
An inflammatory state remodels the immune microenvironment 
and improves risk stratification in acute myeloid leukemia

Audrey Lasry1,2,13, Bettina Nadorp1,2,3,13, Maarten Fornerod4, Deedra Nicolet5,6, Huiyun 
Wu7, Christopher J. Walker5,6, Zhengxi Sun1,2, Matthew T. Witkowski1,2, Anastasia N. 
Tikhonova1,2, Maria Guillamot-Ruano1,2, Geraldine Cayanan1,2, Anna Yeaton1,2, Gabriel 
Robbins1,2, Esther A. Obeng8, Aristotelis Tsirigos1,2,3, Richard M. Stone9, John C. Byrd10, 
Stanley Pounds7, William L. Carroll1,2, Tanja A. Gruber11,✉, Ann-Kathrin Eisfeld5,12,✉, Iannis 
Aifantis1,2,✉

1Department of Pathology, New York University School of Medicine, New York, NY, USA

2Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 
USA

3Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, 
USA

4Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands

5The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for 
Leukemia Outcomes Research, Columbus, OH, USA

6Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, 
Columbus, OH, USA

7Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA

8Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA

9Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

Reprints and permissions information is available at www.nature.com/reprints.
✉Correspondence and requests for materials should be addressed to Tanja A. Gruber, Ann-Kathrin Eisfeld or Iannis Aifantis. 
tagruber@stanford.edu; ann-kathrin.eisfeld@osumc.edu; ioannis.aifantis@nyulangone.org.
Author contributions
A.L., B.N., T.A.G., A.K.E. and I.A. conceived and designed the study. A.L., Z.S., M.T.W., A.N.T. and G.R. processed human BM 
samples. B.N., M.F., D.N., H.W., A.Y., A.T., C.J.W. and S.P. performed computational and statistical analysis. A.L. and B.N. analyzed 
all data. M.G.-R. and G.C. processed Tet2HR murine BM samples. E.A.O., R.M.S. and J.C.B. provided clinical information and 
access to bulk AML patient cohorts. W.L.C. and T.A.G. provided pediatric AML patient samples. A.K.E. provided adult AML patient 
samples. A.L. and B.N. wrote the manuscript with help from T.A.G., A.K.E. and I.A.

Code availability

All code used to generate and analyze data in this study is available on GitHub at https://github.com/BettinaNa/inflammation-immune-
microenvironment-adult-pediatric-AML.

Competing interests
A.L., B.N., S.P., A.K.E., T.A.G. and A.I. submitted a patent application for the iScore patient risk stratification. I.A. is a consultant for 
Forsite Labs. T.A.G. is a consultant for Kura Oncology and Janssen. A.T. is a scientific advisor to Intelligencia AI.

Extended data is available for this paper at https://doi.org/10.1038/s43018-022-00480-0.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s43018-022-00480-0.

HHS Public Access
Author manuscript
Nat Cancer. Author manuscript; available in PMC 2023 July 01.

Published in final edited form as:
Nat Cancer. 2023 January ; 4(1): 27–42. doi:10.1038/s43018-022-00480-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://github.com/BettinaNa/inflammation-immune-microenvironment-adult-pediatric-AML
https://github.com/BettinaNa/inflammation-immune-microenvironment-adult-pediatric-AML
https://doi.org/10.1038/s43018-022-00480-0
https://doi.org/10.1038/s43018-022-00480-0
https://doi.org/10.1038/s43018-022-00480-0


10Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA

11Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA

12Division of Hematology, Department of Internal Medicine, The Ohio State University 
Comprehensive Cancer Center, Columbus, OH, USA

13These authors contributed equally: Audrey Lasry, Bettina Nadorp

Abstract

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited 

treatment options. Here we provide a comprehensive census of the bone marrow immune 

microenvironment in adult and pediatric patients with AML. We characterize unique inflammation 

signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B 

cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as 

an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal 

expansion. We derive an inflammation-associated gene score (iScore) that associates with poor 

survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications 

for patients with AML and may enable identification of patients in need of more aggressive 

treatment. This work provides a framework for classifying patients with AML based on their 

immune microenvironment and a rationale for consideration of the inflammatory state in clinical 

settings.

AML is the most common acute leukemia in adults and accounts for approximately 15% of 

acute leukemias in children. Despite the approval of multiple targeted therapies, treatment 

options remain limited and survival is dismal1. The bone marrow (BM) microenvironment 

plays an important role in supporting myeloid cell transformation and the clonal outgrowth 

of AML. Disease progression is accompanied by changes in the BM mesenchymal niche2; 

however, the immune response to AML establishment and progression in the BM has not 

been thoroughly characterized.

Inflammation is one of the hallmarks of cancer3 and is associated with many types of solid 

malignancies4. In AML, inflammation has been linked to progression from myelodysplastic 

syndrome to AML5. Additionally, it was shown that inflammatory cytokines can regulate 

hematopoietic stem cells (HSCs) and promote disease progression in animal models6. 

Furthermore, several mutations in genes associated with myeloid malignancies have 

been shown to render HSCs more susceptible to inflammation7. As AML is a disease 

prevalent mainly in older individuals, age-induced inflammation may contribute to AML 

development in elderly patients. In solid malignancies, inflammation is often associated with 

a unique immune microenvironment and can affect response to immunotherapy and patient 

prognosis8; however, the effects of inflammation on the composition of the BM immune 

microenvironment and clinical outcomes in AML have not been demonstrated. In addition, 

attempts to target immune cell function in AML have so far yielded only modest results9,10, 

highlighting the need for further understanding of the AML immune microenvironment and 

the role of inflammation in AML.

Lasry et al. Page 2

Nat Cancer. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recent advances in single-cell technologies have facilitated generation of high-resolution 

maps of healthy tissues and malignancies11–14. These cell atlases have led to important 

insights into disease development, as well as identification of new therapeutic targets. 

In AML, single-cell RNA sequencing (scRNA-seq) of adult AML BM samples has 

revealed distinct differentiation hierarchies and connected them to specific oncogenic 

drivers15. Moreover, single-cell DNA sequencing, combined with single-cell epitope 

quantification, has yielded insights into clonal evolution of AML and identified surface 

markers associated with specific mutations16. Here we apply scRNA-seq and combined 

indexing of transcriptomes and epitopes sequencing (CITE-seq)17 to adult and pediatric 

AML BM patient samples and provide a detailed characterization of both malignant and 

microenvironment cells in adult and pediatric patients. Our analysis identifies a subset of 

adult and pediatric patients expressing high levels of inflammatory genes in malignant cells. 

Furthermore, characterization of the BM immune microenvironment demonstrates distinct 

remodeling of the BM in response to AML-driven inflammation, highlighting specific B-

cell and T-cell populations that are expanded in high-inflammation patients. Collectively, 

these findings demonstrate that despite previously held beliefs, a subset of AML is highly 

immunogenic and pinpoint several populations that could be targeted therapeutically in 

AML.

Results

Malignant and immune landscape of adult and pediatric AML

To examine the BM immune microenvironment in adult and pediatric AML, we performed 

scRNA-seq on ten BM samples from healthy donors (young donors, median age 20 (range 

19–26) years and older donors, median age 47 (range 39–53) years; total 50,244 cells), 20 

diagnostic BM aspirates from adult patients with AML (median age 68.5 (range 32–84) 

years; 89,733 cells) and 22 diagnostic BM aspirates from pediatric patients with AML 

(median age 7.4 years (range 2 months to 21 years); 74,440 cells) (Supplementary Table 

1). Uniform Manifold Approximation and Projection (UMAP) demonstrated remodeling 

of the BM in both adult and pediatric AML with some clusters overlapping in healthy 

and AML BM and some clusters dominated by either adult or pediatric AML cells (Fig. 

1a). To start characterizing the changes in the BM immune microenvironment in AML, 

we annotated cells based on their transcriptional profile and cell-surface protein expression 

(Fig. 1b,Extended Data Fig. 1a and Supplementary Table 2). Patients with AML had an 

increase in specific subsets of hematopoietic stem and progenitor cells (HSPCs)—HSCs, 

multipotent progenitors and granulocyte-monocyte progenitors (Extended Data Fig. 1b). 

Myeloid populations were largely unchanged, but individual patients had expansion of 

specific myeloid cell types (Extended Data Fig. 1c). In the lymphoid lineage, pre- and pro-B 

cells were severely depleted in patients and plasmablasts and plasma cells were diminished 

in pediatric patients with AML (Extended Data Fig. 1d). CD4+ and CD8+ T cells were 

also depleted in pediatric patients, whereas mucosal-associated invariant T (MAIT) cells 

and natural killer (NK) cells were diminished in both adult and pediatric patients (Extended 

Data Fig. 1e). Overall, this analysis demonstrates that the BM immune microenvironment is 

strongly altered in patients with AML, with potential implications for disease progression.
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To further characterize the remodeled BM immune microenvironment in AML, we sought 

to separate malignant cells from their healthy counterparts. In scRNA-seq analysis of solid 

tumors, malignant cells often form distinct, patient-specific clusters after dimensionality 

reduction18–21. We therefore hypothesized that patient-specific clusters (Fig. 1c) may 

represent malignant cells. InferCNV has been used in solid malignancies to identify tumor 

cells22, but to date has not been used in leukemias, in part due to the relative paucity 

of chromosome gains or losses in hematologic malignancies. To examine whether patient-

specific clusters were enriched in cells containing chromosomal copy number variations 

(CNVs), we applied inferCNV. Our patient cohort includes several patients with documented 

chromosome gains or losses (Supplementary Table 1), which were effectively captured by 

InferCNV (Fig. 1d and Extended Data Fig. 2a). Notably, we did not detect any CNVs 

in healthy BM samples (Extended Data Fig. 2b). In patients with annotated karyotype 

abnormalities most cells carrying CNVs (CNV+) occupied patient-specific clusters, allowing 

us to separate malignant cells from immune microenvironment cells (Fig. 1e,f and Extended 

Data Fig. 2c). The high abundance of CNV+ cells in patient-specific clusters supports 

the hypothesis that these represent malignant cells from individual patients. Therefore, we 

clustered all cells and calculated for each cluster an occupancy score, representing the 

fraction of cells from an individual patient in each cluster23 (Extended Data Fig. 3a,b). 

Clusters with an occupancy score larger than 0.70, indicating more than 70% of cells in 

the cluster originated from one patient, were designated as patient-specific clusters. Patient-

specific clusters were then annotated as malignant cells specific to a given patient with 

AML.

To validate this approach, we analyzed a previously published AML scRNA-seq dataset, 

where malignant cells were identified using single-cell genotyping for specific mutations15. 

Annotation of malignant cells by occupancy score overlapped with single-cell genotyping 

detection of malignant cells (Extended Data Fig. 3c,d). In our cohort, we were also able 

to detect small chromosomal aberrations in patients without annotated chromosome gains 

or losses (Extended Data Fig. 4a), suggesting that scRNA-seq can provide karyotypic 

information. Patient occupancy scoring and single-cell karyotyping with inferCNV allowed 

us to effectively separate the majority of malignant and microenvironment cells in 37 out of 

42 patients (Fig. 1g). For the five remaining patients, overlap with healthy donor cells and 

lack of CNV+ cells prevented us from confidently identifying malignant cells and they were 

therefore excluded from further analysis. Malignant cells consisted mostly of myeloid cells 

or HSPCs, with small fractions of T and B cells (Fig. 1h). In 11 out of 42 (26%) patients 

we also identified small numbers of CNV+ cells in all hematopoietic lineages, including 

B, T and NK cells, suggesting that in these patients, chromosomal gains/losses occurred at 

an early developmental stage, allowing for dissemination across all hematopoietic lineages. 

T and B cells carrying CNVs were present in both pediatric and adult patients (Extended 

Data Fig. 4b), in line with previous reports of identification of leukemic mutations across all 

hematopoietic lineages16.

Inflammatory gene signatures in adult and pediatric AML

To characterize pathogenic processes underlying AML progression, we performed non-

negative matrix factorization (NMF) and differential expression analysis on healthy and 
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malignant HSPCs and myeloid cells. Common gene expression profiles identified in NMF 

included cell-type-specific, as well as distinct cellular programs. Malignant cells showed 

expression of programs enriched for cell cycle, RNA splicing, unfolded protein response, 

metabolic processes and inflammation (Extended Data Fig. 5a, Fig. 2a–c and Supplementary 

Table 3). Further differential expression analysis, comparing different subsets of malignant 

cells to their counterparts in healthy donors (malignant HSPC-like cells compared to 

healthy donor HSPCs and malignant myeloid-like cells compared to healthy donor myeloid 

cells) revealed dysregulated expression of a number of genes associated with inflammatory 

processes, including class II antigen presentation (HLA-DRA, HLA-DMA, HLA-DPB1 
and HLA-DPA1), S100 alarmins (S100A6, S100A4 and S100A12), chemokines (CXCL8) 

and interferon response genes (IRF2BP2, ISG15, IFI44L and IFI27) (Fig. 2d,e and 

Supplementary Table 4). To further examine the role of inflammation in AML, we generated 

adult-specific and pediatric-specific inflammation signatures, consisting of inflammation-

related genes that were dysregulated in malignant cells from adult or pediatric patients, 

respectively. While both the pediatric and adult inflammation signatures consist of similar 

pathways (Extended Data Fig. 6a and Supplementary Tables 5 and 6), only 95 genes 

overlap between the signatures (Extended Data Fig. 6b), in line with known differences in 

tumor genomics and immune system maturation between pediatric and adult patients with 

AML; however, despite differences in most of the individual inflammation-associated genes, 

shared resulting pathway activation between pediatric and adult patients suggests that an 

inflammatory immune response is an important factor in AML, which is present across the 

entire age spectrum of patients with leukemia.

To examine expression of the inflammation signatures in patients with AML, we generated 

pseudobulk expression data from the scRNA-seq cohorts, then classified the patients 

based on their inflammatory states, defined by the identified inflammation-associated gene 

expression program. Inflammation is known to increase with age, therefore we examined 

the inflammatory state separately in the pediatric and adult cohorts. In adult patients with 

AML, there was no correlation between the age of the patients and their inflammatory 

state. Indeed, the youngest patient in our adult cohort had the highest inflammation 

score (Extended Data Fig. 6c). We compared expression of the adult inflammation 

signature in adult patients to older healthy BM donors and the expression of the pediatric 

inflammation signature in pediatric patients to younger healthy BM donors. In adult patients, 

approximately half of the patients (9 out of 20; 45%) had increased inflammation compared 

to healthy donors (Extended Data Fig. 6d). In pediatric patients, the inflammation score 

clearly separated patients into two groups (Extended Data Fig. 6e), with 7 out of 22 patients 

(32%) showing high inflammation scores. To optimize analysis of the inflammation program 

in AML, we designated the top 50% of adult patients as highly inflamed and the bottom 

50% as low inflammation and the top third of pediatric patients as high inflammation, 

whereas the bottom two-thirds were designated as low inflammation. Patient-by-patient 

examination revealed that messenger RNA expression of inflammation-related genes varied 

between patients with AML in both the adult and pediatric single-cell cohort (Extended Data 

Fig. 6f,g).
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Atypical B cells are associated with inflammation in AML

Separation of malignant and myeloid cells enabled us to examine the effect of inflammation 

on the AML immune microenvironment. To investigate changes in the AML immune 

microenvironment, we focused on lymphoid lineages in the BM. Initially, we clustered 

B cells and annotated different populations based on transcriptome and surface protein 

expression (Fig. 3a, Extended Data Fig. 7a,b and Supplementary Table 7). Notably, a subset 

of B cells, atypical B cells (expressing ITGAX, FCRL3 and FCRL5; Supplementary Table 

7), were enriched in adult and pediatric patients with AML combined (Fig. 3b and Extended 

Data Fig. 7c). As atypical B cells are often found in patients with chronic or recurrent 

infections24–27, we examined whether they were more abundant in high-inflammation 

patients with AML. Analysis of the Alliance cohort, The Cancer Genome Atlas (TCGA) 

and the TARGET-AML pediatric cohorts revealed that the atypical B-cell gene signature is 

highly correlated with the inflammatory state in both adult and pediatric patients with AML 

(Fig. 3c and Extended Data Fig. 7d), indicating that such cells are specifically enriched in 

patients with AML with high inflammation.

TET2 is frequently mutated in patients with AML28,29 and was previously found to be 

associated with inflammation30,31. Therefore, we examined a BM scRNA-seq dataset of 

mice carrying mutations in Tet2, developing myeloid malignancies, including AML32. We 

clustered B cells from the BM of wild-type (WT) and mutant mouse BM (Extended Data 

Fig. 7e), identifying clusters enriched in WT or Tet2-mutant mice (Extended Data Fig. 7f). 

We examined expression of the atypical B-cell gene signature across all B-cell clusters, 

identifying three B-cell clusters enriched in Tet2-mutant mice and expressing atypical B-cell 

marker genes (clusters 2, 4 and 9; Extended Data Fig. 7f,g), in agreement with our human 

CITE-seq studies.

In Tet2-mutant mice, the percentage of atypical B cells in the BM additionally correlated 

with disease severity (Extended Data Fig. 7h).

To further validate the enrichment of atypical B cells in patients with high-inflammation 

AML, we performed FACS analysis of BM samples from an additional cohort of adult 

patients with AML with high or low-inflammation scores (Extended Data Fig. 7i). High-

inflammation patients had a higher percentage of atypical B cells in the BM compared to 

patients with low inflammation (Fig. 3d,e). Atypical B cells consist of both class-switched 

and non-class-switched B cells and are thought to be a suppressive B-cell population 

with impaired antibody-production capacity25,27. To assess the function of atypical B 

cells in patients with AML, we compared the transcriptional profile of atypical B cells 

in healthy BM donors and in patients with AML. Atypical B cells from patients with 

AML expressed high levels of genes involved in B-cell activation, such as CD83 (ref. 33), 

JUND (ref. 34), FOSB34 and NFKB2 (ref. 35), as well as NR4A3, NR4A2and ITGB2, 

which have been previously reported to be upregulated in atypical B cells from patients 

with chronic infections27. Furthermore, IRF8, which is associated with B-cell anergy36, was 

also upregulated in patients with AML. On the other hand, genes involved in the germinal 

center reaction, such as BANK1 (ref. 37), PRKCB38 and TXNIP39 were downregulated in 

patients with AML (Fig. 3f and Supplementary Table 8). CITE-seq analysis revealed that 

cell-surface marker CD72, which inhibits B-cell receptor signaling40, was also upregulated 
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in AML-associated atypical B cells (Fig. 3g). Overall, these data suggest that atypical B 

cells in AML are a suppressive B-cell population, which are prevalent in high-inflammation 

AML BM.

Diverging T-cell responses in high- and low-inflammation AML

We next sought to characterize the T-cell and NK-cell compartment in AML. We annotated 

T and NK cells based on their transcriptome and surface protein expression (Fig. 4a, 

Extended Data Fig. 8a,b and Supplementary Table 9) and quantified different subpopulations 

in the BM. It has previously been reported that cytotoxic CD8+ T cells are depleted 

and regulatory T (Treg) cells are expanded in patients with AML15. We did not observe 

significant changes in either cytotoxic or Treg populations in either adult or pediatric patients 

in the single-cell cohort, although cytotoxic T cells were slightly expanded in patients’ 

BM (Fig. 4b,c). Inflammation is known to affect T-cell populations in solid tumors and 

inflamed tumors are considered more immunogenic in this setting4,41. Therefore, we sought 

to examine the effects of inflammation on the T-cell compartment in AML. While in adult 

patients we did not see any significant differences between high- and low-inflammation 

patients, (Extended Data Fig. 8c), in pediatric patients, Treg cells and GZMK+ CD8+ T 

cells were significantly expanded in inflamed patients (Fig. 4d,e). GZMK+CD8+ T cells 

have previously been shown to be progenitors of terminally exhausted CD8+ T (Tpex) cells 

that traffic to sites of inflammation and were suggested to respond to immune checkpoint 

blockade therapy42,43. GZMK+ CD8+ T cells in our dataset expressed a Tpex cell gene 

signature, including several exhaustion markers (PDCD1, TIGIT and TOX; Fig. 4f). Overall, 

these data suggest the T-cell response is suppressed in high-inflammation pediatric patients 

with AML.

To further characterize the T-cell response to AML, we sorted T cells from the BM of five 

healthy donors, three pediatric and seven adult patients with AML (Extended Data Fig. 

8d) and performed single-cell T-cell receptor (TCR) sequencing (scTCR-seq). Examination 

of clone distribution in the BM revealed that while in adult patients with AML T-cell 

clones are expanded, in three out of four (75%) of the pediatric patients we did not 

observe clonal expansion of T cells (Fig. 4g and Extended Data Fig. 8e). These patients 

were characterized by very young age (<3.5 years), suggesting that the T-cell response is 

abrogated in early childhood patients with AML. Indeed, an older pediatric patient (4.7 

years old) did demonstrate clonal expansion of T cells at similar levels to adult patients 

(Extended Data Fig. 8e), suggesting that antitumor T-cell response in AML could be defined 

by patient age.

We further sought to characterize expanded T-cell clones in the AML BM. Projection of 

clonal information on the T-cell UMAP revealed that the majority of expanded clones in 

adult and pediatric AML are activated CD8+ T cells (Fig. 4h,i). Further examination of 

expanded clones from patients with AML revealed that cells from specific expanded clones 

can be found across all CD8+ activation states, demonstrating a continuum of activation 

(Fig. 4j and Extended Data Fig. 8f). Finally, we examined how inflammation affects 

clonal expansion in patients with AML. Analysis of deconvoluted bulk TCR data for the 

TCGA dataset44 demonstrated that high-inflammation patients with AML have increased 
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clonal diversity, indicating higher immunogenic potential and less clonal expansion in 

high-inflammation patients with AML (Fig. 4k); however, in pediatric patients from the 

TARGET-AML cohort we did not observe a significant difference in clonal diversity 

between high and low-inflammation patients (Extended Data Fig. 8g), potentially as a result 

of overall lower clonal expansion in pediatric patients. In conclusion, inflammation affects 

the T-cell response and repertoire in patients with AML, leading to an abrogated T-cell 

response. Our data raise the possibility that high-inflammation patients may be more likely 

to respond to T-cell-stimulating therapies.

Clinical implications of inflammation in AML

To study the effects of inflammation on patient prognosis, we examined the association 

between the inflammation signature genes and overall survival (OS) in adult and pediatric 

patients. In adult patients, 78 and 116 genes (31.7% and 47.1%) were negatively associated 

with OS (for patients <60 years old and patients ≥60 years old, respectively), whereas 

in pediatric patients, 63 genes (33.8%) were negatively associated with OS, suggesting a 

subset of the inflammation gene signature has prognostic value in AML (Supplementary 

Table 10). To better examine the association of inflammation with survival, we derived 

an inflammation risk score, incorporating the Cox regression β coefficient value for 

each gene. High-inflammation risk score correlated with reduced OS, in both adult and 

pediatric patients (Extended Data Fig. 9a,b). We next reduced the inflammation gene 

sets of both pediatric and adult patients to generate clinically applicable gene signatures, 

using sparse regression analysis on the inflammation gene signatures in bulk RNA-seq 

cohorts for adult (Alliance) and pediatric (TARGET-AML) patients. This resulted in 38 

and 11 core inflammation genes representing the survival risk associated with inflammation 

genes (iScore) for adult and pediatric patients, respectively (Supplementary Table 11), with 

continuous distribution across both cohorts as well as across all risk stratifications (Extended 

Data Fig. 9c,d).

To further delineate molecular features associated with higher or lower iScores, we 

compared the iScore levels across known AML-associated molecular subtypes. Adult 

and pediatric bulk RNA-seq data were visualized using t-distributed stochastic neighbor 

embedding (t-SNE) based on correlations of the most variable genes in each cohort, 

resulting in clusters that reflected the transcriptional identity and mutation profile of the 

patients (Fig. 5a,b). In both pediatric and adult patients with AML, we observed strong 

associations of the iScore with specific molecular drivers and transcriptional identity profiles 

(Fig. 5c,d). Specifically, there was a strong association of low iScore with favorable 

molecular features such as inv(16) AML (P < 0.001 adult and pediatric cohorts) NPM1 
mutations (P < 0.001 adult cohort, P = 0.08 pediatric cohort). In contrast, established 

molecular adverse prognosticators, such as complex karyotype (P < 0.001 adult cohort), 

CBFA2T3-GLIS2 (P < 0.001 pediatric cohort), FLT3-ITD (P < 0.001 adult cohort), RUNX1 
(P < 0.001 adult cohort) and TP53 mutations (P < 0.001 adult cohort) were associated 

with a high iScore. (Supplementary Table 12). Notably, despite the strong association 

with known molecular drivers and established outcome predictors, the iScore had added 

prognostic value in both adult and pediatric patients. In adult patients, a high iScore added 

independent prognostic impact in the context of other clinical prognostic parameters, such as 
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stemness (LSC17 score45), in both younger and older patients (Extended Data Fig. 9e). In 

pediatric patients with AML consideration of the inflammatory state provided independent 

prognostic information in addition to established clinical parameters such as oncogenic 

drivers, transcriptional identifiers and LSC6 stemness score46 (Extended Data Fig. 9f).

Next, to assess whether the iScore adds clinically relevant information to established 

clinical and molecular parameters associated with treatment response and survival, we 

tested the performance of the iScore by itself, as well as in the context of other risk 

stratifiers, including the European LeukemiaNet (ELN) 2017 genetic risk classification for 

adult patients. Remarkably, in both adult and pediatric46 patients with AML, those with 

higher iScores had inferior OS (Fig. 5e,f). These results were validated in TCGA and Beat 

AML for adult patients and in a pediatric AML cohort of 399 patients with microarray 

data (Extended Data Fig. 9g–i; adult, ELN favorable, intermediate and adverse; pediatric, 

genomic stratification per ClinicalTrials.gov NCT03164057). Notably, implementation of 

the iScore within the ELN risk categories was able to markedly refine the current risk 

groups. Specifically, the OS of ELN favorable risk patients with high iScore was close 

to that of low iScore adverse risk patients (Extended Data Fig. 9h), suggesting that these 

patients may benefit from different treatment intensities and/or modalities than conventional 

chemotherapy alone. In fact, examination of the iScore in patients with different risk 

stratifications (adult, ELN favorable, intermediate and adverse) revealed that patients with 

high iScore have worse outcomes across all risk stratifications (Fig. 5g–j). Furthermore, 

in both adult (<60) and pediatric patients, patients with high iScore had worse event-free 

survival (EFS) (Fig. 5k,l and Extended Data Fig. 10a–e). Overall, these data suggest that 

clinical implementation of iScore could refine patient risk stratification, which is a major 

determinant in the decision to transplant a patient in first remission or treat them with 

chemotherapy alone.

Discussion

AML is an aggressive hematological cancer with low survival rates, in both adult and 

pediatric patients. Here we provide a comprehensive census of the BM microenvironment 

in adult and pediatric AML. We distinguish between malignant and microenvironment 

cells in the BM, characterize inflammatory programs in adult and pediatric patients 

with AML, provide a detailed analysis of the different components of the BM immune 

microenvironment in AML and describe clinically relevant inflammation risk scores (iScore) 

that improve patient risk stratification.

Adult and pediatric AML have similar clinical manifestations; however, in adults, AML 

is thought to be a progressive disease, arising over years due to acquisition of sequential 

mutations and often going through pre-malignant stages of clonal hematopoiesis and 

myelodysplasia. In pediatric patients, AML is often thought to arise due to acquisition of 

mutations during early development of the hematopoietic system. Therefore, it is remarkable 

that the BM microenvironment in adult and pediatric patients with AML was largely similar, 

with only a few exceptions. One is the increase in plasma cells in adult patients, which could 

reflect immunity to different pathogens acquired over years. The other is the lack of T-cell 

clonal expansion in infant patients, a finding supported by recent bulk RNA-seq and in silico 
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TCR clonality predictions44. The T-cell compartment is immature in newborns; however, 

infants can acquire T-cell immunity to bacterial or viral pathogens47. It is possible that in 

infant patients with AML, mutations acquired in utero disseminate across all hematopoietic 

lineages, affecting development of the immune system. In addition, early acquisition of 

AML-associated mutations may induce tolerance to these mutations, which prevents their 

recognition by T and B cells.

While our analysis demonstrated that inflammation can be present across all differentiation 

stages in AML, there was a strong association between a more myeloid-like phenotype 

and inflammation. Thus, while inflammation is a global pathogenic module in AML, it is 

possible that the inflammation signature is partially driven by a specific differentiation stage. 

Studies suggest inflammation may play a role in many aspects of AML, including disease 

progression, chemoresistance and myelosuppression48. Further inflammation can lead to 

prothrombotic events such as stroke and cardiovascular complications49. The associations 

we identified with specific B-cell and T-cell populations in the BM microenvironment 

suggest that this is a functional feature of AML malignant cells, with important clinical 

implications.

Notably, we found that inflammation is strongly associated with enrichment of atypical B 

cells, a B-cell population that emerges during chronic infections and is thought to serve 

as a suppressive B-cell population, limiting auto-immunity24–27. In AML, atypical B cells 

express genes associated with B-cell anergy and inhibition of B-cell receptor signaling, 

indicating that they serve a suppressive role in the AML microenvironment. Thus, while the 

immune system is activated, our findings suggest that in a subset of patients, inflammation 

triggers an ineffective response characterized by atypical B cells. Targeting of atypical B 

cells may therefore be beneficial for high-inflammation patients with AML.

Inflammation further remodeled the T-cell compartment in pediatric but not adult patients 

with AML. This may be due to differences in the inflammatory program in malignant 

cells, in line with a study identifying innate immune response genes as the main source 

of differential niche interactions between adult and pediatric AML in a mouse model50. 

High-inflammation pediatric patients with AML had an expansion of GZMK+ precursor 

CD8+ T cells. Precursor CD8+ T cells express high levels of immune checkpoints and are 

thought to drive the response to immune checkpoint blockade (ICB)42,43,51. In AML, it has 

recently been reported that GZMK+ T cells are enriched in patients responding to PD-1 

blockade52. Furthermore, Treg cells were enriched in high inflammation pediatric patients 

with AML, potentially curbing the T-cell response to AML. Therefore, it is possible that 

pediatric patients with AML expressing high levels of the inflammation gene signature will 

benefit from ICB or therapies aimed to diminish Treg cell activity.

AML is often considered to be a ‘cold’ tumor due to its low tumor mutation burden and the 

poor response to ICB by patients with AML9,10; however, here we demonstrate that subsets 

of adult and pediatric patients with AML express inflammatory gene signatures in malignant 

cells, suggestive of an immune response, but conversely this response is associated with 

a poor outcome. Notably, a subset of inflammation-related genes provides independent 

prognostic information in both adult and pediatric patients. Therefore, examining the 
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patient’s iScore in a clinical setting may be an important factor to be considered for 

more accurate prognosis assessment. This is particularly relevant for low and intermediate 

risk patients with AML who currently receive chemotherapy alone and may benefit from 

intensification with stem cell transplant in first remission. Of note, inflammation has also 

been associated with relapse and reduced EFS in AML53, suggesting that monitoring and 

possibly modifying, inflammation in patients with AML may be important in determining 

treatment and prognosis.

In summary, we provide a unique overview of the BM immune microenvironment in 

AML. We demonstrate that inflammation plays an important role in shaping the AML 

microenvironment and identify immune populations that are uniquely expanded in high-

inflammation patients with AML. We describe an inflammation-related gene signature 

(iScore) with independent prognostic impact in AML. We propose that stratifying patients 

with AML based on their iScore could refine risk stratification in AML.

Methods

Ethical regulation

This study complies with all relevant ethical regulations and was approved by the 

Institutional Review Boards of New York University, Ohio State University and St. Jude 

Children’s Research Hospital.

Human patient samples

Cryopreserved, de-identified BM aspirates from newly diagnosed patients with AML 

were obtained from the OSU Leukemia Tissue Bank (adult AML samples, n = 29, 48% 

female), St. Jude Children’s Research Hospital (pediatric AML samples, n = 18) or the 

Children’s Oncology Group AML cell bank (pediatric AML samples, n = 3). Overall, in 

the pediatric cohort, 52% of patients were female. All participants provided written consent 

for banking and research use of these specimens, according to the Declaration of Helsinki 

in accordance with the regulations of the institutional review boards of all participating 

institutes. Cryopreserved primary human BM mononuclear cells (n = 10) were obtained 

from STEMCELL Technologies (catalog no. 70001) or from StemExpress (catalog no. 

BMMNC025C).

Frozen human BM mononuclear cell preparation

Frozen human BM samples were thawed and transferred into 50-ml conical tubes containing 

PBS + 2% fetal bovine serum (FBS). Cell suspensions were centrifuged at 350g for 5 

min at 4 °C and the supernatant was discarded. Samples were then subjected to dead cell 

depletion, using a dead cell removal kit (Miltenyi Biotec, 130-090-101) or stained with 

4,6-diamidino-2-phenylindole (DAPI) (0.5 μg ml−1) and sorted for live cells (DAPIneg), 

using a FACSAria IIu SORP cell sorter (BD Biosciences). For cell sorting, all samples were 

gated based on forward and side scatter, followed by doublet exclusion and then gated on 

DAPIneg for viable cells. Samples were sorted into 5-ml poly-propylene tubes containing 

300 μl ice-cold PBS + 2% FBS. Following cell sorting, samples were centrifuged at 350g for 

5 min at 4 °C.
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For CITE-seq, enriched live cells were first tagged with cell-hashing oligonucleotide-tagged 

antibodies (1:250 dilution, BioLegend) according to manufacturer’s instructions. Samples 

were counted and a maximum of 105 cells for each sample was pooled together and 

stained either with a custom CITE-seq panel (1:100 dilution for all antibodies) or with a 

CITE-seq antibody cocktail (BioLegend) according to the manufacturer’s instructions. See 

Supplementary Table 1 for a list of patients stained with each panel and Supplementary 

Table 13 for a list of antibodies included in each panel.

For scTCR-seq, T cells were enriched using a pan T-cell isolation kit (Miltenyi Biotec, 

130-096-535) or sorted for live CD45+CD3+ cells. For cell sorting, samples were stained 

with PerCP-conjugated anti-human CD45 (1:400 dilution, BioLegend, 304025), FITC-

conjugated anti-human CD3 (1:100 dilution, BioLegend, 300452) and DAPI (0.5 μg ml−1). 

Sorted samples were gated based on forward and side scatter, followed by doublet exclusion 

and then gated on DAPIneg for viable cells. CD45+CD3+ cells were sorted into 5-ml poly-

propylene tubes containing 300 μl ice-cold PBS + 2% FBS. Following cell sorting, samples 

were centrifuged at 350g for 5 min at 4 °C.

Libraries were prepared using Chromium Single Cell 3′ Reagent kits (v.3 and v.3.1, 

CITE-seq) or Chromium Single Cell Immune Profiling kits (v.1.1 and v.2, scTCR-

seq, 10x Genomics). Hashtag and antibody-derived tag (ADT) libraries were prepared 

according to the New York Genome Center CITE-seq and hashing protocol (https://

citeseq.files.wordpress.com/2019/02/cite-seq_and_hashing_protocol_190213.pdf). Libraries 

were sequenced on an Illumina NovaSeq 6000.

Single-cell RNA/CITE-seq pre-processing

Raw sequencing reads were converted to FASTQ format using Illumina bcl2fastq software. 

We used CellRanger Single Cell Gene Expression Software (v.5.0, 10x Genomics) 

to demultiplex and align raw 3′ library reads to GRCh38 (v.2020-A). All following 

downstream analysis was performed using the Seurat R package (v.3.2.2)54 and all 

visualizations were generated using ggplot2 (v.2_3.3.3).

We excluded cells with fewer than 400 or more than 6,000 unique feature counts, as well 

as cells with more than 15% transcripts originating from mitochondrial genes to filter 

low-quality cells and droplets that may have captured multiple cells.

To demultiplex hashed libraries, hashtag oligonucleotides were normalized using a centered 

log ratio (CLR) transformation across cells and HTODemux function in Seurat was applied. 

We used the 0.99 quantile as a cutoff (positive.quantile = 0.99) to define a cell as hashtag 

positive. Cells positive for more than one hashtag were excluded as doublets.

Independently, we used Souporcell55 on each of the hashed libraries to identify cells in 

which wrong hashtags may have been assigned. Souporcell remaps raw reads to GRCh38 

reference using minimap2, identifies candidate variants using freebayes and counts cell 

alleles supported for each cell with vartrix. Sparse mixture model clustering is then used on 

the cell allele counts to detect doublets and infer genotypes of each cluster. We excluded 
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cells assigned as doublets and cells in which genotype and HTODemux assignment did not 

match.

To further exclude doublets deriving from two cells from the same patient and from 

non-hashed libraries, we filtered the data using the scDblFinder package (v.1.5.13; 

https://github.com/plger/scDblFinder). For each of the hashed libraries, we used the 

recoverDoublets function to identify cells similar to those identified as doublets 

by HTODemux. For the non-hashed libraries, we ran scDblFinder function, with 

trajectoryMode = TRUE, which generates cluster-based artificial doublets to identify 

doublets.

To reduce ambient RNA contamination, we used the SoupX package56. SoupX uses empty 

droplets to identify ambient RNA expression profiles present in each library. To further 

estimate a global contamination rate, SoupX clusters the cells and identifies marker genes 

for each cluster to estimate the contamination in each cell. The most common contamination 

estimate is then used to remove contamination in each of the clusters. Contamination 

estimates in our libraries varied between 1 and 9.2%. SoupX estimated counts were used 

in all downstream analysis.

After filtering, RNA expression data were normalized by total expression, multiplied by 

a scaling factor of 10,000 and log-transformed. For ADTs) counts were divided by the 

geometric mean of each corresponding feature across cells and then log-transformed (CLR 

transformation). We captured on average 4,123.4 cells per patient with a mean and median 

of 1,620.772 and 1,581.257 genes detected per cell, respectively.

Analysis of single-cell RNA/CITE-seq data

Clustering and visualization.—To visualize RNA expression similarities between cells 

in two-dimensional space, we used the scaled data matrix to perform principal-component 

analysis on the 2,000 most variable genes. We ran UMAP57 on the first 30 principal 

components with 25 nearest neighbors defining the neighborhood size and a minimum 

distance of 0.3. We constructed a shared nearest neighbor graph using 25 nearest neighbors 

and clustered the graph using a range of resolutions from 0.1–10 to explore the cluster. 

Resolution 2, which yielded 85 clusters, was used for subsequent broad cell-type annotation 

and occupancy scoring analysis.

Broad cell type annotation.

Broad cell types, HSPCs, myeloid, B cells, T/NK cells and erythrocytes were annotated 

using known cell type markers as previously described58.

Malignant and microenvironment division.

For patients with clinically annotated karyotype aberrations (Supplementary Table 1), we 

ran inferCNV to identify malignant cells (v.1.2.1)22. We ran inferCNV on each patient 

individually annotating the broad cell type (HSPCs, myeloid, T cells, NK cells and B 

cells) within the control and patient cells. InferCNV was run with default settings, except 

min_cell_per_gene = 10, cutoff = 0.1, de-noise = TRUE, HMM = TRUE and analysis_mode 
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= ‘subclusters’. Cell type-specific expression patterns can introduce noise in the analysis. 

To validate CNV+ T, B and NK cells, we additionally ran inferCNV on the T, B and NK 

cells of all patients, annotating the more granular cell types within each broad cell type 

compartments. We only kept CNV+ T, NK and B cells that were detected in both analyses.

To make use of cluster information, we calculated an occupancy score for each of the 85 

clusters. For each patient and cluster, we divided the number of cells from the patient 

by the sum of the patient and control cells. When the occupancy score exceeded a 

threshold of 0.7, we designated the cluster as patient-specific and therefore malignant. 

By combining the CNV-positive cells with patient occupancy scoring, we were able to 

confidently split malignant and microenvironment cells in 37 out of 42 patients with AML. 

Five patients with incomplete splits were excluded from further analysis of HSPCs and 

myeloid microenvironment cells: AML 3133, AML 4897 (adult), AML 006, AML 056 and 

AML 025 (pediatric).

Granular cell type annotation.

We split microenvironment and control cells into broad cell types (HSPCs, B cells, T cells, 

NK cells and myeloid). To account for biological and technical batch effects, we applied 

Harmony integration (v.1.0)59 to each of the broad cell type objects using default parameters 

and the individual patients as integration variable. The first 20 dimensions of the Harmony 

embeddings were then used to generate UMAPs with 20 nearest neighbors defining the 

neighborhood size and a minimum distance of 0.3 for each of the broad cell types. We 

constructed shared nearest neighbor graphs using the first 20 dimensions of the Harmony 

embeddings and clustered the graph using a range of resolutions from 0.5–3. The following 

resolutions were used for manual cluster annotation based on cluster markers: HSPCs, 

resolution 1, 21 clusters; myeloid cells, resolution 1, 20 clusters; T/NK cells, resolution 3, 

35 clusters; B cells, resolution 2, 22 clusters; and erythrocytes, resolution 1, 14 clusters. 

To identify cluster markers, we performed differential expression analysis between cells 

within each cluster against all other cells using the Wilcoxon rank-sum test with Bonferroni 

multiple-comparison correction (detected in at least 10% of the cluster cells, log2 fold 

change >0.25 or <−0.25, adjusted P < 0.05). Clusters expressing markers of other lineages 

were excluded as potential doublets from further analysis. To visualize the cluster markers 

for each identified cell type, cluster markers were re-calculated based on final cell type 

annotation and a cell-type average expression matrix was calculated. The top 20 marker 

genes for each cell type were shown in a row-scaled heat map using the pheatmap package 

(v.1.0.12) for each of the cell type subsets and the combined full annotation, as well as 

selected surface protein markers to further validate cell type annotations. Cluster markers for 

each cell type can be found in Supplementary Table 2. We used Wilcoxon rank-sum test to 

compare differences between two groups, whereas a Kruskal–Wallis test was used for more 

than two groups.

Annotation of malignant cells.

To assign a cell type identity to the AML malignant cells, we used the FindTransferAnchors 

function in Seurat60 to identify pairwise correspondence between cells in the annotated 
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microenvironment/control cells and malignant cells and projected the cell type labels using 

the TransferData function using the first 30 principal components.

Non-negative matrix factorization.

To identify common gene expression profiles in malignant cells of adult and pediatric 

patients with AML, we subset malignant and healthy counterpart HSPC/myeloid populations 

and performed NMF using cNMF (v.1.1)61 which uses the NMF implementation in scikit-

learn v.20.0. We filtered all genes expressed in fewer than 50 cells and used only the 

top 2,000 overdispersed genes in the NMF analysis. To identify the most stable and 

accurate number of components (k) within the range of 20 to 35 over 25 iterations, we 

used silhouette score and Frobenius reconstruction error as implemented in cNMF. k = 

22 emerged as the smallest most stable solution. The consensus solution was determined 

over 250 iterations using a density threshold of 0.04 to exclude outlier solutions. UMAP 

visualization of the malignant and healthy counterpart HSPCs/myeloid was based on the 

same 2,000 overdispersed genes used in the NMF analysis. Cell type-related gene expression 

profiles (GEPs) were excluded by evaluating GEP usage in healthy control cells. We 

identified 12 cell type-specific GEPs, 2 patient-specific and 8 commonly used GEPs across 

the malignant cells. Marker genes for each GEP were identified using multiple least squares 

regression of normalized z-scored gene expression against the consensus GEP usage matrix 

as implemented in cNMF and positively associated genes were used for subsequent Gene 

Ontology (GO) analysis as in Kotliar et al.61. All analysis was performed in Python (v.3.7.0) 

using scanpy (v.1.6.0), pandas (v.1.1.3), numpy (v.1.19.2), matplotlib (v.3.3.2) and seaborn 

for visualizations (v.0.11.2).

Differential gene expression.

To identify differentially expressed genes between the malignant cells and their 

corresponding healthy counterparts, we broadly divided malignant cells into HSPC-like 

and myeloid-like and separated adult and pediatric patients as well as younger and older 

healthy controls. To avoid strong patient-specific effects we downsampled malignant cells 

to a maximum of 500 cells from each patient. Adult and pediatric malignant cells were 

compared to their corresponding age-matched controls. We used MAST62 to perform 

differential expression analysis as implemented in Seurat, which uses a generalized linear 

model framework to incorporate cellular detection rates as a covariant. We considered all 

genes detected in at least 10% of the AML cells with a log2 fold change larger than 

0.25 or smaller than −0.25 and a Bonferroni-adjusted P < 0.05 as differentially expressed. 

Due to an imbalance of male and female patients in our cohort, we removed all genes 

derived from X and Y chromosomes. To determine differentially expressed genes between 

patients with AML and healthy control atypical B cells, we combined all patients’ atypical 

B cells (463 cells) and compared them to all atypical B cells identified in healthy controls 

(294 cells) as described above. Differentially expressed genes in malignant cells can be 

found in Supplementary Table 3. Differentially expressed genes in atypical B cells are in 

Supplementary Table 8.
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Deriving the inflammation signatures.

We performed GO analysis for biological pathway subontology on the differentially 

expressed genes using the enrichGO function from the clusterProfiler package (v.3.14.3) 

with default parameters and expressed genes as a background. EnrichGO uses a one-sided 

Fisher’s exact test to determine overrepresentation of a specific pathway and performs 

Benjamini–Hochberg correction for multiple comparisons by default. Pathways were further 

filtered for duplicated terms using the simplify function in cluster-Profiler with default 

parameters. We used all inflammation-related terms within the top 30 GO terms of up- and 

downregulated genes to establish inflammation signatures for adult and pediatric patients 

independently. The final inflammation signatures included 246 and 187 genes in adults and 

pediatrics, respectively. GO pathways can be found in Supplementary Table 4. All gene 

signatures can be found in Supplementary Table 5.

To generate inflammation score cutoffs for adult and pediatric patients based on our single-

cell cohorts, we generated pseudobulk data for each patient and the healthy controls and 

compared their inflammation scores. Inflammation scores were calculated using the same 

approach as for the broad cell type annotation described above, using patient averages 

instead of cluster averages in the calculation. High and low-inflammation thresholds for 

adult and pediatric patients were assigned based on inflammation score distribution (adults, 

50% high inflammation; pediatric, 32% high inflammation). Those groupings were used in 

all single-cell downstream analysis.

FACS analysis of atypical B cells in high- and low-inflammation patients with AML

Frozen human BM samples were thawed and transferred into 50-ml conical tubes containing 

PBS + 2% FBS. Cell suspensions were centrifuged at 350g for 5 min at 4 °C and the 

supernatant was discarded. Cells were stained in an antibody cocktail containing BV605-

conjugated anti-human CD45 (1:400 dilution, BioLegend, 304042), biotin-conjugated anti-

human CD19 (1:400 dilution, BioLegend, 302203) and APC-conjugated anti-human FcRL5 

(1:100 dilution, eBioscience, 50-3078-42), PE-Cy7-conjugated streptavidin (1:400 dilution, 

BD, 557598) and DAPI (0.5 μg ml−1). Samples were analyzed on a BD Fortessa. High- and 

low-inflammation grouping was determined based on bulk RNA-seq results, as described 

below.

TCR/5′ RNA-seq data analysis

The 5′ RNA-seq data were aligned to GRCh38 (v.2020-A) using Cell-Ranger Single Cell 

Gene Expression Software (v.6.0.1, 10x Genomics) and subsequent analysis was performed 

in Seurat R package (v.4.0.2)54. Visualization and clustering of data was performed as 

described for the 3′ data. Broad cell types were called and non-T-cell clusters were excluded 

from further analysis. T cells from the 15 patients were integrated using Harmony (v.1.0)59 

and the UMAP was generated using the first 20 Harmony embeddings, the 20 nearest 

neighbors to define the neighborhood size and a minimum distance of 0.3. We used the 

scRepertoire package (v.1.1.4) to visualize and integrate the TCR data with Seurat. Cell-type 

annotation was performed based on cluster markers as described above (resolution 1.5, 

27 clusters) (Supplementary Table 9). We annotated γδ T cells based on the presence of 

TRGV9, TRDV1 or TRDV2 and MAIT cells based on TRAV1–2 expression. Due to better 
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capture of T-cell-relevant genes in the 5′ data, we transferred the labels from the 5′ T cells 

to the 3′ T cells as described above. A list of expanded clonotypes from each patient can be 

found in Supplementary Table 10.

AML bulk TCR data

TRUST-imputed TCR data for the TCGA and TARGET cohort was derived from Zhang et 

al.44 We used TCR CDR3s per kilo TCR reads to define clonotype diversity according 

to the original publication and divided TCGA and TARGET patients into high- and 

low-inflammation groups based on average log2 -transformed mean adult and pediatric 

inflammation scores, respectively. Adult patients were split based on the median scores, 

whereas pediatric patients were split based on the top versus bottom two tertiles.

AML bulk RNA-seq cohorts

TCGA Acute Myeloid Leukemia (LAML)63 and Therapeutically Applicable Research 

to Generate Effective Treatments (TARGET)64 AML RNA-seq data as well as clinical 

and survival annotations were downloaded from UCSC GDC Xena Hub (https://

gdc.xenahubs.net). Beat AML data were derived from elsewhere65. Analysis was limited 

to diagnostic/de novo patients with AML in TCGA-LAML and Beat AML to match the 

Alliance cohort data. Alliance RNA-seq data from de novo patients with AML was derived 

from GSE137851 and GSE63646 and newly generated as described by Papaioannou et al.66. 

To generate gene signatures, we added one to the expression values and used the average 

of the log2-transformed values as the gene set score. Pearson’s product moment correlation 

coefficient was used to determine correlations between signatures.

t-SNE visualization of AML bulk cohorts

t-SNE gene expression maps were constructed as in Fornerod et al.46. For the adult AML 

cohort (n = 872), the 400 most-variant genes based on median absolute deviation were used, 

excluding sex-specific genes (n = 21) and HBB and genes clustering with HBB (n = 31), 

which were previously shown to correlate with sample purity. t-SNE was run twice (10,000 

iterations) with perplexity value 10 and the run with the lowest final error was selected. 

For visualization of oncogenic drivers, the priority was MECOM-r, KMT2A-r, CEBPAdm, 

RUNX1-RUNX1T1, CBFB-MYH11, FLT3-ITD, NPM1, TP53, RUNX1, ASXL1/2 and 

IDH1/2. For the pediatric cohort (n = 435) t-SNE coordinates were taken from Fornerod 

et al.46 and visualization of oncogenic drivers was identical except that all FLT3-ITD 

mutations were co-colored.

Outcome analysis

Adult patients.

We investigated the molecular characteristics and outcome associations of 872 adult patients 

with de novo AML who were enrolled on CALGB/Alliance study protocols based on 

intensive cytarabine/daunorubicin-based chemotherapy. For all studies, per protocol, patients 

did not receive an allogeneic hematopoietic stem cell transplantation in first complete 

remission (CR). All patients gave written informed consent for participation in the studies. 

All study protocols were in accordance with the Declaration of Helsinki and approved 
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by Institutional Review Boards at each treatment center. All patients were enrolled on 

CALGB 8461 (cytogenetic studies), CALGB 9665 (leukemia tissue bank) and CALGB 

20202 (molecular studies) companion protocols. Mutational profiling of all patients has 

previously been published67 and was performed centrally at the Ohio State University by 

targeted amplicon sequencing using the MiSeq platform (Illumina) and additional Sanger 

sequencing for CEBPA mutations, adding up to a total of 81 genes analyzed. All outcome 

analyses on Alliance patients were performed by the Alliance Statistics and Data Center 

using SAS 9.4 and TIBCO Spotfire S+8.2.

Definition of clinical endpoints and statistics for adult patients with AML.

Clinical endpoints were defined according to generally accepted criteria. Patients not known 

to have relapsed or died at last follow-up were censored on the date they were last 

examined. OS was measured from the date of diagnosis to the date of death from any cause; 

patients not known to have died at last follow-up were censored on the date they were last 

known to be alive. Patients alive and in CR at the last follow-up were censored. Estimated 

probabilities of OS were calculated using the Kaplan–Meier method and the log-rank test 

was used to evaluate differences between survival distributions. Inflammatory risk score was 

calculated from gene expression values weighted by Cox proportional hazard β value for OS 

and summed per sample. All statistical analyses on Alliance patients were performed by the 

Alliance Statistics and Data Center.

Pediatric patients.

For the pediatric cohort with OS data (n = 409), inflammatory risk score was calculated from 

gene expression values46 of 185 out of 187 inflammatory genes matched (Supplementary 

Table 11) weighted by Cox proportional hazard β value and summed per sample. For 

the validation microarray cohort (n = 386, excluding cases which overlapped with the 

RNA-seq cohort, Supplementary Table 12), the same per-gene weights were used. Overall, 

163 out of 187 inflammatory genes matched. In cases where multiple probesets matched a 

gene symbol, the probeset with the highest specificity was selected. If specificity was the 

same, the highest selectivity was selected. Probesets with specificity ≤0.8 were removed 

(n = 6). Patient characteristics and datasets of both pediatric cohorts have been previously 

published46.

LASSO-penalized proportional hazard model

To improve clinical applicability of the inflammation score, we performed 1,000 iterations 

of leave-out-10% cross validation of a LASSO-penalized proportional hazards model with 

the cv.glmnet function of the glmnet R package68 on the Alliance cohort for the adult 

inflammation score and the extended TARGET-AML cohort for the pediatric inflammation 

score. Genes selected in at least 900 of the 1,000 iterations were retained in the final model 

with coefficients defined as the average of their estimates over the 1,000 iterations. The 

final iScore for adult and pediatric patients contained 38 and 11 genes, respectively and was 

trained based on OS data. For adult and pediatric iScores, the performance of the signature 

was validated on independent AML cohorts in which the iScore was computed as a linear 

combination of expression values of the winner genes and fixed value coefficients defined 

as described above (for adult, TCGA and Beat AML; for pediatric, microarray cohort). 
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The distribution of the score by risk was visualized using boxplots. The association of 

the score with OS and EFS was first addressed with Kaplan–Meier estimation where the 

continuous score was dichotomized using recursive partitioning method in the rpart function 

of the rpart R package69. Cut points were determined based on OS (separately for <60- 

and ≥60-year-old patients in adults) and the same groups were used in the EFS analysis. 

Cox proportional hazard regression was also applied to examine the association between the 

continuous score and survival adjusting for risk using the cph function of rms R package70. 

Hazard ratio and their confidence intervals were computed and the shape of the association 

was plotted.

Global test.

Global associations between inflammatory gene expression sets (see above), genomic 

variables, LSC17 (ref. 45), pLSC6 and OS were calculated using the global test package 

in R71,72, with interactions.

Tet2-mutant mice

Tet2HR mice were described previously32. For analysis of B cells in the Tet2HR BM, 

B cells were separated from single-cell data from these mice (GSE182615). The B-cell 

compartment was separately integrated using a Seurat anchor-based integration method60. 

To visualize the data in two-dimensional space, we used the first 20 principal components of 

the scaled integrated matrix to run UMAP projections. Atypical B cells were identified using 

previously published gene signatures73.

Statistics and reproducibility

No statistical method was used to predetermine sample size, but our sample sizes are 

similar to those reported in other publications15,19. For malignant and microenvironment 

analysis, we excluded three patients for whom we could not confidently separate malignant 

and microenvironment cells. For analysis of B and T cells, we excluded nine patients 

where fewer than 50 B or T cells were captured. No other data were excluded from the 

analysis. The experiments were not randomized. The investigators were not blinded to 

sample allocation during data collection, analysis and outcome assessment.

All statistical analysis was performed in R v.3.6.1. Only Alliance cohort outcome analysis 

was performed using SAS 9.4 and TIBCO Spotfire S+8.2. Comparisons of numerical 

variables according to disease state or inflammation state were carried out using the 

Wilcoxon rank-sum test for two-group comparisons and Kruskal–Wallis test for multiple-

group comparisons. Whenever multiple tests were performed, P values were corrected 

for multiple comparison using Bonferroni correction unless otherwise stated. Estimated 

probabilities of OS were calculated using the Kaplan–Meier method and the log-rank test 

to evaluate differences between survival distributions. All statistical tests are listed in the 

corresponding method sections and figure legends for clarity.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Cell populations in the bone marrow.
a. Heatmap of average expression of top RNA cluster markers for different cell subsets 

in the BM (left), heatmap of average expression of surface protein markers for different 

cell subsets in the BM (right). HSC – hematopoietic stem cells, MPP – multipotent 

progenitors, GMP – granulocyte-monocyte progenitors, MEP – megakaryocyte progenitors, 

LymP – lymphoid progenitors, DC – dendritic cells, Ery – erythrocytes. b. Quantification 
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of HSPC subsets in the BM. Box plots represent the median with the box bounding the 

interquartile range (IQR) and whiskers showing the most extreme points within 1.5 × 

IQR. c. Quantification of myeloid subsets in the BM. Box plots represent the median with 

the box bounding the interquartile range (IQR) and whiskers showing the most extreme 

points within 1.5 × IQR. d. Quantification of B cell subsets in the BM. e. Quantification 

of conventional (CD4+, CD8+), non-conventional (MAIT, γδ) and NK cells in the BM. 

Box plots represent the median with the box bounding the interquartile range (IQR) and 

whiskers showing the most extreme points within 1.5× IQR. All statistical tests shown 

in this figure are two-sided. Pair-wise comparisons were evaluated using Wilcoxon test, 

multi-group comparisons were evaluated using Kruskal-Wallis test. For panels B-E, HD_Y 

– Healthy donors 19-26 years old (n = 5), HD_O – healthy donors 39-55 years old (n = 5), 

PED – pediatric patients with AML (n = 22), AD – adult AML patients (n = 20).
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Extended Data Fig. 2 |. Separation of malignant and microenvironment cells in AML samples.
a. InferCNV heatmaps for patients with clinically annotated chromosome gains or losses. b. 

InferCNV heatmaps for healthy donor BM samples. c. UMAP projection of Healthy donors, 

CNV+ and CNV− cells from patients with annotated chromosome gains or losses (left), 

quantification of malignant and microenvironment cells for each sample (right).
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Extended Data Fig. 3 |. Validation of occupancy score method.
a. UMAP projection depicting cell clustering for calculation of occupancy scores. b. UMAP 

projection of occupancy score. c. UMAP projection of malignant and microenvironment 

cells based on occupancy scores (left) or single cell genotyping (right).

Lasry et al. Page 23

Nat Cancer. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. Non-annotated karyotype aberrations detected by InferCNV.
a. InferCNV heatmaps for patient samples with non-annotated karyotype aberrations. b. 

Patient-by-patient quantification of broad cell types in malignant cells.
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Extended Data Fig. 5 |. Pathogenic programs in AML.
a. UMAP projections of cells expressing different gene expression programs identified by 

NMF.
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Extended Data Fig. 6 |. Inflammatory signatures in AML.
a. Pathway analysis for genes in the adult (left) and pediatric (right) inflammation 

signatures. b. Overlap between genes in the adult and pediatric inflammation signatures. 

c. Pearson correlation between age and inflammation score in the adult AML cohort. d. 

Inflammation score in older controls (n = 5) and adult AML patients (n = 20) in the single 

cell cohort. Dashed line represents cutoff for high or low inflammation. Box plots represent 

the median with the box bounding the interquartile range (IQR) and whiskers showing 

the most extreme points within 1.5× IQR. e. Inflammation score in younger controls (n 
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= 5) and pediatric AML patients (n = 22). Dashed line represents cutoff for high or low 

inflammation. Box plots represent the median with the box bounding the interquartile range 

(IQR) and whiskers showing the most extreme points within 1.5× IQR. f. Heatmap of 

average expression of the pediatric inflammation signature in malignant cells from pediatric 

patients. Max CT – maximum cell count. Infants – 0–3 years old (n = 6), children – 3–12 

years old (n = 9), teens − 12–21 years old (n = 7). g. Heatmap of average expression of the 

adult inflammation signature in malignant cells from adult patients. Max CT – maximum 

cell type.
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Extended Data Fig. 7 |. Inflammatory B cells in AML.
a. Heatmap of average expression of surface protein markers in different B cell subsets. 

CLP – common lymphoid progenitor. b. Heatmap of average expression of RNA markers in 

different B cell subsets. c. Quantification of Atypical B cells split by young healthy donor 

(n = 5), older healthy donors (n = 5) adult (n = 14) and pediatric (n = 19) AML patients. 

Note the reduction in patient numbers due to exclusion of patients with less than 50 B 

cells in the BM. Box plots represent the median with the box bounding the interquartile 

range (IQR) and whiskers showing the most extreme points within 1.5 × IQR. d. Pearson 
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correlation between the atypical B cell gene signature and the adult inflammation signature 

in the TCGA cohort (n = 152). e. UMAP representation of B cells from wild type (WT, 

n = 7) and Tet2 mutant (n = 11) mouse BM. f. UMAP representation of wild type (WT, 

n = 7) and Tet2 mutant (n = 11) cell distribution in B cell clusters. g. Heatmap showing 

expression of the mouse atypical B cell gene signature in B cell clusters in wild type (WT, n 

= 7) and Tet2 (n = 11) mutant mouse BM. h. Quantification of atypical B cells in aged wild 

type (WT, n = 3) or Tet2 mutant mice (n = 7). Mild – mild disease (n = 2), severe – severe 

disease (n = 5). Statistical tests in this panel are two-sided. Box plots represent the median 

with the box bounding the interquartile range (IQR) and whiskers showing the most extreme 

points within 1.5 × IQR. i. Inflammation scores of samples used for FACS validation of 

atypical B cell expansion in high inflammation AML BM (high inflammation n = 4, low 

inflammation n = 4). Box plots represent the median with the box bounding the interquartile 

range (IQR) and whiskers showing the most extreme points within 1.5× IQR. All pair-wise 

comparisons were evaluated using Wilcoxon test, multi-group comparisons were evaluated 

using Kruskal-Wallis test.
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Extended Data Fig. 8 |. T cell responses in AML.
a. Heatmap of average expression of surface protein markers in different T cell subsets. 

TCM – central memory T cells; TReg – regulatory T cells; TRM – resident memory T 

cells. b. Heatmap of average expression of RNA markers in different T cell subsets. c. 

Quantification of T cell subsets in high and low inflammation AML patients. d. Gating 

strategy for sorting of T cells from AML or healthy donor BM aspirates. e. Pie charts 

representing the fraction of small (0-1%), large (1-10%) and hyperexpanded (10–100%) 

clones in individual samples. f. Quantification of CD8+ subsets from expanded clones in 
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AML patients. g. Clonal diversity in infants (0-3 years old, n = 37), children (3-12 years old, 

n = 59) and teens (12-21 years old, n = 49) from the TARGET-AML bulk RNA-Seq cohort. 

All statistical tests shown in this figure are two-sided. All box plots represent the median 

with the box bounding the interquartile range (IQR) and whiskers showing the most extreme 

points within 1.5× IQR. All pair-wise comparisons were evaluated using Wilcoxon test.

Extended Data Fig. 9 |. Clinical implications of inflammation in AML.
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a. Overall survival of high and low inflammation adult AML patients in the Alliance cohort 

(n = 686 < 60 years old, n = 184 > =60 years old). Log rank test was used to evaluate 

significance. b. Overall survival of high and low inflammation pediatric AML patients in 

the TARGET-AML cohort (n = 336). Log rank test was used to evaluate significance. c. 

Distribution of the iScore in adult AML patients in the Alliance cohort, by risk (Adverse 

risk - n = 274, Intermediate risk - n = 176, Favorable - n = 359). Box plots represent the 

median with the box bounding the interquartile range (IQR) and whiskers showing the most 

extreme points within 1.5× IQR. d. Distribution of the iScore in pediatric AML patients 

in the TARGET cohort, by risk (High risk - n = 105, intermediate risk - n = 95, low risk 

- n = 136). Box plots represent the median with the box bounding the interquartile range 

(IQR) and whiskers showing the most extreme points within 1.5× IQR. e. Overall survival 

association of iScore and LSC17 in adult AML patients (n = 686 < 60 years old, n = 184 

> =60 years old) assessed by global test. f. Overall survival association of iScore and other 

prognostic predictors in pediatric AML patients (n = 336) assessed by global test. g. Overall 

survival in high and low iScore patients in the TCGA AML cohort (<60 yrs, n = 90). h. 

8-year predicted overall survival (OS) in favorable, intermediate and adverse risk adult AML 

patients in the BeatAML cohort (n = 172 < 60 years old, n = 211 > =60 years old), based 

on iScore. H. 8-year predicted OS in low, intermediate and high risk pediatric patients in a 

pediatric microarray cohort (n = 329), based on iScore.
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Extended Data Fig. 10 |. Effect of iScore on event free survival in AML.
a. Event free survival in high and low iScore Favorable risk patients in adult patients in the 

TCGA AML cohort (<60 yrs, n = 89). Log rank test was used to evaluate significance. b. 

Event free survival in pediatric patients in a microarray cohort (n = 372). Log rank test was 

used to evaluate significance. c. Event Free survival in high and low iScore favorable risk 

patients in the Alliance AML cohort (n = 323 < 60 years old). Log rank test was used to 

evaluate significance. d. Event free survival in high and low iScore intermediate risk patients 

in the Alliance AML cohort (n = 140 < 60 years old, n = 33 > =60 years old). Log rank test 

was used to evaluate significance. e. Event free survival in high and low iScore adverse risk 

patients in the Alliance AML cohort (n = 182 < 60 years old, n = 92 > =60 years old). Log 

rank test was used to evaluate significance.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. The single-cell landscape of adult and pediatric AML.
a, UMAP projection of healthy donors (n = 10), adult (n = 20) and pediatric (n = 22) 

AML BM cells. b, Split UMAP projection of healthy donors (n = 10), adult (n = 20) 

and pediatric (n = 22) AML cells, annotated by cell type based on transcriptome and 

surface protein expression. MEP, megakaryocyte progenitor; LymP, lymphoid progenitor; 

DC, dendritic cell; Ery, erythrocyte. c, UMAP representation of cells from healthy donors 

(n = 10, gray) or patients with AML (n = 42, colored), highlighting patient-specific clusters 

in AML. d, InferCNV heat map demonstrating copy gains in chromosomes 1, 5, 8 and 19 
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for sample AML 3050. e, UMAP projection of control, CNV+and CNV− cells from sample 

AML 3050.Gray indicates healthy donor cells (n = 10). f, Quantification of malignant and 

microenvironment (ME) cells from sample AML 3050. g, UMAP projection of healthy 

donors (n = 10), malignant and microenvironment cells from patients with AML (n = 37), 

following inferCNV and occupancy score analysis. h, Split UMAP projection of annotated 

cells from healthy donors (n = 10), malignant and microenvironment populations (n = 37 

patients with AML) in the BM. All UMAP projections are based on the same coordinates.
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Fig. 2 |. Inflammatory pathways in malignant AML cells.
a, UMAP representation of healthy donor HSPCs and myeloid cells and malignant cells 

from adult and pediatric patients with AML. b, UMAP representation of healthy donor 

and malignant cells annotated by cell type. c, UMAP representation of cells expressing 

inflammation-related features identified by NMF. d, Volcano plots depicting genes enriched 

(right) or depleted (left) in malignant HSPCs from adult and pediatric patients with AML. 

FC, fold change; NS, not significant. e, Volcano plots depicting genes enriched (right) or 

depleted (left) in malignant myeloid cells from adult and pediatric patients with AML. For 
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all panels, healthy donor n = 10 and patients with AML n = 37 (n = 18 adult, n = 19 

pediatric)
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Fig. 3 |. Atypical B cells are associated with high inflammation in AML.
a, Split UMAP projection of B cells from healthy donors (HDs) (n = 10), adult (n = 20) 

and pediatric (n = 22) AML BM, annotated based on transcriptome and surface protein 

expression. b, Quantification of atypical B cells in healthy donors (n = 10) and AML (n 
= 30) BM. Wilcoxon test was used to evaluate statistical significance. Box plots represent 

the median with the box bounding the interquartile range (IQR) and whiskers showing the 

most extreme points within 1.5 × IQR. c, Correlation between the atypical B-cell signature 

and the inflammation signature in the Alliance cohort (adult patients, n = 872) and the 
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TARGET-AML cohort (pediatric patients, n = 157). d, Representative FACS plot showing 

gating strategy for atypical B cells in BM aspirates. e, Quantification of FACS analysis of 

atypical B cells in BM aspirates from low-inflammation (blue, n = 4) and high-inflammation 

(red, n = 4) patients with AML. Error bars represent s.d. A t-test was used to evaluate 

statistical significance. f, Heat map of genes upregulated (red) or downregulated in atypical 

B cells from patients with AML compared to control. g, CD72 surface protein expression on 

atypical B cells from control (blue, n = 2) and patients with AML (red, n = 10). Wilcoxon 

test was used to evaluate statistical significance. Box plots represent the median with the 

box bounding the IQR and whiskers showing the most extreme points within 1.5 × IQR. All 

statistical tests shown in this figure are two-sided.

Lasry et al. Page 43

Nat Cancer. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. T-cell responses in human AML.
a, Split UMAP projection of T and NK cells from healthy donors (n = 10) and adult (n 
= 20) and pediatric (n = 22) patients with AML. b, Quantification of cytotoxic CD8+ T 

cells in healthy donors and pediatric and adult patients with AML. HD_Y, healthy donors 

19–26 years old (n = 5); HD_O, healthy donors 39–55 years old (n = 5); PED, pediatric 

AML (n = 22); AD, adult AML (n = 20). Box plots represent the median with the box 

bounding the IQR and whiskers showing the most extreme points within 1.5 × IQR. A 

Kruskal–Wallis test was used to evaluate statistical significance in multigroup comparison, 

Lasry et al. Page 44

Nat Cancer. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas a Wilcoxon test was used for two-group comparisons. c, Quantification of Treg 

cells in healthy donors, and pediatric and adult patients with AML. Box plots represent 

the median with the box bounding the IQR and whiskers showing the most extreme points 

within 1.5 × IQR. A Kruskal–Wallis test was used to evaluate statistical significance in 

multigroup comparison, whereas a Wilcoxon test was used for two-group comparisons. d, 

Quantification of Treg cells in low- (n = 12) or high-inflammation (n = 6) pediatric patients 

with AML. Box plots represent the median with the box bounding the IQR and whiskers 

showing the most extreme points within 1.5 × IQR. A Wilcoxon test was used to evaluate 

statistical significance. e, Quantification of GZMK+ CD8+ T cells in low- (n = 12) or high-

inflammation (n = 6) pediatric patients with AML. Box plots represent the median with the 

box bounding the IQR and whiskers showing the most extreme points within 1.5 × IQR. A 

Wilcoxon test was used to evaluate statistical significance. f, Heat map of expression of the 

Tpex cell gene signature in CD8+ T cells in the BM. g, Pie charts representing the fraction 

of small (0–1%), large (1–10%) or hyperexpanded (10–100%) T-cell clones in controls and 

patients with AML (adult, n = 7; pediatric, n = 3). Younger HD, healthy donors 19–22 years 

old (n = 3); older HD, healthy donors 43–55 years old (n = 2). NS, not significant. h, UMAP 

projection of T cells from healthy donors (n = 5) and adult (n = 7) and pediatric (n = 3) 

patients with AML, annotated based on transcriptome. i, UMAP projection of T-cell clones 

from healthy donors (n = 5) and adult (n = 7) and pediatric (n = 3) patients with AML. 

NA, not available. j, Quantification of CD8+ subsets from expanded clones for sample AML 

0134. A full list of expanded clonotypes is in Supplementary Table 10. k, Clonal diversity 

in low-inflammation (n = 75) and high-inflammation (n = 76) patients with AML from the 

TCGA cohort. Box plots represent the median with the box bounding the IQR and whiskers 

showing the most extreme points within 1.5 × IQR. A Wilcoxon test was used to evaluate 

statistical significance. All statistical tests shown in this figure were two-sided.
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Fig. 5 |. iScore associates with distinct subsets of human AML.
a, t-SNE representation of bulk RNA-seq data of adult patients with AML in the Alliance 

cohort (n = 872). b, t-SNE representation of bulk RNA-seq data of pediatric patients with 

AML in a large bulk RNA-seq cohort46 (n = 435). c, Adult iScore in bulk RNA-seq data 

of patients in the Alliance cohort (n = 872). d, Pediatric iScore in bulk RNA-seq data 

of patients in a pediatric bulk RNA-seq cohort (n = 435). e, OS of high and low iScore 

adult patients with AML in the Alliance cohort (n = 872). Log-rank test was used to 

evaluate significance. f, OS of high and low iScore pediatric patients with AML in the 
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TARGET-AML cohort (n = 336). Log-rank test was used to evaluate significance. g, OS of 

adult ELN favorable high and low iScore patients in the Alliance cohort (n = 323). Log-rank 

test was used to evaluate significance. h, OS of adult ELN intermediate high and low iScore 

patients in the Alliance cohort (n = 140, <60 years old; n = 33, ≥60 years old). Log-rank 

test was used to evaluate significance. i, OS of adult ELN adverse high and low iScore 

patients in the Alliance cohort (n = 182, <60 years old; n = 92, ≥60 years old). Log-rank 

test was used to evaluate significance. j, Eight-year predicted OS in low-, intermediate- and 

high-risk patients in a pediatric cohort (n = 336). k, EFS in high and low iScore patients in 

the Alliance AML cohort (n = 686, <60 years old; n = 185, ≥60 years old). Log-rank test 

was used to evaluate significance. l, EFS in high and low iScore pediatric patients (n = 336). 

Log-rank test was used to evaluate significance.
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