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Abstract

Objective.—Our aim is to enhance sensory perception and spatial presence in artificial interfaces 

guided by EEG. This is done by developing a closed-loop electro-tactile system guided by EEG 

that adaptively update the electrical stimulation parameters to achieve EEG responses similar to 

the EEG responses generated from touching textured surface.

Approach.—In this work, we introduce a model that defines the relationship between the contact 

force profiles and the electrical stimulation parameters. This is done by using the EEG and force 

data collected from two experiments. The first was conducted by moving a set of textured surfaces 

against the subjects’ fingertip, while collecting both EEG and force data. Whereas the second was 

carried out by applying a set of different pulse and amplitude modulated electrical stimuli to the 

subjects’ index finger while recording EEG.

Main results.—We were able to develop a model which could generate electrical stimulation 

parameters corresponding to different textured surfaces. We showed by offline testing and 

validation analysis that the average error between the EEG generated from the estimated electrical 

stimulation parameters and the actual EEG generated from touching textured surfaces is around 

7%.

Significance.—Haptic feedback plays a vital role in our daily life, as it allows us to become 

aware of our environment. Even though a number of methods have been developed to measure 

perception of spatial presence and provide sensory feedback in virtual reality environments, there 

is currently no closed-loop control of sensory stimulation. The proposed model provides an initial 

step towards developing a closed loop electro-tactile haptic feedback model that delivers more 

realistic touch sensation through electrical stimulation.
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1. Introduction

In the last few decades there has been significant research efforts on developing haptic 

devices to deliver sense of touch. Haptic feedback devices provide tactile information to 

their users through the simulated sense of touch. For example, physicians training for 

surgical procedures in virtual environment, teleoperation of robotic arms and achieving 

sensation through neuroprothestics are some of the applications of such haptic devices [1–9]. 

Based on the stimulation methods/feedback to deliver sense of touch these devices can be 

separated into two categories (a) force and (b) electrical stimulation [10–13].

Force based devices use actuators, motors and vibrations to deliver touch-like sensation, 

while electrical stimulation devices use frequency and amplitude modulated electrical 

stimulation to deliver touch information. For example, pressure displays use simple actuators 

to press a surface against the user’s fingertip, which allows small forces to be detected by the 

user [14]. Vibrations with different patterns and frequencies are also used to deliver touch 

sensation through the user’s fingertip and forearm [15, 16]. Softness and hardness sensation 

of different objects can be delivered to users by changing the normal force patterns applied 

to the user’s skin [17, 18]. Texture properties of materials can be delivered by rendering 

friction using forces on the user’s hand [19]. Surface geometry, such as dents and bumps 

on a surface, is another factor that can be used to imitate shape cues. Moreover, through 

the generation of force patterns correlated with position, one can perceive perceptual cues 

of different objects [20]. Although there exists a vast development in force feedback based 

haptic devices, they tend to be expensive, heavy, not portable. Most importantly none of 

these devices provide tactile stimulation controlled based on a closed loop feedback such 

that the amount of force is controlled based on the feedback recorded from the users.

Electrical stimulation has gained more popularity due to its minimally invasive nature, 

small size, absence of the resonance characteristic of force actuators and ease of 

implementation [6–9, 21–24]. In previous studies, researchers succeeded in showing that 

electrical stimulation could be used as a potential mean of delivering sensation. For 

example, an electro-tactile augmentation method was developed to generate vibrotactile 

sensations, allowing texture modulation of real textured surfaces [25, 26]. This method was 

based on placing two stimulus electrodes at the subject’s finger to evoke neural activity. 

Results of this study showed that participants were able to perceive roughness of materials 

using electrotactile augmentation. Other studies showed that electrostatic force [27] and 

electrovibration [28] allow texture augmentation. Electrical stimulation also allowed texture 

augmentation for natural materials [29, 30]. Tactile grip force and hand opening information 

were delivered to the subjects using amplitude modulated electro-tactile feedback [31]. 

This was achieved by training and teaching the subjects to jointly distinguish between 

27 different objects of varying size and their coupling electrotactile feedback. Subjects 

were able to distinguish between objects with 49.2% accuracy, which was shown to be 

above chance level. Although electrical stimulation devices gained popularity, they either 

depend on modulating the material or training the participants to perceive specific electrical 

stimulation patterns associated with touching various objects. In summary, force-feedback 

tends to be expensive, non-portable and limited to a small number of contact points. On 

the other hand, electro-tactile displays are compact and wearable but there remains many 
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hurdles to be overcome to make the electrical stimulation-based tactile information more 

realistic the users. Finally, similar to the current force-based haptic devices, electrical 

stimulation-based haptic stimulation does not currently include any closed loop control.

Several parametric model-based approaches for haptic devices have been developed to 

mimic human’s touch sensation using electromyography signals [32–34]. However, these 

methods require knowing the exact muscle parameters. Furthermore, the convergence of 

these models’ parameters depend on the computational time and complexity. Recently, rapid 

advancements in machine learning (ML) lead to a huge progress in robotics [35–40], which 

lead to a development of several ML non-parametric models to mimic the human tactile 

sensation [41, 42]. However, none of the existing models include closed-loop feedback.

Electroencephalography (EEG) studies showed that EEG contains patterns that change when 

the amount or roughness of tactile feedback changes [32, 43–53]. Genna et al showed 

an increase in the power of the theta band (4–7 Hz) for 500 ms after the stimulus 

onset, which was distributed across the cortex, with a focus around the contralateral 

somatosensory region. This change was followed by a decrease in the power of the alpha 

band during passive stimulation, which was prominent in the somatosensory cortex and 

equally distributed in both contralateral and ipsilateral hemispheres [49, 54]. They also 

showed, in a later study, that there was a linear decrease in the alpha band amplitude when 

increasing the roughness of the tactile stimulus in both contralateral and ipsilateral sides 

[51]. Another study showed that there is a relation between roughness of the tactile stimulus 

and the power in the beta band over parietal regions contralateral to the stimulated sid [50]. 

Moreover, in previous work, we were able to identify EEG features, the total power in the 

mu (8–15 Hz) and beta (16–30 Hz) frequency generated around the sensorimotor region, that 

are able to classify textured surfaces on a single trial basis [52, 53].

Our overarching goal is to develop a closed-loop control of electrical stimulation to generate 

more realistic sense of touch. Our approach uses brain activity measured through EEG to 

develop a closed-loop generation of electrical stimulation that will have similar brain activity 

measured through EEG when an individual touches a textured surface and sense of touch 

depends on the contact forces. That is, in this paper we present an initial step towards 

building an EEG-guided closed-loop electro-tactile model that could generate electrical 

stimulation parameters corresponding to different force profile patterns. To achieve this, we 

first develop a model that defines the relationship between the brain activity recorded during 

passive touch and the brain activity in response to different electrical stimulation parameters. 

In order to obtain brain activity similar to the activity achieved in response to contact forces 

corresponding to different textured surfaces, the developed model is then used in an adaptive 

and closed-loop fashion, to update the electrical stimulation parameters.

2. Experimental study design

2.1. Participants

Eleven right-handed healthy subjects (five males, six females 27.5 ± 5.5 years) were 

recruited in this study. None of the subjects experience somatosensory or neurological 

Eldeeb and Akcakaya Page 3

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deficits, physical limitation or skin rash. All subjects were provided written informed 

consent.

2.2. EEG data acquisition

For both the passive touch and electrical stimulation experiments, we recorded EEG 

according to the 10–20 system from 14-channels. The placement of the EEG electrodes was 

chosen to focus on the frontal and somatosensory cortices focusing around the sensorimotor 

integration regions (F3, F4, FC3, FC4, C1, C3, C5, CZ, C2, C4, C6, CP1, CPZ and CP2). 

For the reference, we used the left mastoid and for the ground we used the FPz. EEG data 

was recorded with 256 Hz sampling rate, then it was filtered using the amplifier’s filters; a 

4th-order notch filter with cutoff frequencies of 58 and 62 HZ and an 8th-order bandpass 

filter with cutoff frequencies of 2 and 62 Hz. EEG data was further preprocessed using FIR 

band-pass filter designed using Kaiser window with cutoff frequencies: 8, 60 Hz.

2.3. Passive touch study

2.3.1. Tactile stimuli—We generated three textured surfaces (5 cm × 5 cm) using 

MATLAB, which represent three levels of roughness. Stereolithography (Viper SLA system, 

3Dsystems, USA) was used for fabrication. Each texture is mounted on the force transducer 

and adjusted on a LEGO MINDSTORMS EV3 31313 Robot, as shown in figure 1. This 

robot was designed to perform both tap and rub movements. The subjects were asked to sit 

comfortably in front of the system setup and rest their right arm on a soft arm pillow.

2.3.2. Data acquisition—Two g.USBamp (from g.tec medical engineering GmbH) 

amplifiers have been used for data recording, one for EEG data acquisition and one for force 

data. Force data was acquired using a force and torque transducer (NANO17 F/T transducer, 

ATI Industrial Automation, USA). Then, it was transferred to the analog inputs of the 

g.USBamp amplifier and sampled at 256 Hz. In previous work [52, 53], we showed that 

channels C1, C3 and C5 have the most significant responses related to texture information. 

In this study, we used the average of these three channels.

2.3.3. Experimental setup—The MINDSTORMS EV3 software was used to program 

11 random set of sequences, one for each participant. Each sequence consists of six 

conditions: a combination of three texture surface and two movement types (rub or tap). 

Within a condition, each participant was instructed to place their hand comfortably on a 

foam hand-wrist rest while the robot moves its arm performing a rub or tap of the chosen 

surface multiple times for 2 min. The participants were also instructed to wear an ear-plug 

and look to a fixated cross on a black screen background during the robot movement. Cues 

were displayed to the subjects using Psychtoolbox (MATLAB) [55] and an event marker 

was sent to each amplifier to label the cue onset time of each condition (movement type 

and surface). Within each condition, there is a set of trials, which are segmented based on 

the normal force data to ensure we capture the first 500 ms after stimulation onset. A single 

trial is comprised of a complete rub or tap movement and lasts for 1 s, with inter-stimulus 

onset between one and two seconds chosen randomly. We followed the same steps we used 

in a previous work to segment the force and EEG data [52]. At the end of each condition, 

a ‘Rest’ message was displayed for 2 min. EEG and force data were then segmented per 
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condition according to these event markers. Careful examination of the collected EEG and 

force data showed some artifacts in the force data collected. A window around the first 500 

ms of data is chosen, and the data within this window is analyzed. The percentage of the 

rejected trials is 4% of the total number of trials.

2.4. Electrical stimulation study

2.4.1. Electrode location—The stimulus electrode is placed on the fingertip of the 

index finger near afferent nerves and the ground electrode is placed on the wrist bone. It is 

known that the fingertip has the highest density of mechanoreceptors, which are responsible 

for tactile sensation [56].

2.4.2. Data acquisition—An A-M systems 4100 Isolated High Power Stimulator was 

used to deliver the electrical stimulation pulses through disposable pre-gelled adhesive 20 

mm Ag/AgCl disc electrodes. Moreover, a National Instrument USB Multifunction I/O 

DAQ Data Acquisition was used to synchronize both the EEG amplifier and the electrical 

stimulation device. Also this DAQ was used to send event markers to the amplifier to 

mark the beginning of the trial onset, while at the same time send the electrical stimulation 

parameters to the electrical stimulation device. These markers are then used to segment 

the EEG. The electrical stimuli in this study comprises of a sequence of amplitude and 

frequency modulated electrical pulses applied to the fingertip of the index finger. Figure 2 

shows one of the subjects while being prepared for the experiment. Both perceptual and 

discomfort threshold levels for each participant were recorded using the fingertip of the right 

index finger. We conducted two experimental protocols; pulse modulation and amplitude 

modulation. The first is by varying the pulse rate and fixing the electrical stimulation 

amplitude. While the second protocol involves fixing the pulse rate and varying the electrical 

stimulation amplitude. Experimental protocol parameters as follows, pulse amplitude of 1.5 

mA and pulse rate: 1, 50, 100, 200, 300, 400, 500 and 600 Hz. The second protocol has 

a pulse rate of 200 Hz and ten different pulse amplitude with a minimum value at the 

perception threshold and maximum value below the discomfort level, with a step equals 

= (the discomfort level – the perception threshold)/10. Both protocols have pulse width of 

200 μs/phase, 20 ms of electrical stimulation. Each experimental protocol had a total of 

500 trials delivered randomly to each participant, where the inter-stimulus interval was one 

second. Careful examination of the collected EEG data showed some artifacts in the EEG 

data collected from the electrical stimulation experiment. A window around the first 500 

ms, at the beginning of trial onset time, of each trial data is chosen, and the data within 

this window is analyzed. The percentage of the rejected trials is between (min: 5, max: 

12)% of the total number of trials per subject. Due to the limited number of samples per 

each stimulation condition, we grouped the data samples into four groups. Therefore, the 

frequency modulated data has originally eight conditions, we group them into two equal 

conditions, low and high frequency. Thus, low frequency group will contain the data coming 

from the following frequency conditions (1 Hz, 50 Hz, 100 Hz, 200 Hz), while the high 

frequency group contains the data have these conditions (300 Hz, 400 Hz, 500 Hz, 600 Hz). 

The amplitude modulated data is also grouped into two equal groups based on the amplitude 

condition used in the electrical stimuli.
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3. Methods

The flow diagram of the proposed model is shown in figure 3, where the oval shapes 

represent the input or output data and the rectangular shapes represent the operation that was 

done on the data. The details of each step are described in the following subsections.

3.1. Model parameters

Four models have been designed to relate the EEG, force and electrical stimulation 

parameters as can be seen in table 1. Each alpha weight matrices (A1,A2,A3,A4) represent 

the projected weights or components of each set of data on the corresponding basis vectors 

set. For each movement condition (rub and tap), data collected during touch study was 

grouped into three groups based on the textured surface that was used. Also, the data 

collected during the electrical stimulation study was categorized into four groups based 

on the electrical stimulation condition as we described in the electrical stimulation data 

acquisition subsection. We refer to the EEG and force data collected during the touch study 

as EEGtouch and Force respectively, and the EEG collected during the electrical stimulation 

study as EEGES, where both EEGtouch and EEGES are the average of the EEG collected 

from channels C1, C3 and C5. Moreover, the electrical stimulation parameters were used to 

form a matrix called ES. each matrix of EEGtouch and Force is of size N × L, where N is 

the number of touch experiment trials, L is the trial length. While, each matrix of EEGES 

and ES is of size M × L, where M is the number of electrical stimulation trials and L is 

the trial length. For cross validation, each group of data (EEGtouch, Force, EEGES and ES), 

was divided into five folds, where 80% of the data was used during the training and 20% for 

testing.

Algorithm 1.

Optimal set of basis vectors estimation.

for Each Surface (l = 1 : 3) do

 for Each model in table 1, Estimate Am,l where Output = AVdo

  * Estimate Am,l such that Am, l = arg min
Am, l

∥ Output − Am, lV ∥2
 where V is the set of basis vectors.

  * A number of circular shifts on the initial set of basis vectors were applied and the fitting error for each step of 
shift was recorded.

  * For models 1, 2 and 4 estimate A1,l, A2,l and A4,l such that:

 A1, l = arg min
A1, l

ES − A1, lV EEGES
2

 A2, l = arg min
A2, l

EEGES − A2, lV EEGES
2

 A4, l = arg min
A4, l

EEGtouch − A4, lV EEGES
2

  Then select the final set of basis vectors for VEEGES that minimize the fitting error of models 1, 2 and 4 such that:

 

ES
EEGES

EEGtouch
=

A1, l
A2, l
A4, l

V EEGES

 which can be written as:
 X = AVEEGES
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  Hence, VEEGES can be estimated as follows:

  VEEGES = (ATA)−1ATX

  where

 A =
A1, l
A2, l
A4, l

and X =
ES

EEGES
EEGtouch

 By solving the three models simultaneously we ensure that the estimated VEEGES fit the three models.

  For model 3, where EEGtouch = A3,lVforce

  The optimal set of basis vectors can be found by solving

  A3, l = arg min
A3, l

EEGtouch − A3, lV force
2

 end for

end for

Force and EEGES training data was used to form an initial set of basis vectors as shown in 

figure 4. A set of vectors, V is called a set of basis vectors if every element in the vector 

space can be written as a finite linear combination of the basis vector set in a unique way, 

and the elements of the basis vector are linearly independent [57]. We used the Gaussian–

Jordan elimination method to check for linear independence for each set of basis vectors 

[58].

Therefore, the initial basis set of vectors for the force data collected can be written as:

V force
(0) = v1; v2; v3 (1)

where v1, v2 and v3 are the means of the force data trials collected during touching the 

smooth, medium rough and rough surfaces respectively, as can be seen in figures A1(a) and 

(b). Each basis vector, v, is of size 1 xL, where L is the trial length, and V force
(0)  is of size 3 

xL.

Moreover, the initial basis set of vectors for the EEG collected during the electrical 

stimulation experiment can be written as:

V EEGES
(0) = v1; v2; v3; v4 (2)

where v1:4 are the means of electrical stimulation trials data corresponding to (low, high 

frequency, low and high amplitude) groups. Each basis vector, v, is of size 1 xL, where L is 

the trial length, and V EEGES
(0)  is of size 4 XL.

After creating an initial sets of basis vectors, the circular shift method [59] was used to 

find the optimal set of basis vectors for each model that minimizes the fitting error, and 

the Gaussian-Jordan elimination method was applied after each shift to check for linear 

independence. The values of circular shift were chosen to minimize the overlap between 

the signals after applying the shift. The range of values are 50, 25, 12 and 6 ms. After 

finding the final optimal sets of basis vectors, the size of each alpha matrix would be as 
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follows; A1 (MXK1), A2 (MXK1), A3 (NXK2) and A4 (NXK1), where N is the number 

of EEG trials during the passive touch study, M is the number of EEG trials during the 

electrical stimulation study. Furthermore, K1 represents the optimal number of basis vectors 

for VEEGES and K2 represents the optimal number of basis vectors for Vforce. A summary of 

the steps of estimating the optimal sets of basis vectors and fitting error calculation is shown 

in algorithm 1.

The components of each Alpha matrix, A, are used to form a distribution that represents 

each model. Therefore, kernel density estimation method was used to find the probability 

distributions of A1, A2, A3, and A4. Kernel density estimation is a non-parametric method 

used to estimate the probability density function of a random variable, where inferences 

about the population are made, based on a finite data sample [60, 61 ]. A summary of the 

steps of estimating the alpha distributions and sampling process is shown in algorithm 2. 

Note that the samples from these distributions are also used in this manuscript for five-fold 

cross validation and generalization testing.

Algorithm 2.

Alpha distributions estimation and sampling.

for Each model m and Alpha weights Am where Output = AVdo

 * Kernel density estimation

 for Each basis vector v  in the basis vector set V, where V = v1; …; vi ; …; vN do

  * We have Am = αm, 1; …; αm, i; …; αm, N
T

 Estimate the probability density function of the values of αm, i
corresponding to the basis vector vi  by using the kernel density estimation method.

  * For each estimated probability density function, estimate the band width ℎαm, i corresponding to αm, i.

  * Sampling

  for each sample do

   * Randomly sample one value from αm, i:xαm, i.

   * Build a normal distributions Nαm, i(μ, σ) for αm, i, where the mean is μ = xαm, i and the standard 

deviation is the band width estimated previously, ℎαm, i.

   * Sample yαm, i value corresponding to vi  which is a single sampled value from the estimated distribution 

Nαm, i.

   * Repeat these steps for all basis vectors v  in the basis vector set V to get sample batches of 

A1
s, A2

s, A3
s and A4

s
.

  end for

 end for

end for

3.2. Model equations and online update

By using models one, three and four shown in table 1, we can find a relation between the 

force profile parameters and electrical stimulation parameters. We know that:
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EEGTouch = A3V Force (3)

EEGTouch = A4V EEGES (4)

Hence,

H3V Force = A4V EEGES (5)

V EEGES = A4
−1A3V Force . (6)

Also, we know that

ES = A1V EEGES . (7)

Therefore, we can write the following equation which explains the relation between the 

electrical stimulation parameters and the force profile parameters as follows:

ES = A1 A4
−1A3V Force (8)

ES = βV Force (9)

where β = A1(A4)−1A3.

Hence, by knowing the distributions of A1, A3 and A4, which have been generated using 

the data we collected previously; we can convert force patterns into electrical stimulation 

parameters. Our next step is to close the feedback loop and show how we are going to 

use this model in an online setup while adaptively improving the EEG signal elicited by 

the electrical stimulation to mimic the EEG signal elicited by touching different textured 

surfaces, as shown in figure 5.

By using models one and two, we can write the following relation between the EEG elicited 

by electrical stimuli and the electrical stimulation parameters:

EEGES = A2 A1
−1ES . (10)

So we will start by sampling a batch of samples from A1, A3 and A4 distributions using the 

method shown in algorithm 2. Then estimate the initial electrical stimulation parameters ESs 

using the trained basis vector set Vforce and the sampled data A1
s, A3

s and A4
s as follows:

ESs = A1
s A4

s −1A3
sV force . (11)
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Afterwards, we will apply this set of electrical stimuli, ESs, and collect EEG data (EEGES0). 

The next step is to calculate the error between the newly collected EEG, EEGES0, and the 

EEG data we want to achieve, EEGtouch, we calculate the normalized mean squared error as 

follows:

Error = EEGtouch − EEGES0
2. (12)

The collected EEG data, EEGES0, then will be used to update the distribution of A2. Then in 

an iterative way, as shown in figure 5, we will follow the following steps:

a. Estimate newly updated ES such that:

ESupdated = A2updated
−1EEGtouch . (13)

b. Apply electrical stimulation and collect new EEG data.

c. Calculate the error between the newly collected EEG and EEGtouch, if below 

certain threshold, then the acquired EEG is similar to the EEGtouch, so we stop. 

If not, update the A2 distribution and repeat. By following these steps, we try 

to minimizes the difference between the EEG resulting from touching a specific 

surface and EEG coming from electrical stimulation.

3.3. Testing and validation

In order to test the validity of the proposed model in generating EEG signal elicited by 

the electrical stimulation that mimics the EEG signal elicited by touching different textured 

surfaces, we designed an offline validation test using the data we collected previously.

a. The first step in this validation test is to use the trained distributions A1, A2, A3 

and A4 corresponding to textured surface l, to sample batch of M samples of A1
s, 

A2
s, A3

s and A4
s.

b. Then, we estimate ESs and EEGES
s  using the trained basis vector set Vforce and 

the sampled data A1
s, A3

s and A4
s as follows:

ESs = A1
s A4

s −1A3
sV force (14)

EEGES
s = A2

s A1
s ESs −1 . (15)

c. Afterwards, we estimate

EEGtouch
s = A3

sV force (16)

and calculate the error as follows:
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Error(stepone) = EEGs
touch − EEGES

s 2 . (17)

d. The next step is to use the test data EEGtouchtest to estimate an update for A3
u and 

A4
u as follows:

A3
u = EEGtouchtest V force

−1
(18)

A4
u = EEGtouchtest V EEGES

−1 . (19)

e. Then, update the electrical stimulation parameters:

ESu = A1
s A4

u −1A3
uV force . (20)

f. Estimate new EEGES
u , where:

EEGES
u = A2

u A1
s ESu (21)

where A2
u = A4

u, where this condition will be satisfied when after a number of 

iterations at which EEGES will be similar to EEGtouch.

g. Calculate

Error steptwo = EEGtouchtest − EEGES
u 2. (22)

4. Results and discussion

4.1. Basis vectors and model fitting

Figures A1(a), (b) and A2 in appendix A, show the initial set of vectors for VEEGES and 

Vforce, where the x-axis is the time in milli-second and the y-axis is the amplitude in micro 

Volt for VEEGES and Newton for the Vforce. A set of vectors, V is called a set of basis 

vectors if every element in the vector space can be written as a finite linear combination of 

of the the basis vector set in a unique way, and the elements of the basis vector are linearly 

independent [57]. The initial set of vectors showed linear independence, but the fitting error 

was high. Therefore, a set of circular shifts were applied to each one of the initial sets of 

vectors, as shown in figures A3–A5 in appendix A. After each circular shift the number 

of basis vectors in the basis vector set increases which improve the signal presentation and 

model fitting. The Gaussian-Jordan elimination method was applied on every basis set of 

vectors after each circular shift to check for linear independence. The results showed that the 

linear independence condition was satisfied after each shift.
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Figures A6–A8, in appendix A, show the progress of applying the circular shift on the 

fitting of the EEG signals. The x-axis represents the time in milli seconds and the y-axis 

represents the signal amplitude in micro Volt. Moreover, the blue line represents the true 

signal, where the red line represents the predicted signal. We can notice that after each 

increase of the circular shift step, the estimation of the predicted signal gets better. The 

initial set was able to capture some of the general behavior of the signals, while the first 

set was able to get more better prediction of this general behavior. We can notice that the 

second set of basis vectors was able to get a more refined representation of the peaks and 

valleys of the EEG signal, but failed to capture the fine details. The third set of basis vectors 

showed better representation in terms of the fine responses in the EEG while capturing all 

the large transitions. Finally, the fourth set shows the best prediction, where both the true 

and predicted signals look identical with very few minor differences. The mean and standard 

deviation of the fitting error per each circular shift step can be shown in figures 6 and 7, 

where the x-axis is the index of the basis vector set and y-axis is the normalized root mean 

squared error of fitting per each time index. We can see for each model that for each increase 

in the circular shift, which reflects the increase in the number of basis vectors, the overall 

average fitting error decreases.

Figure 6(a) shows the progress of fitting for the electrical stimulation parameters on the 

VEEGES basis vectors sets, which represents model 1 fitting progress. The fitting of low and 

high amplitude electrical stimulation parameters show better results than the high and low 

frequency parameters data, where at the end of the fourth circular shift all the data except for 

the low frequency data reach around 20% normalized root mean square error. The decrease 

in the average normalized root mean square error represents the enhancement in the ability 

of the model to represent the electrical stimulation parameters. We performed a one-sided 

Wilcoxon statistical rank test to compare the error between (a) low and high amplitude and 

(b) high and low-frequency parameters data. The null hypothesis states that the median of 

the accuracies of the low and high amplitude electrical stimulation data is not greater than 

that of high and low-frequency parameters data. While the alternative hypothesis states that 

the median of the accuracies of the low and high amplitude electrical stimulation data is 

greater than that of that of high and low-frequency parameters data. The results showed the 

rejection of the null hypothesis (equal accuracies) with a statistical significance p-value = 

1.0326 × 10−4.

The fitting of the EEG induced by the electrical stimulation parameters using the VEEGES 
basis vectors sets is shown in figure 6(b), where the fitting error starts between(20%–23%) 

with around 8% standard deviation of error, until it reaches (4% ± 1%) of normalized root 

mean square error of fitting. The monotonic decrease of the average normalized root mean 

squared error shows the progress of the enhancement in the model fitting and it is ability to 

represent the EEG induced by the electrical stimulation. Similarly for figure 7(a), the fitting 

error progress for the EEG induced by touching the three textured surfaces starts with an 

average of (19% ± 4%) and reaches (5% ± 1%) at the end of the fourth circular shift. Finally, 

figure 7(b) shows the fitting error for the fourth model which starts with an average of (20% 

± 3%) and reaches (4% ± 1%) at the end of the fourth circular shift. It can be shown that 

the average root mean square error starts to increase after the fourth circular shift, hence, 

the chosen basis vector sets shows the optimum number of basis vectors that provide the 
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lowest fitting error for all the four models shown in table 1. For the cross validation step, we 

applied the chosen optimal set at each fold on the test data set. A sample of the results can 

be seen in figure 8, where the blue line represents the true test EEG data and red line is the 

predicted EEG data. We can see that the estimated model was able to predict the test data 

with very small differences between the true and predicted data. Moreover, the average and 

standard deviation of the root mean squared error on the test data as follows, 25 ± 8, 7 ± 3, 8 

± 2 and 5 ± 2.5 for models 1, 2, 3 and 4 respectively.

4.2. Model validation

The results of the validation of the proposed model in generating EEG signal elicited 

by electrical stimulation that mimics the EEG generated by touching textured surfaces is 

shown in figures 9 and 10. Our initial step was to sample a batch of alpha samples, then 

use these sampled alphas to generate an initial set of electrical stimulation. After that, we 

used equation 10 to find the expected EEGES. Then we use the same sampled patch of 

alpha 3 to generate EEGTouch. After that, we compare both estimated EEG signals to see 

how different the EEG generated by the initial set of electrical stimulation from the EEG 

generated from touching textured surface during the initial step. The average normalized 

root mean squared error between EEGtouch and the predicted signal EEGES was calculated 

on a window based approach is shown in figure 9. The window based approach starts by 

dividing the 500 ms signal into 15 equal segments, and the normalized average root mean 

square error is calculated within each segment. By doing that we can investigate the error 

propagation and distribution across each time segment. We can see that the error at this 

initial step is around 25% along the EEG signal for all surface and movement conditions. 

The next step is to estimate an update for alpha 3 and 4, and update the electrical stimulation 

parameters. By equating alpha 2 and alpha 4 distributions, we assume that EEGES is now 

similar to EEGtouch. Therefore, the corresponding electrical stimulation parameters can be 

used to generate EEG that mimics the EEG generated from touching the textured surfaces. 

We can see that the error decreases when both alpha 2 and alpha 4 distributions become 

similar, as shown in figure 10. It is worth mentioning that the average of the normalized root 

mean squared error between the EEG generated from ((a) smooth, (b) medium rough and (c) 

rough) surfaces is around 25% along the EEG signal. The mean and standard deviation of 

the error between each pair of data, across participants, (corresponding to EEG (surfaces)) is 

shown in figure B1 in appendix B.

Figure 11 shows a sample result of our offline validation, where the blue line represents the 

actual collected EEGtouch data and the red line represents the predicted EEGES after using 

the electrical stimulation parameters generated by our model.

5. Conclusion

In this work, we propose a linear model based on collected EEG data from passive touch 

and electrical stimulation studies. This model is able to define the relation between the 

contact force profiles generated from touching different textured surfaces and the electrical 

stimulation parameters. Our aim is to use the EEG data to provide closed loop feedback, 

which enables an online update to the electrical stimulation parameters to achieve EEG 
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signals elicited by electrical stimulation similar to the EEG signal generated from touching 

surfaces with different levels of roughness. We were able to show that at the initial step of 

our model update, we were able to achieve an average error 26% along the EEG signal. 

also, our offline validation analysis showed that by iteratively update the model parameters 

we would be able to decrease this error to around 7%. By using this model, we would 

be able develop electrical stimulation based haptic devices that use electrical stimulation 

pulses to mimic texture sensation, which overcomes the limitations of the force based 

haptic devices. Our future work is to validate this model in an online setting, by using the 

generated electrical stimulation parameters from the proposed model to generate electrical 

stimuli that will be applied to the participants while recording EEG. The collected EEG will 

be compared against the EEG collected during touching the textured surfaces. Moreover, 

participants will be asked to complete a set of questionnaires and surveys (such as presence 

questionnaire and immersive tendencies questionnaire) to measure the spatial presence they 

feel [62, 63].
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Appendix A.: Basis vectors

Figure A1. 
Force data initial basis vectors set while doing rub (a) and tap (b) movement, where x-axis 

is the time in milli-second and y-axis is the amplitude in N. Blue, red and green colors 

represent the force generated from touching the smooth, medium rough and rough surfaces, 

respectively.
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Figure A2. 
EEG electrical stimulation initial basis vectors set where x-axis is the time in milli-second 

and y-axis is the amplitude in micro Volt. Blue, orange, grey and yellow colors represent the 

low, high frequency, low and high amplitude EEG.
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Figure A3. 
Force basis vectors sets generated from force data collected during rub movement, where 

x-axis is the time in milli-second and y-axis is the amplitude in N.Rub data.
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Figure A4. 
Force basis vectors sets generated from force data collected during tap movement, where 

x-axis is the time in milli-second and y-axis is the amplitude in micro Volt.
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Figure A5. 
EEG induced by electrical stimulation basis vectors.
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Figure A6. 
Four EEG responses induced by electrical stimulation after using each set of basis vectors, 

where the red line represents the estimated data and blue line presents the actual data. the 

x-axis represent time in milli-second, while the y-axis represent the amplitude in micro-Volt.
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Figure A7. 
Four EEG responses induced by electrical stimulation after using each set of basis vectors, 

where the red line represents the estimated data and blue line presents the actual data. the 

x-axis represent time in milli-second, while the y-axis represent the amplitude in micro-Volt.
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Figure A8. 
Four EEG responses induced by electrical stimulation after using each set of basis vectors, 

where the red line represents the estimated data and blue line presents the actual data. the 

x-axis represent time in milli-second, while the y-axis represent the amplitude in micro-Volt.

Appendix B.: Validation and classification results

We calculated the following spectral and temporal features for each trial: the normalized 

total power and in the theta (3–6 Hz), mu (7–12 Hz), beta (13–30 Hz) and gamma (>30) 

bands. Also, the average EEG amplitude and P300 response, which is a positive change in 

the EEG around occipital-parietal recording sites around 300 ms after the stimuli. These 

features were standardized and concatenated to form a feature vector that was used in 

classification. We trained two three-class SVM classifiers. The first to classify the EEG 

generated during the touch experiment from the three surfaces, while the second is to 

distinguish between the EEG generated from the proposed model corresponding to touching 

each surface. In other words, the three classes for the first classifier are: (a) EEG generated 

from touching the smooth surface, (b) EEG generated from touching the medium rough 

surface, (c) EEG generated from touching the rough surface). While the three classes for the 

second classifier as follows: (a) EEG generated from the proposed model corresponding to 

touching the smooth surface, (b) EEG generated from the proposed model corresponding 

to touching the medium rough surface, (c) EEG generated from the proposed model 

corresponding to touching the rough surface). Three 2-class SVM classifiers were trained to 
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classify between (a) EEG generated from touching the smooth surface and EEG generated 

from the proposed model corresponding to touching the smooth surface, (b) EEG generated 

from touching the medium rough surface and EEG generated from the proposed model 

corresponding to touching the medium rough surface, (c) EEG generated from touching the 

rough surface and EEG generated from the proposed model corresponding to touching the 

rough surface. The results were averaged across participants, and tables B1 and B2 show 

the mean and standard deviation of the accuracy across participants. It can be seen that the 

classification accuracy for the three class classifiers is above (80%), which means that these 

EEG signals are significantly different (chance level around 30%). While for the two class 

classification problems the average accuracies are around 48% which is around the chance 

level values. This means that the generated EEG and the actual EEG are similar for each 

surface condition.

Figure B1. 
The blue line shows the error between the (smooth and medium rough) EEG responses, the 

orange line shows the error between the (smooth and rough) EEG responses, while the grey 

line shows the error between the (rough and medium rough) EEG responses. The x-axis 

represents the window index, and the y-axis represents the normalized root mean squared 

error within each window.
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Table B1.

The median and standard deviation of the average accuracy across participants (%).

3-class classifiers Class 1 (smooth) Class 2 (medium rough) Class 3 (rough)

Classifier 1 (Actual EEG) 82 ± 5 83 ± 4 83 ± 2

Classifier 2 (Generated EEG) 81 ± 3 82 ± 3 82 ± 3

Table B2.

The median and standard deviation of the average accuracy across participants (%).

EEG (actual smooth) EEG (actual medium rough) EEG (actual rough)

vs vs vs

EEG (generated smooth) EEG (generated medium rough) EEG (generated rough)

48 ± 7 47 ± 5 49 ± 6

References

[1]. Melchiorri C 2013 Robot teleoperation Encyclopedia of Systems and Control (London: Springer 
London) pp 1–14

[2]. Kremer P, Wimbock T, Artigas J, Schatzle S, Johl K, Schmidt F, Preusche C and Hirzinger G 2009 
Multimodal telepresent control of DLR’s Rollin’ JUSTIN 2009 IEEE Int. Conf. on Robotics and 
Automation pp 1601–2

[3]. Kuchenbecker KJ, Ferguson D, Kutzer M, Moses M and Okamura AM 2008 The touch thimble: 
providing fingertip contact feedback during point-force haptic interaction 2008 Symp. on Haptic 
Interfaces for Virtual Environment and Teleoperator Systems pp 239–46

[4]. Pacchierotti C, Meli L, Chinello F, Malvezzi M and Prattichizzo D 2015 Cutaneous haptic 
feedback to ensure the stability of robotic teleoperation systems Int J. Robot. Res 34 1773–87

[5]. Ikei Y, Wakamatsu K and Fukuda S 1997 Vibratory tactile display of image-based textures IEEE 
Comput. Graph. Appl 17 53–61

[6]. Tang H and Beebe DJ 2006 An oral tactile interface for blind navigation IEEE Trans. Neural Syst. 
Rehabil. Eng 14 116–23 [PubMed: 16562639] 

[7]. Robineau F, Boy F, Orliaguet J-P, Demongeot J and Payan Y 2007 Guiding the surgical gesture 
using an electro-tactile stimulus array on the tongue: a feasibility study IEEE Trans. Biomed. Eng 
54 711–17 [PubMed: 17405378] 

[8]. Yoshimoto S, Kuroda Y, Kagiyama Y, Kuroda T and Oshiro O 2009 Tactile mapping approach 
using electrical stimulus pattern RO-MAN 2009-The 18th IEEE Int. Symp. on Robot and Human 
Interactive Communication (IEEE) pp 460–5

[9]. Kajimoto H, Kawakami N, Tachi S and Inami M 2004 Smarttouch: electric skin to touch the 
untouchable IEEE Comput. Graph. Appl 24 36–43

[10]. Ang Q-Z, Horan B, Najdovski Z and Nahavandi S 2011 Grasping virtual objects with multi-
point haptics Proc. 2011 IEEE Virtual Reality Conf. (VR’11) (Washington, DC, USA) (IEEE 
Computer Society) pp 189–90

[11]. Pacchierotti C, Prattichizzo D and Kuchenbecker KJ 2015 Displaying sensed tactile cues with a 
fingertip haptic device IEEE Trans. Haptics 8 384–96 [PubMed: 26087499] 

[12]. Schorr SB, Quek ZF, Romano RY, Nisky I, Provancher WR and Okamura AM 2013 Sensory 
substitution via cutaneous skin stretch feedback 2013 IEEE Int. Conf. on Robotics and 
Automation pp 2341–6

Eldeeb and Akcakaya Page 23

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[13]. Quek ZF, Schorr SB, Nisky I, Okamura AM and Provancher WR 2013 Sensory augmentation of 
stiffness using fingerpad skin stretch 2013 World Haptics Conf. (WHC) pp 467–72

[14]. Serina ER Mockensturm E Mote C Jr and Rempel D 1998 A structural model of the forced 
compression of the fingertip pulp J. Biomech 31 639–46 [PubMed: 9796686] 

[15]. Libouton X, Barbier OC Berger Y Plaghki L and Thonnard J-L 2012 Tactile roughness 
discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily 
located in the hand Behav. Brain Res 229 273–9 [PubMed: 22265887] 

[16]. Delhaye B Hayward V, Lefèvre P and Thonnard J-L 2012 Texture-induced vibrations in the 
forearm during tactile exploration Front. Behav. Neurosci 6 37 [PubMed: 22783177] 

[17]. Srinivasan MA and LaMotte RH 1996 Tactual discrimination of softness: abilities and 
mechanisms Somesthesis and the Neurobiology of the Somatosensory Cortex (Basel: Birkhäuser) 
pp 123–35

[18]. Ambrosi G Bicchi A, De Rossi D and Scilingo EP 1999 The role of contact area spread rate in 
haptic discrimination of softness Proc. 1999 IEEE Int. Conf. on Robotics and Automation (Cat. 
No. 99CH36288C) vol 1 pp 305–10

[19]. Sylvester ND and Provancher WR 2007 Effects of longitudinal skin stretch on the perception of 
friction 2nd Joint EuroHaptics Conf. and Symp. on Haptic Interfaces for Virtual Environment and 
Teleoperator Systems (WHC’07) pp 373–8

[20]. Robles-De-La-Torre G and Hayward V 2001 Force can overcome object geometry in the 
perception of shape through active touch Nature 412 445 [PubMed: 11473320] 

[21]. Kaczmarek KA, Webster JG Bach-y-Rita P and Tompkins WJ 1991 Electrotactile and vibrotactile 
displays for sensory substitution systems IEEE Trans. Biomed. Eng 38 1–16 [PubMed: 2026426] 

[22]. Kajimoto H, Kawakami N, Maeda T and Tachi S 2004 Electro-tactile display with tactile primary 
color approach Proc. Int. Conf. on Intelligent Robots and Systems vol 10 pp 1–13

[23]. Kajimoto H, Kawakami N, Maeda T and Tachi S 1999 Tactile feeling display using functional 
electrical stimulation Proc. 1999 ICAT p 133

[24]. Kaczmarek KA and Haase SJ 2003 Pattern identification and perceived stimulus quality as 
a function of stimulation waveform on a fingertip-scanned electrotactile display IEEE Trans. 
Neural Syst. Rehabil. Eng 11 9–16 [PubMed: 12797720] 

[25]. Yoshimoto S, Kuroda Y, Imura M and Oshiro O 2015 Material roughness modulation via 
electrotactile augmentation IEEE Trans. Haptics 8 199–208 [PubMed: 25794397] 

[26]. Yoshimoto S, Kuroda Y, Imura M and Oshiro O 2011 Development of a spatially transparent 
electrotactile display and its performance in grip force control 2011 Annual Int. Conf. IEEE 
Engineering in Medicine and Biology Society pp 3463–6

[27]. Yamamoto A, Nagasawa S, Yamamoto H and Higuchi T 2006 Electrostatic tactile display with 
thin film slider and its application to tactile telepresentation systems IEEE Trans. Vis. Comput. 
Graphics 12 168–77

[28]. Olivier B and Ivan P 2012 REVEL: tactile feedback technology for augmented reality ACM 
Trans. Graph 31 1–11

[29]. Altinsoy ME and Merchel S 2012 Electrotactile feedback for handheld devices with touch screen 
and simulation of roughness IEEE Trans. Haptics 5 6–13 [PubMed: 26963824] 

[30]. Peruzzini M, Germani M and Mengoni M 2012 Electro-tactile device for texture simulation 
Proc. 2012 IEEE/ASME 8th IEEE/ASME Int. Conf. on Mechatronic and Embedded Systems and 
Applications pp 178–83

[31]. Arakeri TJ, Hasse BA and Fuglevand AJ 2018 Object discrimination using electrotactile feedback 
J. Neural Eng 15 046007 [PubMed: 29629874] 

[32]. Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J and Tyler DJ 2014 A neural interface 
provides long-term stable natural touch perception Sci. Trans. Med 6 257ra138

[33]. Santello M et al. 2016 Hand synergies: integration of robotics and neuroscience for 
understanding the control of biological and artificial hands Phys. Life Rev 17 1–23 [PubMed: 
26923030] 

[34]. Culbertson H, Schorr SB and Okamura AM 2018 Haptics: the present and future of artificial 
touch sensation Annu. Rev. Control Robot. Auton. Syst 1 385–409

Eldeeb and Akcakaya Page 24

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[35]. Albani D, Youssef A, Suriani V, Nardi D and Bloisi DD 2016 A deep learning approach for 
object recognition with NAO soccer robots Robot World Cup (Springer) pp 392–403

[36]. Liu H, Wu Y, Sun F and Guo D 2017 Recent progress on tactile object recognition Int. J. Adv. 
Robot. Syst 14 1729881417717056

[37]. Wen Z, Liu D, Liu X, Zhong L, Lv Y and Jia Y 2019 Deep learning based smart radar vision 
system for object recognition J. Ambient Intell. Hum. Comput 10 829–39

[38]. Gandarias JM, Gómez-de Gabriel JM and García-Cerezo AJ 2018 Enhancing perception with 
tactile object recognition in adaptive grippers for human–robot interaction Sensors 18 692 
[PubMed: 29495409] 

[39]. Danthala S, Rao S, Mannepalli K and Shilpa D 2018 Robotic manipulator control by using 
machine learning algorithms: a review Int. J. Mech. Prod. Eng. Res. Dev 8 305–10

[40]. Aivaliotis P, Zampetis A, Michalos G and Makris S 2017 A machine learning approach for visual 
recognition of complex parts in robotic manipulation Proc. Manuf 11 423–30

[41]. Meattini R, Benatti S, Scarcia U, De Gregorio D, Benini L and Melchiorri C 2018 An sEMG-
based human–robot interface for robotic hands using machine learning and synergies IEEE 
Trans. Compon. Packag. Manuf. Technol 8 1149–58

[42]. Ai Q, Ding B, Liu Q and Meng W 2016 A subject-specific EMG-driven musculoskeletal model 
for applications in lower-limb rehabilitation robotics Int. J. Hum. Robot 13 1650005

[43]. Baumgartner T, Valko L, Esslen M and Jäncke L 2006 Neural correlate of spatial presence in an 
arousing and noninteractive virtual reality: an EEG and psychophysiology study CyberPsychol. 
Behav 9 30–45 [PubMed: 16497116] 

[44]. Kober SE, Kurzmann J and Neuper C 2012 Cortical correlate of spatial presence in 2d and 3d 
interactive virtual reality: an EEG study Int J. Psychophysiol 83 365–74 [PubMed: 22206906] 

[45]. Kober SE and Neuper C 2012 Using auditory event-related EEG potentials to assess presence in 
virtual reality Int. J. Hum.-Comput. Stud 70 577–87

[46]. Rodríguez Ortega A, Rey Solaz B and Alcañiz Raya ML 2013 Evaluating virtual reality 
mood induction procedures with portable EEG devices Annual Review of Cybertherapy and 
Telemedicine (Studies in Health Technology and Informatics vol 11) (Amsterdam: IOS Press) pp 
131–5

[47]. Tremblay L, Bouchard S, Chebbi B, Wei L, Monthuy-Blanc J and Boulanger D 2013 The 
development of a haptic virtual reality environment to study body image and affect Annual 
Review of Cybertherapy and Telemedicine (Studies in Health Technology and Informatics vol 
191) (Amsterdam: IOS Press) pp 80–84

[48]. Wiederhold B and Riva G 2013 Measuring presence during the navigation in a virtual 
environment using EEG Annual Review of Cybertherapy and Telemedicine (Studies in Health 
Technology and Informatics) (Amsterdam: IOS Press) p 136

[49]. Genna C, Artoni F, Fanciullacci C, Chisari C, Oddo CM and Micera S 2016 Long-latency 
components of somatosensory evoked potentials during passive tactile perception of gratings 
2016 38th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) 
(IEEE) pp 1648–51

[50]. Moungou A, Thonnard J-L and Mouraux A 2016 EEG frequency tagging to explore the 
cortical activity related to the tactile exploration of natural textures Sci. Rep 6 20738 [PubMed: 
26853820] 

[51]. Genna C, Oddo C, Fanciullacci C, Chisari C, Micera S and Artoni F 2018 Bilateral cortical 
representation of tactile roughness Brain Res. 1699 79–88 [PubMed: 29908164] 

[52]. Eldeeb S, Weber D, Ting J, Demir A, Erdogmus D and Akcakaya M 2020 EEG-based trial-by-
trial texture classification during active touch Sci. Rep 10 1–13 [PubMed: 31913322] 

[53]. Eldeeb S, Ting J, Erdogmus D, Weber D and Akcakaya M 2019 EEG-based texture classification 
during active touch IEEE 29th Int. Workshop on Machine Learning for Signal Processing 
(MLSP) pp 1–6

[54]. Genna C, Oddo CM, Fanciullacci C, Chisari C, Jörntell H, Artoni F and Micera S 2017 
Spatiotemporal dynamics of the cortical responses induced by a prolonged tactile stimulation 
of the human fingertips Brain Topogr. 30 473–85 [PubMed: 28497235] 

[55]. Brainard DH and Vision S 1997 The psychophysics toolbox Spatial Vis. 10 433–6

Eldeeb and Akcakaya Page 25

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[56]. Johansson RS and Vallbo A 1979 Tactile sensibility in the human hand: relative and absolute 
densities of four types of mechanoreceptive units in glabrous skin J. Physiol 286 283–300 
[PubMed: 439026] 

[57]. Halmos PR 2017 Finite-Dimensional Vector Spaces (New York: Courier Dover Publications)

[58]. Althoen SC and Mclaughlin R 1987 Gauss-jordan reduction: a brief history Am. Math. Mon 94 
130–42

[59]. Maslov AN 1973 Cyclic shift operation for languages Probl. Inf. Transm 9 81–87

[60]. Altman NS 1992 An introduction to kernel and nearest-neighbor nonparametric regression Am. 
Stat 46 175–85

[61]. Epanechnikov V 1969 Nonparametric estimates of a multivariate probability density Theory 
Probab. Appl 14 153–8

[62]. Laarni J, Ravaja N, Saari T Böcking S, Hartmann T and Schramm H 2015 Ways to 
measure spatial presence: review and future directions Immersed in Media (Immersed in Media 
Telepresence Theory, Measurement & Technology) (New York: Springer) pp 139–85

[63]. McCall R, O’Neil S and Carroll F 2004 Measuring presence in virtual environments CHI’04 
Extended Abstracts on Human Factors in Computing Systems pp 783–4

Eldeeb and Akcakaya Page 26

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The passive touch study, where (a) the red rectangle showing the force transducer mounted 

on the robot moving arm. (b) The medium-rough surface mounted on top of the force 

transducer. (c) The robot’s moving arm tapping the participant’s finger tip with the medium- 

rough surface.
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Figure 2. 
Experimental setup showing the participant getting ready for the experiment by wearing 

the EEG cap, while the electrical stimulation electrodes placed on the fingertip and wrist 

connected to the electrical stimulation device.
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Figure 3. 
EEG guided electrical stimulation parameters generation from texture force profiles model’s 

flow diagram. The oval shapes represent the input/output data and the rectangular shapes 

represent the operation done on the data.
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Figure 4. 
Basis vectors initial set illustration. The left hand side shows the trials of the force data 

averaged per each class (smooth in green, medium rough in red and rough in blue color). 

The results of each averaging operation is shown (mean ± SD) at each time index. The three 

averaged vectors is then concatenated to form the matrix V(force).
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Figure 5. 
Schematic diagram showing the adaptively iterative method to update the electrical 

stimulation parameters guided by EEG data.
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Figure 6. 
The mean and SD of the normalized RMSE for each set of basis vectors for model 1 (a) and 

model 2 (b) across the eleven participants, where x-axis is the index of the basis vector set 

and y-axis is normalized root mean square error of fitting (%).
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Figure 7. 
The mean and SD of the normalized RMSE for each set of basis vectors for model 3 (a) and 

model 4 (b) across the eleven participants, where x-axis is the index of the basis vector set 

and y-axis is normalized root mean square error of fitting (%).
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Figure 8. 
Four samples of the EEG (touch) test data after applying the optimal set of basis vectors for 

model 3, where the red line represents the estimated, after fitting, EEG (touch) data and blue 

line presents the actual EEG (touch) data. The x-axis represent time in milli-second, while 

the y-axis represent the amplitude in micro-Volt.
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Figure 9. 
The mean and standard deviation of the normalized root mean squared error for validation 

step one.
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Figure 10. 
The mean and standard deviation of the normalized root mean squared error for validation 

step two.

Eldeeb and Akcakaya Page 36

J Neural Eng. Author manuscript; available in PMC 2023 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Two samples of the EEG (touch) data, where the red line represents the predicted EEG that 

has been generated by the proposed model and blue line presents the actual EEG (touch) 

data. The x-axis represent time in milli-second, while the y-axis represent the amplitude in 

Volt.
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Table 1.

Models and alpha notations.

Alpha Model equation

1 ES = A1VEEGES

2 EEGES = A2VEEGES

3 EEGtouch = A3Vforce

4 EEGtouch = A4VEEGES

J Neural Eng. Author manuscript; available in PMC 2023 March 06.


	Abstract
	Introduction
	Experimental study design
	Participants
	EEG data acquisition
	Passive touch study
	Tactile stimuli
	Data acquisition
	Experimental setup

	Electrical stimulation study
	Electrode location
	Data acquisition


	Methods
	Model parameters

	Algorithm 1.
	Algorithm 2.
	Model equations and online update
	Testing and validation

	Results and discussion
	Basis vectors and model fitting
	Model validation

	Conclusion
	Basis vectors
	Validation and classification results
	Table B1.
	Table B2.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Table 1.

