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�
 ABSTRACT 

Background: The multifactorial risk prediction model BOA-
DICEA enables identification of women at higher or lower risk of 
developing breast cancer. BOADICEA models genetic suscepti-
bility in terms of the effects of rare variants in breast cancer 
susceptibility genes and a polygenic component, decomposed 
into an unmeasured and a measured component - the polygenic 
risk score (PRS). The current version was developed using a 313 
SNP PRS. Here, we evaluated approaches to incorporating this 
PRS and alternative PRS in BOADICEA. 

Methods: The mean, SD, and proportion of the overall poly-
genic component explained by the PRS (α2) need to be estimated. 
α was estimated using logistic regression, where the age-specific 
log-OR is constrained to be a function of the age-dependent 
polygenic relative risk in BOADICEA; and using a retrospective 

likelihood (RL) approach that models, in addition, the unmea-
sured polygenic component. 

Results: Parameters were computed for 11 PRS, including 6 
variations of the 313 SNP PRS used in clinical trials and imple-
mentation studies. The logistic regression approach underesti-
mates α, as compared with the RL estimates. The RL α estimates 
were very close to those obtained by assuming proportionality to 
the OR per 1 SD, with the constant of proportionality estimated 
using the 313 SNP PRS. Small variations in the SNPs included in 
the PRS can lead to large differences in the mean. 

Conclusions: BOADICEA can be readily adapted to different 
PRS in a manner that maintains consistency of the model. 

Impact: The methods described facilitate comprehensive 
breast cancer risk assessment. 

Introduction 
BOADICEA (1, 2) is a risk prediction algorithm for predicting 

breast and ovarian cancer risk on the basis of genetic and nongenetic 
factors. The algorithm incorporates the effects of common genetic 
variants, summarized in a polygenic risk score (PRS), in addition to 

the effects of pathogenic variants in major breast cancer susceptibility 
genes, other lifestyle/hormonal risk factors, and cancer family history. 

The current version (v6; refs. 1, 2) has been specifically developed 
to incorporate the 313 SNP PRS of Mavaddat and colleagues (3); 
this PRS was developed using the very large data set of the Breast 
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Cancer Association Consortium (BCAC) and extensively validated 
in prospective studies. However, as larger genome-wide association 
studies (GWAS) and novel statistical methods become available, new 
PRS are being continually developed. In addition, PRS developed for 
clinical translation and generated in different health care systems use a 
variety of technologies, including both targeted sequencing panels and 
genotyping arrays, and surrogate SNPs are often required. The 
BOADICEA algorithm itself is flexible and can incorporate any PRS 
for which the relevant parameters are known. These parameters are the 
mean (µ) and SD (σ) of the PRS in the population, and the proportion 
(α2) of the polygenic variance attributable to the PRS. In practice, the 
PRS can be normalized and supplied as a Z-score, in which case only 
parameter α is required. By modelling the PRS as the proportion of a 
(fixed) polygenic component, the predicted familial risks remain 
consistent, irrespective of the PRS used, and importantly, there is no 
double counting of the effect of the PRS and cancer family history. 

Here, we discuss the incorporation of alternative PRSs into BOADI-
CEA, and provide the relevant parameters for a number of PRS that have 
been developed, including several that are in use in clinical applications. 

Materials and Methods 
BOADICEA models breast cancer risks such that the incidence of 

breast cancer at age t is of the form (1, 4): 

λðtÞ ¼ λ0ðtÞexp
�

δgðiÞðtÞ þ σPðtÞx
ðiÞ
P þ

X

ρ
βρzρi

�
(A) 

Here λ0ðtÞ is the baseline incidence. The term δgðiÞðtÞ models the 
major gene component for individual i (δKðtÞ being the age-specific 
log-HR associated with genotype k). σPðtÞx

ðiÞ
p models the polygenic 

component, σPðtÞ being the polygenic SD and xðiÞP the normalized 
polygenic component for individual i. The final term models the 
effects of other risk factors. The polygenic variance σ 2

P ðtÞ is allowed 
to be age dependent and assumed to be a linear function of age t: 

σ 2
P ðtÞ ¼ γþ θt 

The parameters c� and θ have been previously estimated, using 
complex segregation analysis, as 4.86 and �0.06 respectively (4). 

The PRS is incorporated into BOADICEA by partitioning the 
total polygenic component xP into the sum of a known component 
xK measured by the PRS, and an unmeasured residual component xR 

(1). The variance due to the known component is of the form (3): 

σ 2
KðtÞ ¼ α 2ðγþ θtÞ (B) 

σKðtÞ can also be interpreted as the age-specific log-HR per unit SD 
of the PRS, conditional on other risk factors. Note that in Mavaddat 
and colleagues (3) equation (B) is written σ 2

KðtÞ ¼ γ 2ðαþ βtÞ. The 
change of symbols is for consistency with Lee and colleagues (1) and the 
Canrisk platform (www.canrisk.org), where the proportion of the 
polygenic variance explained by the PRS is denoted as α2. 

Estimation of α and incorporating alternative PRS 
The key parameter is α. The first approach to estimating this pa-

rameter makes the simplifying assumption that the polygenic SD of 
the known polygenic component in BOADICEA, σKðtÞ can be ap-
proximated by the marginal age-specific log-HR per unit SD of the 
PRS (ref. 3; see Supplementary Methods). This can then be estimated 
using cohort data or (approximately, making the rare disease as-
sumption) case–control data, by first transforming the PRS using: 

S0 ¼ xK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γþ θt

p
(C) 

where xK is the standardised (per unit SD) version of the proposed 
PRS. Sʹ is then included as a covariate in a Cox or logistic regression 
model: the parameter (log-HR or log-OR) estimate corresponding 
to the covariate Sʹ gives the required α parameter, which we denote 
αGLM. This method was applied to 22,767 controls and 16,151 
women diagnosed with invasive breast cancer from the validation 
and prospective test sets used in Mavaddat and colleagues (ref. 3; 
Supplementary Tables S1 and S2). The analysis was restricted to 
women of European ancestry with age of diagnosis or last obser-
vation less than 80 years [after application of inclusion/exclusion 
criteria, mean age at diagnosis ¼ 59.9 (SD ¼ 10) years for cases, and 
57.1 (SD ¼ 10.4) years for controls]. Analyses were adjusted for 
country in which the study was conducted (15 countries) and 10 
principal components. 

The above analyses make the simplifying assumption that the 
marginal PRS effect size is a good approximation to the effect size 
conditional on other risk factors. This is likely to be a reasonable 
assumption for nongenetic risk factors, which have relatively small 
effects on risk and appear to be independent of the PRS, as shown 
in recent analyses of the combined effect of breast cancer PRS and 
individual SNPs with life-style/environmental risk factors includ-
ing questionnaire-based factors (5–10). However, it may not be 
true for other genetic factors, in particular the unmeasured poly-
genic component. Although the PRS and the residual polygenic 
component are assumed to be conditionally independent, indi-
viduals with a high polygenic component are more likely to de-
velop the disease at an early age. This results in a negative 
correlation between the PRS and the residual polygenic compo-
nent at later ages, which leads to an underestimation of the PRS 
effect size if the latter is not allowed for. To address this problem, 
we also estimated α using a retrospective likelihood approach 
(αRL), applied to the same BCAC data set. In this analysis, the 
observed PRS is computed conditional on the phenotypes of the 
individuals (age of diagnosis and case–control status), explicitly 
allowing for the unmeasured polygenic component. Details are 
given in the Supplementary Methods. This approach requires overall 
population age-specific incidence rates to be specified. For this pur-
pose, the rates for England and Wales 2016–2018 were used 
(https://www.cancerresearchuk.org/health-professional/cancer- 
statistics/incidence/age). 

Because the mean PRS varies by country, we first regressed the 
PRS on country and principal components, adjusted for case– 
control status, and performed the analyses on the residual PRS. The 
likelihood was maximized using the optimize function in R. 95% 
confidence intervals (CI) were obtained using a grid of values for 
αRL, and finding the difference between the log-likelihoods and the 
maximum log-likelihood. 

As a third approach, we derived an approximate estimate α from 
the log-OR per unit SD (η), by calibrating against PRS313 as a 
standard. From equations (A) and (B) in the methods above it can 
be seen that, under the rare disease assumption, the marginal HR 
associated with the PRS should approximate the conditional HR. If 
differential age effects can also be ignored, α should therefore be 
approximately proportional to η. This allows α to be estimated us-
ing PRS313 as a standard. Thus: αAPP ¼

η
η0

α0 where η0 and α0 are the 
corresponding estimates for PRS313. This provides a simple method 
that could be applied to PRS developed and validated on a different 
data set. 

We computed the relevant parameters for PRS313 and 10 addi-
tional PRS [Supplementary Tables S3 and S4; SNP positions based 
on Genome Reference Consortium Human Build 37 (GRCh37)]. 
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PRS313 includes two variants (22_29203724_C_T and 22_29551872_ 
A_G) which are correlated with the protein truncating variant 
CHEK2*1100delC, and some of the derivative PRS also include these 
SNPs. This could result in overestimation of risk in CHEK2*1100-
delC carriers if the PRS is used in conjunction with gene-panel 
testing, because BOADICEA assumes that the PRS and major gene 
genotypes are independent in the population. We therefore also 
considered PRS without these variants. (Note that CHEK2 p.I157T 
(22_29121087_A_G) is also included in PRS313 but is only weakly 
correlated with CHEK2*1100delC and does not introduce a bias). The 
means and SDs of each PRS, and the proportion (α) of the polygenic 
variance attributable to these alternative PRS were derived in the same 
data set (Supplementary Tables S1 and S2), namely the validation and 
prospective sets described by Mavaddat and colleagues (3). 

All studies included in this analysis were approved by the relevant 
local ethical review boards and used appropriate consent proce-
dures. SEARCH was approved by the NRES Committee East of 
England - Cambridge South. 

Data availability 
Data were generated by the authors and is available on request. 

Results 
PRS examples 

Eleven alternative PRS were constructed. Six of these are modifica-
tions of the PRS313, designed for clinical implementation. The 
BRIDGES PRS was developed as an next-generation sequencing (NGS) 
panel test to facilitate clinical translational studies of BOADICEA 
implemented in the context of genetic testing of women with a family 
history (https://bridges-research.eu/). Of 313 variants, 295 could be 
designed and a further 11 were replaced by surrogate markers (r2 > 0.9 
in Europeans). The PERSPECTIVE I&I PRS was designed to facilitate 
risk stratified screening in the context of population-based mammo-
graphic screening in Ontario and Quebec (11). This PRS was designed 
as an NGS panel: 287 of 313 markers could be designed and a further 8 
were surrogates. The EastGLH PRS was designed by the NHS East 
Genomic Laboratory Hub for use in a randomized control trial of 
women testing positive for an inherited pathogenic/likely pathogenic 
gene variant in BRCA1, BRCA2, PALB2, CHEK2, or ATM, using a NGS 
panel of 303 markers (12). The PRISMA PRS, designed as genotyping 
array of 268 markers (37 surrogates), was developed to provide mul-
tifactorial cancer risks to women attending genetic clinics in Spain. The 
eMERGE PRS consisted of 308 markers and is part of a large US study 
aiming to communicate PRS-based genome-informed risk assessment 
across multiple diseases (https://emerge-network.org). DBDS299, using 
data from the Danish Blood Donor Study (https://bmjopen.bmj.com/ 
content/9/6/e028401) is used in a research study to validate BOADI-
CEA in the Danish population. In addition, we included the earlier 
PRS77 developed using BCAC data and comprising genome-wide 
significant SNPs, PRS3820 developed by Mavaddat and colleagues (3) 
using Lasso penalized regression, and two PRS (WISDOM75 and 
WISDOM120) developed for the WISDOM clinical trial (ref. 13; 
Clinical Trials identifier NCT02620852). We also considered all of the 
above PRS without 22_29203724_C_T and 22_29551872_A_G, SNPs 
correlated with CHEK2∗1100delC, as described in Materials and 
Methods. 

PRS parameters 
Table 1 summarizes the estimated parameters for PRS313 and 

each of the alternative PRS. As expected, the 6 PRS that are 

variations on PRS313 have very similar effect sizes, expressed as log- 
OR per 1 SD, reflecting the fact that only a few variants are not 
accounted for. The αRL parameters for these 6 PRS are also similar, 
and only marginally lower than PRS313 estimate (0.501; 95% CI, 
0.485–0.517). The effect sizes for PRS77 (both in terms of the log- 
OR per 1 SD and α) were smaller than for PRS313, while PRS3820 
had larger effect sizes. The two WISDOM and PRISMA PRSs also 
had somewhat smaller effect sizes than PRS313. Removal of the 2 
chromosome 22 SNPs had only a small effect on the estimated log- 
OR per 1SD, and α – for example reducing αRL from 0.501 to 0.498 
for PRS313. The α values computed using the simpler logistic re-
gression approach (αGLM) were smaller than those generated using 
the αRL for all PRS. 

We note that the αRL are approximately proportional to the PRS 
effect sizes, expressed as odds-ratio per 1 SD (Table 1; Fig. 1). Using 
the PRS313 as the standard, the predicted α value assuming pro-
portionality is given by αAPP ¼ 1.006η (Table 1; Fig. 1). These 
predicted values were very similar to the αRL values for all PRS. 

Discussion 
We evaluated approaches to incorporating alternate breast cancer 

PRSs into the risk prediction algorithm BOADICEA. The α values 
computed using the simpler logistic regression approach (αGLM) 
were consistently smaller than those generated using the αRL, for all 
PRS. This difference can be explained by the fact that the logistic 
regression approach does not account for the residual component. 
Women with a high polygenic component are more likely to de-
velop the disease at an early age, resulting in a negative correlation 
between the PRS and the residual polygenic component, which leads 
to an underestimation of the PRS effect size if the latter is not 
allowed for, a phenomenon related to index event bias (14). 

We showed further that the α parameters derived from the log-OR 
estimate by assuming proportionality were very close to the αRL esti-
mates. This suggests that this approach is likely to be reasonably ac-
curate for other PRS, at least across the range of effect sizes considered 
here, providing a very straightforward approach to incorporating a PRS 
developed on another data set if a log-OR estimate is already available. 

A striking observation is the very large difference in the means of 
the different PRS. This reflects the fact that the removal of a few 
SNPs with important weights can have a substantial effect on the 
mean. For example, the means for the PRS excluding the chromo-
some 22 SNPs are higher. While the mean has no intrinsic signifi-
cance, this emphasizes the importance of correctly normalizing the 
PRS. In particular, because BOADICEA also incorporates the effects 
of CHEK2 protein truncating variants, we recommend using the 
PRS without these SNPs when gene-panel testing is performed. 

It is important to note that estimates derived from European an-
cestry populations may not be applicable to individuals of other an-
cestries. The effect sizes may differ among populations, for example 
due to differences in linkage disequilibrium structure. This has been 
shown for PRS313, for which somewhat smaller effect sizes have been 
estimated in Asian and African-American populations (15–18). In 
addition, the mean PRS can vary significantly by population—PRS313 
has a higher mean in both Asian and African-American populations 
than in Europeans. This again emphasizes the importance of cali-
brating the PRS to the relevant population distribution. The argument 
that the αRL is preferable and provides a more reliable estimate of α 
should also hold in non-European populations. 

The analyses used here adjusted the PRS for both the country in 
which the study was conducted and ancestry informative principal 
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components. An adjustment is necessary because the mean PRS varies 
by country, even among European populations (and this is not reflected 
in differences in incidence rates). However, it is possible that adjustment 
for both country and principal components is over-conservative. Further 
analyses in large population-specific data sets may be able to address this. 

The approaches described allow BOADICEA to be adapted for use 
with any PRS in a consistent manner. However, it should be empha-
sized that the main validations of BOADICEA used PRS313 (19–23). 
For PRS that are substantially different, and particularly as more in-
formative PRS are generated through larger GWAS, further prospec-
tive validation in independent external data sets will be required. We 
also note that the current formulation of BOADICEA assumes that the 
age-specific effects of the PRS and the residual polygenic component 
(as measured by the log-HR per 1 SD) are proportional. This signifi-
cantly simplifies the algorithm, but it is possible that better predictions 
may be available by allowing differential age-specific effects. 

The BOADICEA algorithm has been extensively validated, partic-
ularly when incorporating PRS313 (19–23) in addition to other risk 
factors. It is available through the CanRisk (www.canrisk.org) tool (24) 
and is widely used in the context of women with cancer family history 
or undergoing gene-panel testing, including several ongoing clinical 
implementation studies. The CanRisk tool provides the facility to in-
corporate a PRS as a Z-score, providing that the α parameter is known. 
The methods described here allow other PRSs to be used with BOA-
DICEA via CanRisk and hence facilitate more widespread compre-
hensive breast cancer risk assessment. 
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