Skip to main content
. 2023 Feb 20;14:1072273. doi: 10.3389/fphys.2023.1072273

TABLE 2.

Classification performance of the proposed machine learning method. Note, NT, PHT, and HT denote normotension, prehypertension, and hypertension, respectively. SP stands for specificity, SN stands for sensitivity, ACC stands for accuracy, PRE stands for precision, MCC stands for Matthew’s correlation coefficient, Kappa stands for Cohen’s kappa coefficient, AUC stands for Area under curve. Values in Bold indicate highest scores achieved for each classification per evaluation metric.

Model Trail SP (%) SN (%) ACC (%) PRE (%) F1 score (%) AUC (%) MCC (%) Kappa (%) Time (s)
Decision tree NT vs. PHT 84.44 70.88 72.83 72.89 72.85 72.65 45.22 45.22 0.23
NT vs. HT 80.39 79.60 79.93 80.30 80.02 79.99 59.49 59.34 0.28
(NT + PHT) vs. HT 96.26 65.88 80.41 80.41 80.41 76.07 52.14 52.14 0.57
AdaBoost NT vs. PHT 78.74 71.58 75.51 75.47 75.48 75.16 50.44 50.43 1.64
NT vs. HT 88.22 75.29 82.75 82.73 82.64 81.76 64.44 64.25 1.59
(NT + PHT) vs. HT 92.26 60.39 83.11 82.56 82.48 76.33 56.73 56.06 2.47
GBDT NT vs. PHT 83.62 77.54 80.88 80.86 80.86 80.58 61.32 61.30 7.24
NT vs. HT 93.10 82.35 88.58 88.62 88.48 87.73 76.50 76.30 6.79
(NT + PHT) vs. HT 96.37 66.27 87.72 87.75 87.15 81.32 68.85 67.63 11.30
Random forest NT vs. PHT 84.20 76.14 80.57 80.54 80.52 80.17 60.64 60.59 1.30
NT vs. HT 93.68 83.14 89.22 89.30 89.15 88.41 77.87 77.67 1.48
(NT + PHT) vs. HT 96.84 61.57 86.71 86.93 85.90 79.20 66.15 64.28 2.49
XgBoost NT vs. PHT 85.34 78.95 82.46 82.44 82.44 82.15 64.50 64.48 1.34
NT vs. HT 93.68 87.84 91.21 91.21 91.19 90.76 81.95 81.91 1.09
(NT + PHT) vs. HT 95.73 74.90 89.75 89.63 89.50 85.32 74.26 73.84 2.02
LightGBM NT vs. PHT 85.92 80.70 83.57 83.55 83.55 83.31 66.76 66.75 0.87
NT vs. HT 94.25 87.84 91.54 91.55 91.51 91.05 82.63 82.57 0.81
(NT + PHT) vs. HT 96.27 74.12 89.98 89.92 89.68 85.24 74.80 74.22 1.13