GFP or α-catenin–∆VBS–GFP (green) that were stained for vinculin (magenta) and 
phosphor-Paxillin Tyr118 (grey). Colocalisation of vinculin with pPaxillin was analysed by line scans displaying signal intensity (arbitrary units) across FAs 
as indicated. Scale bar, 10 µm. (E) Line graph showing the average resistance ± s.e. measured with ECIS at 4000 Hz of indicated endothelial monolayers 
over time. Data are from three independent experiments. (F) Bar graphs representing the average resistance ± s.e. measured with ECIS at 4000 Hz of 
indicated endothelial monolayers after 24 h. Data are from three independent experiments. n.s., non-significant, *P < 0.05, **P < 0.01, ***P < 0.001 
(one-Way ANOVA with Tukey’s post hoc test for multiple comparisons). (G) Line graph showing the average resistance ± s.d. measured with ECIS at 4000 
Hz of indicated endothelial monolayers over time following treatment with the permeability factor thrombin. Data are normalised to the baseline values 
prior to thrombin treatment and are derived from two independent experiments.

Figure 1 (Continued)
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after microinjections. For visualisation of vascular leakage, 
embryos were mounted in 0.7% low-melting-point agarose 
(Sigma) and imaged with the Zeiss Axioplan Airy (25× 
oil/0.8 NA objective, confocal mode).

Imaging and image analysis

Fixed HUVECs were imaged using widefield microscopy on 
a NIKON Eclipse TI, with a SOLA SE II light source, 60× 1.49 

Figure 2
Vinculin ensures vascular barrier function for 10 kDa dextran. (A) Images of ISVs from 48 hpf Tg(fli1:EGFP) vcla+/+;vclb+/+, vcla−/−;vclb+/− or vcla−/−;vclb−/− 
embryos injected with 10 kDa rhodamine-dextran (red). Lower panels are single-channel images of the rhodamine signal. Scale bars, 50 µm. (A, i-iii) 
Corresponding close-up images showing the dextran leakage in the perivascular area around the dorsal longitudinal anastomotic vessel (DLAV). (A, j-jjj) 
Corresponding close-up images showing the dextran leakage in the perivascular area around an intersegmental vessel (ISV). Scale bars, 10 µm. (A, l-lll) 
Close-up images of an ISV and the dorsal aorta (DA) showing the rhodamine signal within these vessels. Scale bar, 20 µm. (B) Violin plots showing the 
average leakage ± s.e. of 10 kDa dextran into the perivascular area of the DLAV or ISVs normalised to the dextran inside the DLAV or ISVs from 48 hpf 
embryos. The dotted lines represent the quartiles and the straight lines represent the median, n =  10 vcla+/+;vclb+/+, n = 25 vcla−/−;vclb+/− and n = 13 
vcla−/−;vclb−/− embryos, n.s., non-significant, *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA and Dunnett’s post-test). PCV, posterior cardinal vein. (C) 
Violin plot showing the ISV perfusion determined as the ratio between fluorescent dextran levels inside the ISV ± s.e. and dextran inside the dorsal aorta 
(DA) from 48 hpf embryos. The dotted lines represent the quartiles, the straight lines represent the median. n = 10 vcla+/+;vclb+/+, n = 25 vcla−/−;vclb+/− and 
n = 13 vcla−/−;vclb−/− embryos.
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Figure 3
Loss of vinculin does not impair vascular barrier function for 70 kDa dextran. (A) Images of ISVs from 48 hpf Tg(fli1:EGFP) vcla+/+;vclb+/+, vcla−/−;vclb+/− or 
vcla−/−;vclb−/− embryos injected with 70 kDa rhodamine-dextran (red). Lower panels are single channel images of the rhodamine signal. Scale bars, 50 µm. 
(A, i-iii) Corresponding close-up images showing the dextran levels in the perivascular area around the dorsal longitudinal anastomotic vessel (DLAV). (A, 
j-jjj) Corresponding close-up images showing the dextran levels in the perivascular area around an intersegmental vessel (ISV). Scale bars, 10 µm. (A, l-lll) 
Close-up images of an ISV and the dorsal aorta (DA) showing the rhodamine signal within these vessels. Scale bar, 20 μm. (B) Violin plot showing the 
average leakage ± s.e. of 70 kDa dextran into the perivascular area of the DLAV or ISVs normalised to the dextran inside the DLAV or ISVs from 48 hpf 
embryos. The dotted lines represent the quartiles, the straight lines represent the median, n = 7 vcla+/+;vclb+/+, n = 16 vcla−/−;vclb+/− and n = 7 vcla−/−;vclb−/− 
embryos, n.s. non-significant, one-way ANOVA and Dunnett’s post-test. (C) Violin plot showing the ISV perfusion determined as the ratio between 
fluorescent dextran levels inside the ISV ± s.e. and dextran inside the dorsal aorta (DA) from 48 hpf embryos. The dotted lines represent the quartiles, the 
straight lines represent the median, n = 10 vcla+/+;vclb+/+, n = 16 vcla−/−;vclb+/− and n = 8 vcla−/−;vclb−/− embryos.
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NA Apo TIRF (oil) objective and Andor Zyla 4.2 plus sCMOS 
camera and standard CFP, GFP or mCherry filter cubes 
(NIKON). For live imaging of zebrafish, a Zeiss LSM880 
Airyscan inverted confocal microscope, with a 25× 0.8 NA 
oil objective was used. First, live embryos were selected for 
fluorescence signal and subsequently anaesthetised with 
1× tricaine (0.08%) in E3 fish water and mounted in glass 
bottom Petri dishes (MatTek) using 0.7% low-melting-point 
agarose (Sigma) containing 1× tricaine. For live imaging, 
E3 with 1× tricaine and 0.003% 1-phenyl-2-thiourea 
(PTU, Sigma) was added to avoid pigmentation. Images 
were acquired with a zoom of 1–1.6 and z-stack step size 
of 0.5–1.0 µm, with a time interval of 25–30 min. Vascular 
perfusion and vascular leakage were analysed based on the 
fluorescent dextran levels in zebrafish embryos at 48 hpf. 
Vascular perfusion was defined as the ratio of fluorescent 
dextran levels in the ISVs to the levels of dextran inside the 
dorsal aorta (DA). Vascular leakage was defined as the ratio 
of the dextran fluorescent levels at the perivascular area of 
the vessels to the dextran levels inside the vessels. For this 
analysis, DLAV and its perivascular areas were analysed.

Statistical analysis

Graphpad Prism was used for the statistical analysis of the 
data. All violin plots represent data distribution, with the 
dashed line representing the quartiles and the straight 
line representing the median. When two groups were 
compared, a Wilcoxon test was used. When two or more 
groups were compared to the control, a one-way ANOVA 
was used, in combination with Tukey’s or Dunnett’s post 
hoc test for multiple comparisons and a D’Agostino–
Pearson test for normality. Asterisks indicate P values and 
are defined as n.s., non-significant, * P < 0.05, ** P <0.01, 
*** P < 0.001.

Results

Junctional vinculin strengthens the endothelial 
barrier in vitro

Vinculin is recruited to tensile AJs by α-catenin. In addition, 
vinculin localises at integrin-based focal adhesions 
(FAs) through its force-dependent interaction with talin 
(36). To specifically investigate the role of junctional 
vinculin, we used lentiviral shRNA transductions that 
deplete endogenous α-catenin from human umbilical 
vein endothelial cells (HUVECs). Subsequently, we 
lentivirally expressed mouse α-catenin–GFP (green 
fluorescent protein) or α-catenin–∆VBS–GFP, a modified 

α-catenin protein in which the binding to vinculin is 
prevented (22). Western blot analysis confirmed the 
depletion of endogenous α-catenin and expression of the 
α-catenin–GFP and α-catenin–∆VBS–GFP in the rescued 
cells (Fig. 1A). Immunofluorescent (IF) stainings for VE–
cadherin were performed to assess AJs in the different 
experimental conditions. Knockdown of α-catenin led 
to disassembly of AJs. The expression of α-catenin–GFP 
and α–catenin–∆VBS–GFP restored the AJs in shα–catenin 
HUVECs (Fig. 1B), as shown previously (22). Next, we 
examined junctional vinculin recruitment by performing 
IF analysis. Vinculin localised at both FAs and AJs in wild 
type α-catenin rescued HUVECs (Fig. 1C and D). Analysis 
of α-catenin–∆VBS-based junctions showed efficient 
preclusion of vinculin from the tensile AJs, while vinculin 
localisation at the FAs was maintained (Fig. 1C and D). 
This confirms the junction-specific depletion of vinculin 
in the α-catenin–∆VBS-expressing cells. To examine 
whether junctional vinculin controls endothelial barrier 
function, we next performed electric cell-substrate 
impedance sensing (ECIS) as readout for the tightness of 
the endothelial cell monolayers. Silencing of endogenous 
α-catenin expression led to a decrease in transendothelial 
resistance, indicating an impairment of endothelial 
barrier function (Fig. 1E). Restoring α-catenin levels by 
α-catenin–GFP re-established endothelial monolayer 
integrity; however, α–catenin–∆VBS–GFP expression, 
the mutated form lacking the vinculin binding site 
did not fully restore barrier function (Fig. 1E and F). To 
investigate whether the junctional depletion of vinculin 
might affect barrier loss upon physiological remodelling 
conditions, we performed ECIS experiments following 
treatment with the permeability factor Thrombin. These 
experiments showed that thrombin-induced barrier loss 
occurs similarly in α-catenin–GFP or α-catenin–∆VBS–
GFP rescued endothelial monolayers (Fig. 1G). Taken 
together, these results indicate that junctional vinculin 
promotes basal endothelial barrier function.

Vinculin mediates vascular barrier function for 
small molecules

Since junctional vinculin strengthens the barrier 
function of cultured endothelial monolayers, we next 
investigated the consequence of vinculin ablation on 
the vascular barrier in vivo. We recently showed that 
vinculin is important for the formation of junctional 
fingers in response to blood flow in the developing 
vessels of zebrafish (34). The zebrafish genome encodes 
two vinculin isoforms, vinculin a (vcla) and vinculin 
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b (vclb) (37, 38). The genetic ablation of both vinculin 
isoforms delays sprouting angiogenesis during early 
vascular development (34). Nevertheless, the vcl-KO 
embryos develop functional blood vessels and no 
evident haemorrhages were observed (34). To assess 
the permeability of the endothelial barrier, the 10 kDa 
rhodamine-dextran tracer was injected into the duct of 
Cuvier at 48 hpf of control or vcl-KO Tg(fli1a:EGFP)y1 
embryos, in which the fli1a promoter drives the 
endothelial-specific expression of EGFP. One hour 
after dextran-microinjections, we examined vascular 
perfusion and leakage by imaging the blood vessels of the 
zebrafish trunk, namely the intersegmental vessels (ISVs), 
the DLAV and their perivascular areas. The ISVs of control 
embryos were perfused, as shown by the presence of the 
10 kDa rhodamine-dextran tracer in the lumen of blood 
vessels. In control zebrafish, the tracer was maintained in 
the blood vessel lumen of the DLAV and the ISVs and did 
not extravasate into the perivascular regions (Fig. 2A-C), 
which indicates that endothelial junctions are sufficiently 
tight to prevent leakage of small molecular such as 10 
kDa rhodamine-dextran. Conversely, in vcl mutants, 
we observed extensive leakage of the tracer dye into the 
surrounding tissues (Fig. 2A and B). In vcla−/−;vclb+/−, and in 
particular, in vcl full-KO embryos, the 10 kDa rhodamine-
dextran intensities were lower within the perfused ISVs, 
suggesting that dextran molecules extravasated from 
the circulation (Fig. 2C). Our analysis shows that vcla−/−; 
vclb+/− and vcl full-KO embryos exhibited increased 
perivascular dextran levels (Fig. 2A and B). To examine 
the requirement of vinculin for vascular barrier function 
of larger molecules, we next injected 70 kDa rhodamine-
dextran in fli1:EGFP control and vcl KO embryos. An 
hour after dextran-microinjections, no differences in 
vascular permeability and perfusion between control 
and vcl heterozygous or homozygous KO embryos 
were observed (Fig. 3A-C). Taken together, these 
experiments demonstrate that vinculin is required for 
the strengthening of the endothelial barrier in newly 
developed blood vessels to prevent leakage of small 
molecules.

Discussion

Endothelial barrier function is tightly regulated through 
force-dependent remodelling of cell–cell contacts. 
Failure of the endothelial junctions to adapt to subjected 
forces leads to vascular leakage and inflammation in 
cardiovascular disease (1). In this study, we examined 
the importance of the mechanotransduction protein 

vinculin for the endothelial barrier using both in vitro 
and in vivo functional approaches. These results reveal 
that recruitment of vinculin to AJs strengthens the 
endothelial cell–cell junctions in blood vessels.

Vinculin knockout mice are embryonically lethal 
due to neuronal and cardiovascular defects at E10.5 (39), 
demonstrating the importance of vinculin for mammalian 
development. In addition, endothelial-specific vinculin 
depletion constrains collective endothelial migration 
during retinal angiogenesis in mice (35), indicating that 
endothelial vinculin contributes to vascular development. 
Endothelial vinculin is recruited to both integrin-based FAs 
and cadherin-based AJs in a force-dependent manner (29, 
36). When tensile forces remodel AJs, vinculin-mediated 
mechanotransduction occurs via the VE–cadherin complex 
(22). By generating endothelial cells that form junctions 
through the vinculin-binding-deficient α-catenin mutant 
(α-catenin–∆VBS), we now specifically showed that 
junctional vinculin recruitment supports strengthening 
of monolayer integrity in cultured endothelial cells. Single 
vcla or vclb mutant zebrafish display mild developmental 
defects (38, 40). We find that the vcla−/−;vclb−/− double 
knockout zebrafish exhibit mild defects in vascular 
morphogenesis and eventually the morphogenetic process 
gives rise to a functional vasculature (34). In line with the 
expectation that vinculin modulates, rather than being 
needed for, endothelial cell–cell junctions (22, 27, 28), we 
observed vascular leakage specifically for small molecules, 
10 kDa, in vinculin knockout zebrafish, whereas the 
vasculature still acted as a barrier for larger molecules. This 
result is corroborated by the notion that recruitment of 
vinculin to VE–cadherin-based junctions does not affect 
histamine-induced vascular leakage of Evans Blue in mice, 
which is a measure for the extravasation of large molecules 
(27). Even though the measured resistance formed by 
cultured endothelial cells expressing α-catenin–∆VBS 
indicated minor barrier differences upon the junctional 
depletion of vinculin, the knockout of vinculin in vivo 
resulted in significant leakage of small molecules. This 
indicates that the endothelial dysfunction upon vinculin 
depletion becomes aggravated in pressurised vascular 
conditions. Potentially, the mild phenotype of the vinculin 
knockout zebrafish might be aggravated under pathological 
conditions that weaken the endothelial barrier, such as 
during inflammation or sepsis. Together, the data show that 
vinculin tightens endothelial junctions in blood vessels.

We expect that the depletion of the junctional vinculin 
pool underlies the vascular phenotype of the vinculin KO 
zebrafish. Cultured endothelial cells that form junctions 
through α-catenin–∆VBS fail to sprout in collagen gels 
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(data not shown). This suggests that the junctional 
pool of vinculin controls endothelial dynamics within 
angiogenic sprouts, an effect that has also been observed 
in endothelial-specific knockout mice (35). Moreover, we 
recently observed differences in flow-induced endothelial 
junction dynamics in the ISVs of control and vinculin 
KO zebrafish, whereas integrin-dependent filopodia still 
formed equally (34). Other groups showed that juvenile 
Vclb-mutant zebrafish display epicardial defects and 
pericardial edema (38, 40, 41). Recruitment of vinculin 
was observed during the maturation of cell–cell junctions 
between cardiomyocytes in vivo (41). These findings 
suggest that in vivo, vinculin’s role in cell–cell junctions 
is prominent. Nevertheless, a potential contribution of 
vinculin’s role in integrin-based adhesion cannot be fully 
ruled out in this model system.

Finally, we surmise that junctional vinculin 
recruitment fortifies the endothelial barrier for small 
molecules upon vascular remodelling. Future work 
targeting the protective function of vinculin using 
pharmacological approaches, for instance by enhancing 
its interaction with the junctions, may provide a strategy 
to treat pathologies that entail vascular permeability.
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