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Abstract 

Background  There is a critical need for novel primary endpoints designed to detect early and subtle changes in 
cognition in clinical trials targeting the asymptomatic (preclinical) phase of Alzheimer’s disease (AD). The Alzheimer’s 
Prevention Initiative (API) Generation Program, conducted in cognitively unimpaired individuals at risk of developing 
AD (e.g., enriched by the apolipoprotein E (APOE) genotype), used a novel dual primary endpoints approach, whereby 
demonstration of treatment effect in one of the two endpoints is sufficient for trial success. The two primary end‑
points were (1) time to event (TTE)—with an event defined as a diagnosis of mild cognitive impairment (MCI) due to 
AD and/or dementia due to AD—and (2) change from baseline to month 60 in the API Preclinical Composite Cogni‑
tive (APCC) test score.

Methods  Historical observational data from three sources were used to fit models to describe the TTE and the longi‑
tudinal APCC decline, both in people who do and do not progress to MCI or dementia due to AD. Clinical endpoints 
were simulated based on the TTE and APCC models to assess the performance of the dual endpoints versus each of 
the two single endpoints, with the selected treatment effect ranging from a hazard ratio (HR) of 0.60 (40% risk reduc‑
tion) to 1 (no effect).
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Results  A Weibull model was selected for TTE, and power and linear models were selected to describe the APCC 
score for progressors and non-progressors, respectively. Derived effect sizes in terms of reduction of the APCC change 
from baseline to year 5 were low (0.186 for HR = 0.67). The power for the APCC alone was consistently lower com‑
pared to the power of TTE alone (58% [APCC] vs 84% [TTE] for HR = 0.67). Also, the overall power was higher for the 
80%/20% distribution (82%) of the family-wise type 1 error rate (alpha) between TTE and APCC compared to 20%/80% 
(74%).

Conclusions  Dual endpoints including TTE and a measure of cognitive decline perform better than the cognitive 
decline measure as a single primary endpoint in a cognitively unimpaired population at risk of AD (based on the APOE 
genotype). Clinical trials in this population, however, need to be large, include older age, and have a long follow-up 
period of at least 5 years to be able to detect treatment effects.

Keywords  Alzheimer’s disease, Preclinical phase, Cognitively unimpaired, APOE genotype, Dual endpoints, Time to 
event, APCC, Model-informed drug development, Clinical trial simulation

Background
Clinical trials in Alzheimer’s disease (AD) have a high 
failure rate. An analysis of the drug pipeline over two dec-
ades showed an attrition rate of nearly 100% [1, 2]. Pos-
sible explanations for these failures include insufficient 
evidence to initiate pivotal trials and pivotal trial design 
shortcomings such as selection of suboptimal drug dos-
age levels, wrong treatment targets, inappropriate study 
population, and inadequate understanding of the biology 
of AD [2, 3].

Failure to detect an effect may also result from assess-
ing the drug in patients who are in later stages of the dis-
ease process, that is, after symptoms have appeared [4]. 
The design of clinical trials in cognitively unimpaired 
individuals has its own particular challenges, includ-
ing the lack of sensitive tools or scales to detect early 
changes, the absence of surrogate biomarkers, combined 
with the long duration required to detect progression to 
initial clinical symptoms of AD (i.e., cognitive impair-
ment). Novel primary endpoints designed to detect early 
and subtle changes in cognition thus constitute a critical 
need for any clinical trial targeting the preclinical phase 
of the disease [5]. Supporting the design of such end-
points, Anderson et  al. suggested that clinical trial sim-
ulations could be a powerful way to provide insight into 
the likelihood of a trial succeeding [6, 7].

The Alzheimer’s Prevention Initiative (API) Generation 
Program comprised two pivotal phase 2/3 studies, Gen-
eration Study 1 (NCT02565511) and Generation Study 2 
(NCT03131453), specifically designed to assess the effi-
cacy and safety of investigational drugs in a cognitively 
unimpaired population identified as being at an increased 
risk of developing AD symptoms. Such risk was deter-
mined based on age, apolipoprotein E (APOE) genotype, 
and brain amyloid level (i.e., the presence of two APOE 
ε4 [APOE4] alleles in Generation Study 1 and of at least 
one APOE4 allele in Generation Study 2 together with 
elevated brain amyloid level in those with one allele) [8].

In an effort to devise endpoints suitable for preven-
tion studies, the API Generation Program used a novel 
approach: dual primary endpoints based on (1) time 
to event (TTE)—with an event defined as a diagnosis 
of mild cognitive impairment (MCI) due to AD and/
or dementia due to AD—and (2) change from baseline 
to month 60 in the API preclinical composite cognitive 
(APCC) test score—with the APCC designed to detect 
and track longitudinal cognitive decline in individuals 
with preclinical AD [9]. In such an approach, the dem-
onstration of a treatment effect on one of the two distinct 
primary endpoints is sufficient for trial success. As such, 
the dual endpoints approach afforded the potential to 
capture both early and subtle cognitive changes (with a 
continuous measure: APCC) and discrete clinically rel-
evant events (with TTE).

The selection of the dual endpoints was based on the 
exploration of historical data followed by the tailored 
clinical trial simulation of Generation Study 1. This 
two-step process allowed the investigation and power 
optimization of various design options with regard to 
endpoints, sample size, duration, and population charac-
teristics, among others. Here, we present (1) the ration-
ale for the dual endpoints approach, (2) its validation by 
longitudinal model-based analysis of historical cohort 
data and clinical trial simulation, and (3) results from the 
simulated clinical trials and how these results informed 
the clinical study design.

Methods
Historical cohort data
The data used in the preparation of this article were 
obtained from (1) three cohort studies of aging and 
dementia from the Rush Alzheimer’s Disease Center 
(Religious Orders Study [ROS], Memory and Aging 
Project [MAP], and the Minority Aging Research Study 
[MARS] cohorts described previously) [10, 11] (https://​

https://www.radc.rush.edu
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www.​radc.​rush.​edu), referred to hereafter as the ROS/
MAP/MARS cohorts; (2) a clinical case series from the 
Alzheimer’s Disease Research Centers of the National 
Alzheimer’s Coordinating Center (NACC) [12] (https://​
www.​alz.​washi​ngton.​edu); and (3) the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database [13] 
(https://​adni.​loni.​usc.​edu).

The ADNI was launched in 2003 as a public-private 
partnership, led by principal investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can 
be combined to measure the progression of MCI and 
early AD.

Baseline characteristics, including genetic informa-
tion, diagnostic classification, and results from neuro-
cognitive testing, were considered in the exploration of 
historical data and included in the modeling. Biomarker 
data, including amyloid status, were only available from 
ADNI and were therefore not included. The models were 
fitted to data from the subset of participants who were 
cognitively unimpaired at the first visit (study entry). Par-
ticipants with data from at least two visits and who did 
not develop any type of dementia other than due to AD 
were included in the longitudinal analyses. Data from the 
ADNI participants (with non-missing APOE genotype) 
were included in the TTE exploration, but not in other 
explorations or in the modeling due to the small num-
ber of APOE4 homozygotes in ADNI, combined with the 
relatively short follow-up time, and the lack of data in 
some cognitive measures to implement a good proxy to 
the APCC.

Dual primary endpoints approach
The success of a trial using a dual endpoints approach is 
defined by a positive result, i.e., demonstration of treat-
ment effects, in at least one of two distinct primary end-
points. The approach that was selected for use in the 
Generation Program includes adequate adjustment of the 
type 1 error rate to account for testing multiple hypoth-
eses and was accepted by both the United States Food 
and Drug Administration (FDA) and the European Medi-
cines Agency (EMA) [8]. A dual endpoints approach con-
trasts with a co-primary endpoints approach where the 
treatment effect has to be demonstrated in both primary 
endpoints. It also differentiates from so-called combined 
assessment approaches where typically a TTE and a clini-
cal outcome score are combined into a single ranked 
outcome variable [14]. In our study, the dual primary 
endpoints were (1) TTE and (2) change from baseline to 
month 60 in the APCC test score [9]. In the TTE com-
ponent, an event was defined as an adjudicated diagnosis 

of MCI due to AD and/or dementia due to AD, with the 
diagnosis given at two consecutive visits to ensure it is 
stable. Strictly speaking, the TTE endpoint is a compos-
ite endpoint in the context of the FDA Draft Guidance to 
industry (2017) [15] insofar as it is defined as the time to 
the occurrence of any of the two components, i.e., diag-
nosis of MCI or dementia.

The APCC was developed as a multi-component end-
point [15] to track early cognitive changes in preclinical 
AD, covering different cognitive domains based on meas-
ures collected across the ROS/MAP/MARS cohorts [9]. 
A proxy was used for NACC as not all the tests compris-
ing the APCC were available (Table  1). The selection of 
cognitive measures collected in ADNI was deemed insuf-
ficient to define a proxy for the APCC in this cohort.

Two additional multi-component endpoints proposed 
in the literature were also explored. These were the Pre-
clinical Alzheimer’s Cognitive Composite (PACC [16];) 
and the Repeatable Battery for the Assessment of Neu-
ropsychological Status (RBANS [17];) (see Table  1 for 
the definition of their proxies for ROS/MAP/MARS 
and NACC). The multi-component endpoints—APCC, 
PACC, and RBANS—are referred to as composite cogni-
tive endpoints (or composites in short) hereafter.

To allow for comparisons across the three composites, 
standardized z-scores were derived and used for visual 
inspection, complemented by a mean-to-standard devia-
tion ratio (MSDR) approach.

Data exploration
Graphical exploration of historical data was used to 
develop the modeling and simulation strategies. Three 
subpopulations of those who were cognitively unim-
paired at study entry were explored: progressors to 
dementia, defined as those who were diagnosed with 
dementia due to AD at any time during the observa-
tion period; progressors to MCI, defined as those who 
were diagnosed with MCI (but not dementia) during 
the observation period; and non-progressors to MCI 
or dementia, defined as those who were not diagnosed 
with MCI or dementia due to AD during the observation 
period. Individuals who had a diagnosis of MCI followed 
by a later diagnostic classification of being cognitively 
unimpaired at any time after the initial diagnosis without 
a later diagnosis of dementia were excluded from data 
explorations, except for the initial event risk estimation 
to support sample size estimation of Generation Study 1.

Exploratory analyses of the TTE
Kaplan-Meier (KM) analyses were performed to esti-
mate the event risk in APOE4 carriers based on longitu-
dinal data from NACC, ADNI, and ROS/MAP/MARS. 
An event was defined as the first diagnosis of MCI or 

https://www.radc.rush.edu
https://www.alz.washington.edu
https://www.alz.washington.edu
https://adni.loni.usc.edu


Page 4 of 19Caputo et al. Alzheimer’s Research & Therapy           (2023) 15:45 

dementia due to AD (whichever came first). For partici-
pants without a diagnosis of MCI or dementia due to AD, 
the TTE refers to the time until their last assessment in 
the study (censoring time).

Exploratory analyses of the APCC score
The APCC explorative analyses were based mainly on 
longitudinal data from the ROS/MAP/MARS cohorts 
(where all components of the APCC were available; 
hence, no proxy was needed) and supported by explora-
tions of NACC and of other composites as described in 
Table 1.

Individual longitudinal APCC data in the three sub-
populations defined earlier were visualized by line plots 
using a time scale anchored to the time of the first diag-
nosis of dementia due to AD for the progressors to 
dementia subpopulation. In these plots, data from indi-
viduals without a dementia diagnosis (progressors to 
MCI and non-progressors) were plotted anchored to the 
median age of progressors to dementia at the time of the 
first dementia diagnosis. Locally weighted least squares 
regression curves (otherwise known as locally estimated 
scatterplot smoothing [LOESS]) were superimposed on 

the data to visualize and compare the trends among the 
different subpopulations and data sources.

Modeling strategy
Models were selected for the two endpoints of Genera-
tion Study 1 to allow for the simulation of a clinical trial 
of 5 to 8 years in duration. The modeling strategy was 
supported by results from the data exploration. In this 
modeling phase, two subpopulations were defined: pro-
gressors who were cognitively unimpaired at study entry 
and diagnosed with MCI or dementia due to AD, and 
non/late progressors who were not diagnosed with MCI 
or dementia due to AD during the observation period or 
who were diagnosed later than 8 years after study entry 
(in this case, only data from the first 8 years were used 
in model estimation). A two-step modeling approach was 
used: (1) modeling of TTE and (2) modeling of APCC 
trajectories in subpopulations defined by their catego-
rized TTE. This approach aimed to capture the correla-
tion between the dual endpoints measured on the same 
patient, which will be important for simulations of future 
clinical trials.

Table 1  Cognitive assessments in ROS/MAP/MARS and NACC used in the different composite scores

APCC Alzheimer’s Prevention Initiative Preclinical Composite Cognitive, CERAD Consortium to Establish a Registry for Alzheimer’s Disease, MMSE Mini-Mental State 
Examination, NACC​ National Alzheimer’s Coordinating Center, PACC​ Preclinical Alzheimer’s Cognitive Composite, RBANS Repeatable Battery for the Assessment of 
Neuropsychological Status, ROS/MAP/MARS Religious Orders Study/Memory and Aging Project/Minority Aging Research Study, WAIS Wechsler Adult Intelligence Scale

Scale ROS/MAP/MARS NACC​

Available APCC PACC proxy RBANS proxy Available APCC proxy PACC proxy RBANS proxy

Boston Naming Test X (15 items) X X (30 items) X X

Category fluency – Animals X X X X X

Category fluency – Fruits/Vegetables X X X X X

CERAD Word List Recall (immediate) X X

CERAD Word List Memory (delayed 
recall)

X X X X

CERAD Word List Recognition X X

East Boston Naming Test, Immediate 
Recall (memory I)

X

East Boston Naming Test, Delayed 
Recall (memory II)

X

Logical Memory Ia (immediate) X X X X

Logical Memory IIa (delayed) X X X X X X X X

Digit Span – Forward X X X X

MMSE – Total X X X X

MMSE – Orientation to time X X X X X

MMSE – Orientation to place X X X X X

Ravens Progressive Matrices Subset (9 
items)

X X X

Judgment of Line Orientation X X X

Symbol Digit Modalities Test X X X X

WAIS Digit Symbol Substitution X X X X
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Akaike’s Information Criterion (AIC) was used to 
compare model candidates, whereby the model with the 
lower AIC score is the model providing the better fit. The 
adequacy of the selected model was assessed via a visual 
predictive check (VPC) [18]. For the APCC model, the 
normalized prediction distribution errors (NPDE) were 
also used to assess the quality of the model, where each 
observation is compared to its predictive distribution 
under the assumed model.

The software used was R package version 3.4.3, SAS 
version 9.4 for the TTE model, and NONMEM version 
7.3.0 for the APCC model (with the first-order condi-
tional estimation with interaction [FOCEI] algorithm).

Selection of the TTE model structure
The TTE model was fitted to longitudinal data from 
NACC and ROS/MAP/MARS, without any restriction on 
age or genotype. For future predictions and simulations 
of TTE, we considered the following parametric survival 
functions: Weibull, piece-wise exponential, exponential, 
and Gompertz. Two potential outcomes were considered 
for each participant: (1) diagnosis of MCI or dementia 
due to AD and (2) diagnosis of dementia due to AD. The 
same model structure, including the type of event as a 
factor in the model, was used to allow for estimations of 
the hazard and impact of covariates on both event types 
(see Additional file 1 for more details).

Selection of the APCC model structures
Data from the ROS/MAP/MARS cohorts were used 
to fit the APCC models, without any restriction on age 
or APOE genotype. The model structures chosen to 
describe the change in APCC over time in the two sub-
populations of progressors and non/late progressors were 
mixed effects models (also named hierarchical or popu-
lation models) under the simplistic assumption of no 
correlations among individual random effects. The two 
longitudinal models used different time reference points: 
in the progressors model, “time = 0” is 12 years before 
the first event (MCI or dementia due to AD), and in the 
non/late progressors model, “time = 0” is the start of the 
observation period. Both models used logit transforma-
tion to constrain the endpoint values between 0 and 100.

Selection of covariates
Clinically relevant variables, including sex, baseline age, 
years of education, baseline APCC score, and APOE 
genotype, were considered in the exploratory phase as 
candidate covariates. Among these, the variables with 
a potential association with the outcome were tested 
for inclusion in both the APCC and TTE models using 
backward elimination based on the AIC criterion. Brain 
amyloid elevation status could not be used as a covariate 

as this information was not available in the ROS/MAP/
MARS cohorts. Participants with unknown APOE geno-
types (not genotyped or missing) were considered to be 
non-carriers. Participants with missing values for other 
important baseline variables were not included in the 
modeling step.

Simulation strategy
The simulation was performed according to the follow-
ing stepwise procedure: (1) The multivariate distribution 
of characteristics of a population of virtual subjects was 
informed by available clinical trial data (age, sex, race, 
and body weight) and by NACC and ROS/MAP/MARS 
(genotype, educational level, and baseline APCC as a 
measure of cognitive status depending on age and edu-
cational level). Some of the information included in the 
simulation was not needed to inform the selection of the 
endpoint (e.g., sex, race, and body weight) but was used 
for other purposes not relevant to the work described 
here. (2) For the simulated subjects, the time to the 
first event (MCI or dementia due to AD) was simulated 
according to the TTE model. The hazard ratio (HR) was 
selected to be between 0.60 (40% risk reduction on active 
treatment) and 1.0 (no treatment effect, placebo), with a 
HR < 1 reflecting different hypothesized beneficial treat-
ment effect sizes of the active arm versus placebo (HRs of 
0.60, 0.65, 0.67, 0.70, and 0.75). The outcome of the TTE 
simulation was used to classify subjects as either non/late 
progressors (no event or TTE > 8 years) or progressors 
(TTE ≤ 8 years) and to identify the time point of progres-
sion. (3) Cognitive decline was then simulated according 
to the APCC models for the simulated non/late progres-
sors or progressors (every 6 months over 8 years). (4) 
Clinical trials were generated by sampling from the pool 
of simulated subjects according to specified (scenario-
specific) assumptions on baseline characteristics (such 
as age distribution) and treatment effect. The simulation 
platform also allowed for the investigation of various 
recruitment and drop-out patterns (data not shown).

Simulation of Generation Study 1
The main goal of the simulations was to assess the per-
formance of the dual endpoints versus each of the two 
endpoints if they were selected as a single primary end-
point in Generation Study 1. The target population was 
defined as cognitively unimpaired APOE4 homozygotes 
aged 60–75 years. Following the aforementioned steps, 
a set of about 18,000 virtual subjects for each active arm 
per assumed HR and about 25,000 virtual subjects for 
placebo were simulated.

The simulation platform allowed us to experiment with 
various clinical trial design scenarios (in terms of sample 
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size, age distribution within the target age range, drop-
out rates and patterns, etc.) to understand the impact 
of these parameters on the event rates, on the speed of 
cognitive decline, and on the power to identify an exist-
ing treatment effect on at least one of the two endpoints. 
Power was calculated using a simple Bonferroni adjust-
ment of the family-wise type 1 error rate of 5% for the 
following design scenarios: 100% vs 0% (single primary 
endpoint: TTE), 80% vs 20%, 50% vs 50%, 20% vs 80%, 
and 0% vs 100% (single primary endpoint: APCC) for 
TTE vs APCC, respectively. The power using the dual 
endpoints approach at the projected time of analysis 
(when the last participant reaches 5 years of follow-up) 
was estimated based on 1000 simulated clinical trials and 
appropriate two-sided statistical tests. For a fair compari-
son of power, these 1000 clinical trials were simulated 
with a fixed total sample size of 650 and a randomization 
ratio of 3:2 for the active versus control arms under the 

simple assumptions of no drop-outs and a fixed follow-
up duration of 5 years for each participant.

Results
Data exploration
Baseline characteristics and outcomes
Our investigations were based on data from ADNI, 
NACC, and ROS/MAP/MARS, including 10,390 initially 
cognitively unimpaired participants with one baseline 
and at least one post-baseline visit. The observed charac-
teristics and main outcomes of the included participants 
are given in Table 2.

Exploration of the TTE
We explored data from ADNI, NACC, and ROS/MAP/
MARS to estimate the 5-year risk of a first diagnosis of 
MCI or dementia due to AD for the target population of 
60- to 75-year-old APOE4 homozygotes of Generation 

Table 2  Baseline characteristics and outcomes of initially cognitively unimpaired individuals

AD Alzheimer’s Disease, ADNI Alzheimer’s Disease Neuroimaging Initiative, APOE4 apolipoprotein E ε4, MCI mild cognitive impairment, N total number of cognitively 
unimpaired individuals who had at least one post-baseline visit and did not have a diagnosis of MCI or dementia due to AD at study entry in the corresponding 
cohort, NACC​ National Alzheimer’s Coordinating Center, ROS/MAP/MARS Religious Orders Study/Memory and Aging Project/Minority Aging Research Study, SD 
standard deviation

ROS/MAP/MARS, N = 1682 NACC, N = 8218 ADNI, N = 490

Sex, n (%)

  Female 1272 (75.6%) 5326 (64.8%) 253 (51.6%)

APOE4 status, n (%)

  Homozygote 29 (1.7%) 147 (1.8%) 11 (2.2%)

  Heterozygote 285 (16.9%) 1747 (21.3%) 131 (26.7%)

  Non-carrier 1033 (61.4%) 4634 (56.4%) 348 (71.0%)

  Unknown/not genotyped 335 (19.9%) 1690 (20.6%) Not included

Progressed during the observation period, n (%)

  To MCI 462 (27.5%) 1307 (15.9%) 80 (16.3%)

  To dementia due to AD 290 (17.2%) 569 (6.9%) 25 (5.1%)

  To MCI or dementia due to AD 497 (29.6%) 1579 (19.2%) 80 (16.3%)

Progressed within 8 years, n (%)

  To MCI 360 (21.4%) 1305 (15.9%) 71 (14.5%)

  To dementia due to AD 170 (10.1%) 568 (6.8%) 14 (2.9%)

  To MCI or dementia due to AD 389 (23.1%) 1577 (19.2%) 73 (14.9%)

Age at study entry in years

  Mean (SD) 76.2 (7.4) 73.9 (8.2) 74.3 (5.8)

Age category, n (%)

  Below 60 Not included Not included 4 (0.8%)

  60 to < 65 56 (3.3%) 1116 (13.6%) 10 (2.0%)

  65 to < 70 359 (21.3%) 1593 (19.4%) 91 (18.6%)

  70 to < 75 358 (21.3%) 1776 (21.6%) 168 (34.3%)

  75 years of age or older 909 (54.0%) 3733 (45.4%) 217 (44.3%)

Years of education

  Median (interquartile range) 16 (13–18) 16 (13–18) 16 (14–18)

Follow-up in years

  Median (interquartile range) 6 (3–10) 4 (2–6) 3.5 (2–5)
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Study 1. The estimation was based on data from 5108 
genotyped participants aged 60–75 years out of which 
1478 (29%) were heterozygotes and 146 (3%) were 
homozygotes. The estimated event risk (KM estimate) in 
the pooled ROS/MAP/MARS, NACC, and ADNI popu-
lations was higher for APOE4 homozygotes than for het-
erozygotes and non-carriers, in agreement with previous 
observations of the increased risk of (an earlier) onset of 
symptoms of cognitive impairment in APOE4 homozy-
gotes [19]: 38% for APOE4 homozygotes, 23% for hete-
rozygotes, and 16% for non-carriers.

Assuming a treatment effect of a risk reduction of 33% 
(i.e., HR of 0.67), 218 observed events are needed to 
reach a power of at least 80% based on the Schoenfeld 
formula [20]. A total sample size of 650 with a randomi-
zation ratio of 3:2 for active versus control treatment was 
planned for Generation Study 1 to reach 80% power to 
demonstrate a treatment effect on the TTE endpoint on 
its own using a two-sided test and a type 1 error rate of 
4% when the last randomized participant reaches the 
5-year follow-up time assuming a 30% drop-out rate in 5 
years.

Exploration of the APCC score
Cognitive performance over time was investigated using 
the APCC in the ROS/MAP/MARS cohorts and the 
APCC proxy in NACC on the three categories of pro-
gressors to dementia due to AD, progressors to MCI 
(who did not progress to dementia during the time of 
observation), and non-progressors (to MCI, dementia, or 
both). The mean APCC (or its proxy) score at study entry 
was 64 in both ROS/MAP/MARS and NACC. Proxies 
for PACC and RBANS were also investigated. Observed 
patterns in cognitive decline, shown using standardized 
z-scores, were similar across the different cognitive com-
posite measures (Fig. 1).

On average, progressors to only MCI and non-progres-
sors showed a similar, linear, quite flat course in time, 
with the only difference between the two groups being 
that progressors to MCI (not to dementia) started at a 
lower cognitive level than non-progressors. By contrast, 
the average cognitive decline for progressors to dementia 
was not linear, starting at a low rate about 10 years before 
diagnosis and becoming steeper a few years before diag-
nosis, mainly during the MCI stage. The LOESS estimate 
for progressors to MCI (not to dementia) may have been 

impacted by a differential drop-out after the diagnosis of 
dementia due to AD.

Splitting by APOE4 status in NACC (which contains 
most of the APOE4 homozygote data) using the APCC, 
PACC, and RBANS proxies showed that the shape of the 
curve did not seem to depend much on the genotype if 
anchored at the time of diagnosis, with a steep decline 
in cognition occurring 2–4 years prior to the manifesta-
tion of dementia (Additional file 1: Fig. S1). Plotting the 
APCC data versus age showed that homozygotes started 
to decline cognitively at a younger age than heterozygotes 
and non-carriers (data not shown).

Taking all these results together, we concluded that the 
APCC decline was not linear and was mainly driven by 
how close the diagnosis of dementia was. When APCC 
was anchored at the time of diagnosis, the impact of 
genotype and age was minor. In addition, in earlier stages 
of the disease (i.e., more than 8 years before the diagno-
sis of dementia), late progressors behaved very similarly 
to non-progressors. We also confirmed that the PACC 
behaved similarly to the APCC.

Modeling
Identification and evaluation of the TTE model
The data from ROS/MAP/MARS and NACC (total N 
= 9900, Table  2) that were used to fit the TTE model 
included a total of 2076 participants who progressed to 
MCI or dementia due to AD (N = 497 from ROS/MAP/
MARS and N = 1579 from NACC, Table 2).

The model included factors for event type and geno-
type (Fig. 2). Having the event type as a factor allowed us 
to estimate both TTE endpoints, i.e., time to diagnosis of 
MCI or dementia due to AD (whichever is first) and time 
to dementia due to AD, with the same model.

The candidate models (Weibull, piece-wise expo-
nential, exponential, and Gompertz) were investigated 
and compared visually by genotype and by using AIC. 
Figure  2 depicts the predictions of the probability to 
remain event-free (i.e., no diagnosis of MCI or demen-
tia) from the four models overlaid with the KM esti-
mates based on the observed data by genotype and 
shows that all models characterized well the observed 
data across genotypes. The models also included a sub-
model for the time to diagnosis of dementia due to AD 
(but not for the time to diagnosis of MCI). The AIC val-
ues for each of the models were 19,249 (Weibull), 19,070 

Fig. 1  Cognitive composites over time by progressor status: Individual time profiles and LOESS estimates. APCC, Alzheimer’s Prevention Initiative 
Preclinical Composite Cognitive; LOESS, locally estimated scatterplot smoothing; MCI, mild cognitive impairment; NACC, National Alzheimer’s 
Coordinating Center; PACC, Preclinical Alzheimer Cognitive Composite; RBANS, Repeatable Battery for the Assessment of Neuropsychological 
Status; ROS/MAP/MARS, Religious Orders Study/Memory and Aging Project/Minority Aging Research Study. Trajectories are anchored at the time 
of diagnosis for progressors to dementia and aligned by the median age of progressors at the time of diagnosis of dementia for progressors to MCI 
and for non-progressors to MCI/dementia

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Probability of remaining cognitively unimpaired obtained by different survival functions for the TTE model. AD, Alzheimer’s disease; AIC, 
Akaike’s Information Criterion; CI, confidence interval; MCI, mild cognitive impairment; TTE, time to event. Kaplan-Meier curves: confidence limits are 
wide for homozygotes due to the small sample size. Non-genotyped subjects were assumed to be non-carriers
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(piece-wise exponential), 19,933 (exponential), and 
19,517 (Gompertz), favoring the piece-wise exponen-
tial and Weibull models over the other two candidates. 
Since the AIC values were relatively close, we selected 

the Weibull model because of the higher flexibility and 
lower complexity of this model compared to the piece-
wise exponential, which outweighed the slightly better 
performance of the latter.

Fig. 3  Model diagnostics of the TTE model (VPC). AD, Alzheimer’s disease; CI, confidence interval; KM, Kaplan-Meier; MCI, mild cognitive 
impairment; TTE, time to event; VPC, visual predictive check. Non-genotyped subjects were assumed to be non-carriers
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Candidate individual factors that could explain the 
between-subject variability of the TTE were identified 
as APCC at baseline, years of education, APOE geno-
type, sex, and age at baseline. A backward elimination 
approach based on AIC was performed. The final model 
included interactions of event type with APOE4 geno-
type, age at baseline, years of education, and APCC at 
baseline. Adding sex to the model did not improve the 
model fit.

Quality check of the Weibull model for the TTE
A VPC comparing the observed and simulated data 
showed that the Weibull TTE model fit the data with 
good accuracy regardless of the type of event, i.e., diag-
nosis of MCI or dementia due to AD or diagnosis of 
dementia due to AD (Fig.  3). The adequate fit was con-
firmed by cross-validation (a model estimated on 50% of 
the data used to predict observations in the other 50%) 
(Additional file  1: Fig. S2). It should be noted, however, 
that the fit was less accurate for the diagnosis of dementia 
in the homozygote subpopulation, though this was not 
unexpected considering that it is much smaller than the 
other genotype subpopulations.

Identification and evaluation of the APCC models
The data from ROS/MAP/MARS used to fit the APCC 
models included 536 progressors and 1352 non/late pro-
gressors with available data on the APCC. Based on the 
data exploration, a power model was chosen to charac-
terize the cognitive decline as measured by the APCC in 
the years before and after MCI or dementia diagnosis in 
the progressors subpopulation of the ROS/MAP/MARS 
cohorts.

A linear model was adequate to characterize the time 
course of the APCC score in the non/late progressors.

Candidate covariates tested for inclusion in the 
APCC models were APCC at baseline, APOE4 status 

(homozygotes, heterozygotes, and non-carriers/non-gen-
otyped), years of education, sex, age at baseline, and age 
at the time of the first MCI/AD diagnosis. The covariates 
selected for the final APCC models for progressors and 
non/late progressors are shown in Table 3.

The adequacy of the models was assessed via VPCs 
based on 1000 replications. The simulated data repro-
duced the decline and variability of the APCC score 

Table 3  Covariates selected for the APCC models

APCC Alzheimer’s Prevention Initiative Preclinical Composite Cognitive, APOE4 apolipoprotein E ε4
a Covariates impacting the individual’s APCC value 12 years before the first diagnosis. Baseline covariates centered around observed medians: APCC logit-transformed 
and centered around the value 62, age around 74, and years of education around 16. APOE4 status includes homozygotes, heterozygotes, and non-carriers/non-
genotyped

Progressors Non/late progressors

Impacting baseline 
valuesa

Impacting the progression 
rate

Impacting baseline 
valuesa

Impacting the 
progression 
rate

APCC at baseline X X X X

APOE4 status X X

Years of education X X X X

Age at baseline X X

Age at the time of event X

Fig. 4  Model diagnostics of the APCC model for progressors to 
MCI/dementia due to AD (VPC). AD, Alzheimer’s disease; APCC, 
Alzheimer’s Prevention Initiative Preclinical Composite Cognitive; MCI, 
mild cognitive impairment; VPC, visual predictive check. Diagnosis of 
MCI/dementia: diagnosis of mild cognitive impairment or dementia 
due to AD
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Fig. 5  Examples of individual profiles of predictions and observed data. APCC, Alzheimer’s Prevention Initiative Preclinical Composite Cognitive; 
MCI, mild cognitive impairment. Both individual predictions and predictions for a “typical individual” take into account all model covariates; 
individual predictions are further adjusted by estimates of individual variability not explained by identified covariates
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reasonably well, indicating that the models adequately 
represent the data (Fig. 4 for progressors and Additional 
file 1: Fig. S3 for non/late progressors), especially in the 
time from 10 years before to 2 years since diagnosis. The 
assessment of the model fit beyond 2 years after diagno-
sis is difficult due to differential drop-out, and it is not 
within the scope of this study. In addition to the VPC, the 
NPDE indicated good adequacy of the models (data not 
shown).

Figure 5 shows a comparison of typical and individual 
predictions and observed data (as well as NPDE for each 
data point) for a few randomly selected progressors and 
non/late progressors of different genotypes.

Simulation platform
The simulation platform allowed us to generate a large set 
of virtual subjects defined by their demographic charac-
teristics (see the “Methods” section) to explore the end-
points dynamics and dependencies. Clinical endpoints 
were simulated based on the TTE and APCC models 
described in the previous sections. Since the APCC score 
at baseline was simulated based on a model including age 
and years of education as factors, years of education was 
removed from the factors in the TTE model to avoid co-
linearity with the baseline APCC score.

As part of the covariates, the distribution of baseline 
factors such as age in the trial population has a major 
impact on the event rates and the change in APCC over 
time. Firstly, we investigated the impact of the parame-
ters of interest using the underlying simulated population 
based on bootstrapping (n = 100 repeats).

Our main objective was to understand the depend-
ency/variation of the event risk at year 5 with respect to 
risk factors and to compare this with published results 
about APOE4 homozygotes [19]. Another objective was 
to explore the factors/dynamics of the change in APCC 
and the resulting effect size in terms of the reduction of 
APCC decline compared to the control group.

To optimize the enrichment strategy of Generation 
Study 1, we examined the impact of restricting the age 
distribution on the power of the trial by investigating a 
1:2:2 ratio of age groups 60–65, 65–70, and 70–75 years 
(mean age: 68.2 years) compared with the expected “nat-
ural” ratio of 3:2:1 (mean age: 65.4 years). Table 4 shows 
the results at the simulated population level (not from 
simulated clinical trials) for the two assumptions on the 
age distribution and the selected outcomes of interest. 
In the older population (1:2:2 ratio of age groups), the 
median TTE is shorter and the event risk rate at year 5 
is higher (6.5 years and 40% risk for 1:2:2 vs 7.5 years and 
34% risk for 3:2:1 for the control group specified by a HR 
of 1). In comparison, the estimated event risk rate at 5 
years, as determined by the KM estimates for homozy-
gotes, was 38% based on pooled data from ROS/MAP/
MARS, NACC, and ADNI (mean age: 67.8 years). Thus, 
if a clinical trial population includes a smaller propor-
tion of younger individuals (no more than 20% in the age 
range of 60–65 years), the event rate may be higher than 
expected.

The derived effect sizes in terms of reduction of the 
change in APCC score from baseline to year 5 were low, 
ranging from 0.23 for a HR of 0.60 (40% risk reduction) 
to 0.13 for a HR of 0.75 (25% risk reduction), even for the 
older population (1:2:2, Table 4).

Clinical trial simulation
We implemented a clinical trial simulation platform to 
sample participants of clinical trials from the simulated 
population under various options. The platform allows 
the following:

–	 Sampling of participants of clinical trials controlling 
for the age distribution within the age range of 60–75 
years

–	 Varying the recruitment pattern and duration
–	 Varying drop-out patterns and probabilities

Table 4  Endpoint characteristics for two different age distributions within the selected age range

APCC Alzheimer’s Prevention Initiative Preclinical Composite Cognitive, BL baseline, HR hazard ratio, TTE time to event

HR Age distribution 3:2:1 Age distribution 1:2:2

Median TTE, years Event risk at 
year 5

Effect size of APCC change 
from BL to year 5

Median TTE, 
years

Event risk at 
year 5

Effect size of APCC 
change from BL to 
year 5

0.60 10.705 0.228 0.2209 9.095 0.269 0.2319

0.65 10.045 0.243 0.1916 8.830 0.286 0.2008

0.67 10.000 0.248 0.1827 8.500 0.293 0.1860

0.70 9.640 0.258 0.1752 8.500 0.304 0.1765

0.75 9.230 0.273 0.1364 8.000 0.321 0.1325

1.00 7.500 0.343 0.0000 6.500 0.399 0.0000
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–	 Selecting the total sample size, the ratio between 
active and control groups, and the follow-up time

–	 Calculating power to demonstrate a treatment effect 
in at least one endpoint based on different analysis 
methods for the two endpoints (TTE and APCC)

The results for a family-wise type 1 error rate of 5% 
and different scenarios to distribute the type 1 error 
(using a simple Bonferroni adjustment for testing two 
hypotheses for the two endpoints) are summarized for 
the age distribution of 1:2:2 in Table 5.

The power of the TTE endpoint alone was above 75% 
for a HR of 0.70 to 0.60 (two-sided log-rank test). The 
overall power was only slightly lower for the 80%/20% 
distribution of the alpha between TTE and APCC. The 
power for the APCC endpoint alone (two-sided t-test) 
was consistently lower compared to the power for the 
TTE endpoint alone. Also, the overall power was lower 
for the 20%/80% distribution of the family-wise type 
1 error rate between TTE and APCC compared to the 
80%/20% distribution.

Based on the simulation results, we incorporated the 
1:2:2 age distribution in the design of Generation Study 
1, thereby restricting the recruitment of the lowest age 
group (60–65 years) to 20% of the target sample size. 
For the primary statistical analysis, an initial distribu-
tion of the family-wise type 1 error rate was set to 20% 
for testing the primary hypothesis on the APCC and 
to 80% for the TTE within a graphical procedure. This 
approach comprised the dual endpoints as well as the 
key secondary endpoint of Generation Study 1 (Clini-
cal Dementia Rating Scale - Sum of Boxes [CDR-SOB]) 
and was adjusted for testing multiple endpoints and to 
allow alpha propagation after the rejection of the null 
hypothesis for one endpoint to another. In addition, a 
variable follow-up time of 5 to 8 years was planned to 
further increase the power of the TTE endpoint.

Additional simulations tailored to the final design 
were implemented to assess the power under realistic 

assumptions regarding recruitment and drop-out patterns 
(data not shown). The time to drop-out was assumed to be 
exponentially distributed and the drop-out rate to be 30% 
in 5 years based on experience with clinical trials in early 
AD and subject matter expert input on the target popula-
tion. The overall power at the projected analysis time was 
acceptable (ranging from 75 to 96%) for HRs of 0.70 to 
0.60, which corresponds to a risk reduction of 30 to 40%.

Discussion
Using longitudinal model-based analyses of historical 
cohort data, we have developed a simulation platform 
to inform the design of preclinical AD studies, enrolling 
cognitively unimpaired individuals with a potentially 
elevated risk of developing AD in the coming years. 
This quantitative approach facilitated the investigation 
of a dual endpoints strategy capturing both subtle con-
tinuous cognitive decline and discrete clinically rele-
vant events in this population. Our simulations allowed 
us to optimize the performance of the dual endpoints, 
for example, leading to a limitation of no more than 
20% of participants in the youngest age group of 60 to 
65 years [8].

Our main conclusion is that a clinical trial in a cog-
nitively unimpaired population enriched by the APOE 
genotype and older individuals needs to be large and 
have a long observation period of at least 5 years to 
be able to detect clinically relevant treatment effects. 
In simulations, the high proportion of non/late pro-
gressors in this population led to only small average 
changes in the APCC over time, accompanied by a high 
variability in the placebo group, translating to small 
effect sizes (even for large treatment effects, e.g., a HR 
of 0.60, representing a 40% risk reduction). The other 
explored composites PACC and RBANS performed 
similarly to the APCC score in terms of monitoring the 
progression of AD (exploratory analyses). These results 
suggest that none of the three investigated cognitive 
composite measures (1) seems to be sensitive enough 

Table 5  Power of clinical trial replicates (1000 simulation runs) for the 1:2:2 age distribution

APCC Alzheimer’s Prevention Initiative Preclinical Composite Cognitive, HR hazard ratio, TTE time to event

HR Power given the distribution (%) of type 1 error rate for TTE/APCC

100%/0% single primary 
endpoint: TTE

80%/20% 50%/50% 20%/80% 0%/100% single primary 
endpoint: APCC

0.60 0.959 0.952 0.943 0.914 0.798

0.65 0.877 0.855 0.822 0.777 0.653

0.67 0.840 0.819 0.785 0.735 0.581

0.70 0.752 0.723 0.693 0.645 0.525

0.75 0.581 0.556 0.499 0.439 0.337
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to capture the slowing of progression due to treatment 
effects in cognitively unimpaired individuals and (2) 
will reduce the required sample size or duration when 
used as the stand-alone primary endpoint in clini-
cal trials targeting the preclinical phase of the disease 
compared to a TTE endpoint. This is in line with Cum-
mings (2019) who, interpreting the results from Dono-
hue et  al. (2017), concluded that even in FDA stage 2 
of preclinical AD, very large sample sizes observed for 
extended periods of time would be needed to demon-
strate a drug-placebo difference [21–23].

The proposed dual endpoints approach allows the 
examination of drug effects on two separate meas-
ures of disease progression: TTE and cognitive decline 
(APCC). We included a TTE endpoint because post-
poning the onset of MCI and/or dementia due to AD 
represents an important and meaningful clinical out-
come with high face validity which meets regulatory 
requirements. In a clinical trial setting, the definition 
of an event can be standardized (as it was for both 
generation studies) by using an adjudication commit-
tee. Furthermore, the TTE endpoint not only captures 
information about the incidence of events per se, but it 
also captures the time required for the event to occur 
as a continuous outcome variable. Finally, the TTE end-
point reached reasonable power, that is, at least 80%, in 
various simulated scenarios. In an event-driven design, 
the variable treatment duration allows an increase in 
power (since the time at risk is increased in participants 
who have been randomized early) without delaying the 
availability of final study readouts and can also facilitate 
and improve confidence in interim analyses.

In addition to the TTE endpoint, using a composite 
cognitive endpoint is expected to capture subtle changes 
in cognition even before the diagnosis of MCI in indi-
viduals who subsequently progress to the clinical stages 
of AD, thus supporting the dual endpoints approach. The 
APCC score was developed as a combination of well-
established, validated neuropsychological test scores to 
evaluate treatments in prevention settings [9]. As such, it 
is likely to be appropriate for the evaluation of preclini-
cal AD treatments in prevention trials. In contrast to the 
PACC and other cognitive composites currently used 
in preclinical AD [16], the APCC was developed using 
an empirical strategy supported by a theoretical under-
standing of preclinical cognitive changes. There is some 
evidence that such an empirically based composite is 
highly sensitive to these changes over time [9].

Although the APCC score showed high variability 
when calculated retrospectively from the available cohort 
data, this cognitive measure may be less variable in a clin-
ical trial setting where the population is more homoge-
neous. Ensuring standardized administration and scoring 

rules across centers and countries will also help decrease 
the variability. In any case, it should be noted that our 
results were consistent across the three composite cog-
nitive scales that were considered (APCC, PACC, and 
RBANS) as well as across cohorts (ROS/MAP/MARS 
and NACC), strongly suggesting that the findings on the 
APCC from the ROS/MAP/MARS cohorts may hold in a 
more general framework.

A trial using the dual endpoints approach requires 
a positive result in at least one endpoint to be success-
ful. In this study, there was a slight loss in power of the 
dual endpoints approach compared to TTE as a stand-
alone endpoint (Table 5). However, the fact remains that 
a dual endpoints approach is preferable as it allows for 
the examination of drug effects on two clinically relevant 
disease progression measures and mitigates the risk of 
an uninformative clinical trial if one of the two primary 
outcomes does not perform as expected. In addition, the 
loss of power was minimal even with a simple Bonferroni 
adjustment of the family-wise type 1 error rate.

Limitations
Although different historical data sources have been 
included in this study, the question about the exter-
nal validity of these data remains unanswered, i.e., how 
representative the data are of the wider population. In 
addition, the number of homozygotes in the histori-
cal data was small. This limitation in terms of genotype 
was bypassed by the graphical exploration of longitudi-
nal data: anchoring the APCC trajectories at the time of 
the diagnosis of dementia revealed that the time course 
of cognitive decline in AD progressors was similar across 
different risk groups as determined by their genotype. 
This is in line with results from Bonham (2016) report-
ing that the APOE4 genotype influences the risk of pro-
gression to MCI and dementia due to AD as a function 
of age [19]. As a consequence, data from all progressors 
(regardless of genotype) was used to inform both models.

Although NACC and ROS/MAP/MARS included a 
large number of participants with a long follow-up and 
a rich variety of cognitive measures, there were no bio-
marker data available to inform the modeling. Biomarker 
assessments, including amyloid status, are available from 
ADNI, but longitudinal data in this cohort are limited, 
especially in the target population of APOE4 homozy-
gotes. Because our models could not assess the predic-
tive value of amyloid status or other biomarkers (e.g., 
biomarkers of tauopathy or neurodegeneration), our 
approach may not be appropriate under every circum-
stance (e.g., in a clinical trial design including biomarker 
assessments and/or using biomarkers to enrich the study 
population). This was the case for Generation Study 2 for 
which a simulation was not possible since the inclusion 
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criteria required the APOE4 heterozygote participants to 
have elevated amyloid. Our approach may reach different 
conclusions and allow for a smaller sample size with such 
designs, as the power to detect a treatment effect based 
on composite cognitive endpoints used as single primary 
endpoints is potentially higher in a more advanced popu-
lation enriched by biomarkers [16].

In addition, the conceptual setup of the simulation 
implicitly favored the TTE over the APCC. The assumed 
relationship between the endpoints did not allow us to 
directly control the treatment effect on the APCC time 
course, as it was driven by the HR selected for the TTE. 
The association between the TTE and the APCC over 
time has been simplified, since it was captured using 
a dichotomized TTE (early vs non/late progressors) 
as opposed to a more complex functional relationship 
reflecting a possible correlation between the endpoints. 
Also, the TTE model was developed assuming that the 
drop-out occurs at random, which might not be correct. 
Nevertheless, quality checks of the selected endpoint 
models showed a very good fit to the observed data. We 
confirmed the structures of the APCC models by simula-
tion-based approaches (VPC and NPDE) and that of the 
TTE models by additional cross-validation.

The same data (ROS/MAP/MARS) has been used 
to develop the novel endpoint APCC (based on a data-
driven procedure) and to fit a longitudinal model for the 
APCC. As previously mentioned, we observed similar 
patterns for two other proposed composites in the ROS/
MAP/MARS cohorts and for all three investigated com-
posites in NACC. However, it should be noted that we 
have not developed models for the PACC and RBANS. 
Comparisons across composites were constructed using 
proxies and were only based on observed data using vis-
ual inspection and simple MSDR analyses.

Finally, although the simulation platform is based on 
models with good internal/external validity, their perfor-
mance on new data has not been assessed.

Dual endpoints approach compared with other proposals
Several cognitive composite endpoints based on exist-
ing cognitive scales have been proposed based on the 
assumption that including a measure that is sensitive 
to early changes will increase the power of preclinical 
AD studies. We focused on the APCC, which has been 
developed for this purpose, but data exploration and trial 
simulations did not confirm this claim. The effect sizes 
were low, and the resulting power was not sufficient for a 
stand-alone primary endpoint. This contrasts with results 
reported for the PACC by Donohue et  al. and Li et  al. 
based on data from ADNI [23, 24].

Analyses by Donohue et  al. found an effect size for 
the modified PACC of approximately 0.5 at year 4 for 

amyloid-positive versus amyloid-negative cognitively 
unimpaired individuals, which could be seen as a bench-
mark for the largest possible effect size of a potential 
treatment. In our simulations for APOE4 homozygotes 
(not enriched by amyloid status), the effect sizes at year 
5 comparing active treatment versus placebo were much 
smaller even in the most optimistic scenarios.

Like Donohue et  al., Li et  al. suggested that a smaller 
study (2-year duration) could reach reasonable power. 
In addition, they specifically assessed the relative effi-
ciency of the TTE and continuous measures of cogni-
tion (PACC) in pre-symptomatic AD [24]. According to 
their results, the power was approximately doubled with 
models of repeated cognitive assessments (mixed mod-
els of repeated measures) compared with the time-to-
progression analysis (Cox proportional hazards model, 
time to MCI diagnosis). This contrasts with the power we 
obtained for the APCC based on our clinical trial simula-
tions, which was consistently lower than the TTE. More-
over, the power results for the TTE reported by Li et al. 
are much lower than those obtained with a standard sam-
ple size calculation tool (PASS version 11, 2012). Using 
a total sample size of 1000 with a 1:1 randomization 
ratio, the type 1 error rate of 5%, a drop-out pattern as 
described in Li et al.’s publication, and a progression rate 
to MCI in the placebo group of 24% in 8 years led to a 
power of 22%, 46%, and 73% for treatment effects of 20%, 
30%, and 40%, respectively; the corresponding power in 
Li et al. was 19%, 32%, and 50% (Table 4 [24]).

Our approach differs from that of Donohue et  al. and 
Li et  al. in a number of aspects. We used a much larger 
data source, with more than 10,000 individuals for the 
TTE model (vs 445 in Donohue et al. and 163 in Li et al.). 
Furthermore, both Donohue et al. and Li et al. examined 
a biomarker-enriched population (i.e., with elevated amy-
loid) whereas we examined a broader population enriched 
by age and APOE genotype, which is less advanced and 
may be more variable. A more advanced amyloid-positive 
population may decline much faster compared to APOE4 
homozygotes in the age range of 60–75, and cognitive 
composites may therefore perform better. Finally, the 
PACC could be more sensitive and have lower variability 
than the APCC, although in our study, the two compos-
ites showed a similar pattern of progression. Of note, the 
good performance of the PACC in ADNI was not repro-
duced in ROS/MAP/MARS or in NACC, in line with 
what has been observed by others [22].

An alternative hypothesis is that the conceptual differ-
ences in the modeling and simulation approach may have 
driven the differences in outcomes. As noted in the limi-
tations, our approach implicitly favors the TTE endpoint 
(since the outcome of TTE informs the selection of the 
APCC model) whereas the approach of Li et al. implicitly 
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favors the continuous cognitive endpoint (diagnosis is 
derived from the outcomes of the continuous cognitive 
measures). Other details of the modeling are also differ-
ent, which may add to although are not likely to drive the 
discrepancies. We used a parametric function to define 
the TTE endpoint, which is a more informative approach 
than the semi-parametric Cox model (that only uses the 
information at the time of the event) and which, contrary 
to a Cox regression, can use any functional form to model 
a covariate effect.

The findings of Insel et  al. are more in line with ours 
in terms of the required sample size and study duration 
[22]. In their study, the PACC was used to investigate the 
development of MCI in 1120 individuals who were cog-
nitively unimpaired and amyloid positive at study entry 
(with the exclusion of participants with high cognitive 
performance). In 4-year trials, assuming a 25% slowing 
of cognitive decline in the treatment group, the required 
sample size to reach 80% power was 2000 per group com-
bining all cohorts. Combining a longer duration together 
with a higher drug effect (6-year trials and 35% treatment 
effect), the required sample size decreased to 300 per 
group on average.

The lack of sensitivity and limitations of existing com-
posite cognitive scales in the early stages of AD have also 
been put forward by Schneider and Goldberg [25]. These 
authors propose novel cognitive measures that may be 
more reliable and sensitive to very subtle changes, and 
thereby yield evidence of impairment and progression 
unseen in the analyzed historical cohorts; these, however, 
still need to be validated [26, 27].

Conclusions
As long as there is no evidence from prospectively col-
lected data that a composite cognitive measure is suffi-
ciently sensitive in detecting and tracking early changes 
in cognitive performance to be used as a single primary 
endpoint in clinical studies of preclinical sporadic AD, we 
recommend the dual endpoints approach. This includes 
a TTE endpoint along with a composite cognitive end-
point, together with an adequate adjustment for testing 
hypotheses on multiple endpoints. In line with the results 
from several studies [21, 22] but contrasting with reports 
from other researchers [24], we conclude that clinical tri-
als in preclinical AD need to have a large population and 
a long duration. Further research with a similar approach 
may determine whether and to what extent enrichment 
with biomarkers or more sensitive and reliable cognitive 
tests could reduce the sample size or duration require-
ment. Trial simulation based on endpoint models is a 
powerful tool to optimize clinical trial designs, leading 
to a more realistic and scientifically driven strategy and, 
potentially, a greater probability of success.
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