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Abstract 

Background  Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered 
a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are 
involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, 
and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of 
CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence 
of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects 
on cardiac remodeling and cardiac function.

Methods  We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/
vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascu‑
lar using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expres‑
sion and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. 
Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane 
(MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling 
were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay.
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Results  Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased 
caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In 
addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interac‑
tions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial 
dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial 
shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-depend‑
ent apoptosis pathway, leading to cardiac dysfunction in mice.

Conclusion  MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and 
endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling 
in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.

Keywords  Metabolic syndrome, Caveolae, Caveolin-1, Endothelial dysfunction, Mitochondrial remodeling, Cardiac 
mitochondria dysfunction

Background
Metabolic syndrome (MS) is a set of clinical conditions, 
such as insulin resistance, hyperglycemia, systemic arte-
rial hypertension (SAH), dyslipidemia, obesity, and a 
large abdominal circumference [1]. MS alterations cause 
multiple clinical manifestations and are recognized as 
leading risk factors for cardiovascular diseases. Long-
term (15 weeks) feeding with a Western diet (WD) (45% 
kcal fat) causes MS, increased heart mass, and exhibited 
critical features of pathological hypertrophy, including 
fibrosis and upregulation of pathological hypertrophy-
associated genes [2]. In addition, MS can result in car-
diac injury, including diastolic dysfunction, impaired 
calcium handling [3], diabetic cardiomyopathy [4], and 
heart failure [5]. Lipid droplets (LD) regulate intracellular 
lipid storage and lipid metabolism of neutral lipids such 
as cholesteryl esters, and triglycerides such as triolein. 
Hyperlipidemia causes lipid overload in adipocytes and 
various organs, especially the eyes, kidneys, liver, blood 
vessels, and heart, and accumulation leads to lipotoxic-
ity [6]. There are two modes of macromolecular (such as 
cholesterol and fatty acid) extravasation transport across 
the endothelium: the vesiculo-vacuolar organelle (VVO) 
and caveolae. VVO is one of the pathways for macro-
molecule extravasation in endothelial cells of the micro-
circulation and tumors microvasculature [7]. Through all 
endothelial cells, VVO forms a conduit from the lumi-
nal surface of the vascular endothelial cells to the other 
side of the endothelial cells near the surface of the tissue 
end [8]. The significant increase in tumor vascular per-
meability signature may be attributed to the upregula-
tion of VVO function [7]. However, further research is 
required to determine whether hyperlipidemia or MS 
affects the generation of VVO in myocardial microvascu-
lar endothelial cells.

Previous studies have demonstrated that diabetes 
modulates changes in the cardiac sarcolemma, including 

alterations reflecting lipid metabolism, lipid transport 
modification, caveolae remodeling and regulation of 
caveolins (CAVs) protein expression, prominent struc-
tures of T-tubules and gap junctions, and functional 
remodeling [4]. Caveolae are 50‒100  nm cell-surface 
plasma membrane invagination and expression in various 
cells, including fibroblasts, smooth muscle cells, epithe-
lial cells, adipocytes, endothelial cells, and cardiomyo-
cytes [9]. Caveolae are highly expressed and abundant in 
vascular endothelial cells to regulate endothelial vesicu-
lar trafficking, signal transduction, cholesterol trans-
portation, cell-to-cell communication, and endothelial 
function [10, 11]. CAVs, cholesterol-binding oligomeric 
proteins, regulates intracellular cholesterol transport by 
a complex process involving the caveolae, mitochondria, 
endoplasmic reticulum (ER), vesicles, and Golgi network 
[12]. CAVs (CAV-1, -2, and -3) are protein families con-
trolling the biogenesis and function of caveolae, which 
are plasma membrane omega-like invaginations that 
serve as the primary site of critical cellular processes. 
CAV-1 and CAV-2 are ubiquitously expressed in all cell 
types, whereas CAV-3 is mainly found in cardiomyocyte 
and skeletal muscles. CAV-1 is an oncogenic membrane 
protein associated with endocytosis, extracellular matrix 
organization, cholesterol distribution, lipid disorders, cell 
migration, and signaling [13]. In addition, CAV-1 modu-
lates cell metabolism, including glycolysis, mitochondrial 
bioenergetics, glutaminolysis, fatty acid metabolism, 
mitophagy, and autophagy [14, 15]. However, further 
research is necessary to determine whether heart related 
diseases caused by MS and cardiac remodeling will 
directly affect the expression of caveolae in cardiac vas-
cular endothelium and cardiomyocytes.

MS has been linked to oxidative stress production, 
endothelial cell activation, endothelial cell dysfunc-
tion, and the pathogenesis of macrovascular diseases 
[16]. The normal endothelial function includes dynamic 
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maintenance of vascular tone, vascular permeability, 
angiogenesis, and antioxidant, anti-inflammatory, and 
antithrombotic reactions. Vascular endothelial dysfunc-
tion is a complex pathological process including impaired 
endothelium-dependent vasodilation, increased vas-
cular permeability, altered expression of adhesion fac-
tors between endothelium, increased oxidative stress, 
increased expression of inflammatory hormones, and 
increased leukocyte adhesion. Increased adherence, 
altered endothelial cell metabolism, endothelial cell 
senescence, endothelial-mesenchymal transition, and 
endothelial damage or death are common causes of 
endothelial dysfunction. [17, 18]. In addition, the progres-
sion of metabolic and cardiovascular diseases caused by a 
Western diet is associated with endothelial activation and 
insulin resistance [19]. Furthermore, a recent study indi-
cated that diabetes mellitus and cardiometabolic disease 
may have clinically significant adverse effects on micro-
vascular function [20]. However, the effect and regulation 
of MS on cardiac microvascular endothelial cells remains 
unclear.

Mitochondrial dynamics include fission, fusion, 
shape transition (MST), and mitochondrial transport 
through the cytoskeleton [21]. However, the effect of 
MS-induced lipotoxicity on the expression of cardiac 
mitochondrial-CAV-1 and MST needs to be further 
clarified. The mitochondria-associated endoplasmic 
reticulum membrane (MAM) is a cellular structure 
formed by the proximity of two organelles: the mito-
chondria and ER [22]. MAM is involved in fundamen-
tal biological processes including ER stress, lipid and 
calcium (Ca2+) homeostasis, mitochondrial dynamics, 
and other related cellular reactions, such as autophagy, 
mitochondrial autophagy, inflammation, and apoptosis 
[23]. MAM dysfunction is directly related to the patho-
logical progression of ischemia–reperfusion, diabetic 
cardiomyopathy, heart failure, pulmonary hyperten-
sion, and systemic vascular disease [23, 24]. In addi-
tion, MAMs play a crucial role in regulating physiology, 
pathophysiology, and cellular metabolism. MAM dys-
function is associated with MS, including the downreg-
ulation of insulin signaling and accelerated progression 
of hyperlipidemia, obesity, and hypertension [22]. How-
ever, the effects of MS-induced cardiac incapacitation 
and remodeling on intramyocardial MAM and myocar-
dial mitochondrial damage need further investigation. 
This study aimed to investigate the correlation between 
CAV-1 expression and abnormal lipid accumulation 
in the endothelium and myocardium in WD-induced 
MS, and the occurrence of myocardial microvascular 
endothelial cell dysfunction, myocardial mitochondrial 
remodeling, and damage effects on cardiac remodeling 
and function.

Results
Long‑term Western diet feeding caused obesity and MS 
in vivo
To determine whether the long-term Western diet 
induced obesity and MS in aging mice, we compared 
the results of the control group (animals fed with a reg-
ular diet) and the Western diet group after 7  months. 
Our data showed that a long-term Western diet caused 
obesity significantly (Fig.  1A) and increased mice body 
weight (Fig.  1B), liver/body weight ratio (Fig.  1C), and 
abdominal circumference (Fig.  1D). Furthermore, we 
examined the biochemical values related to MS, includ-
ing glutamic oxaloacetic transaminase (GOT) (Fig.  1E), 
guanosine triphosphate (GTP) (Fig.  1F), triglycerides 
(Fig. 1G), fasting blood sugar (Fig. 1H), and total choles-
terol (Fig. 1I) compared with the control group. Our data 
indicated that the long-term Western diet caused MS 
in vivo.

The caveolae and VVO formation and CAV‑1 expression 
in cardiovascular tissue in vivo
The TEM assay was used to explore the caveolae expres-
sion in cardiac microvascular endothelial cells. Our 
results showed the caveolae and caveosome expression 
on the surface of the endothelial and intracellular (caveo-
some) membranes (Fig. 2A). Furthermore, the VVO for-
mation was only found in the microvascular endothelial 
cells of the Western diet-induced MS group (Fig.  2B). 
The TEM assay was used to identify MS regulation in 
caveolae expression in microvascular endothelial cells 
(Fig.  2C), the junction between perivascular cardio-
myocytes (Fig.  2D) and subsarcolemma cardiomyocytes 
(Fig.  2E). Our results showed that the Western diet-
induced MS significantly increased caveolae and caveo-
some expression in endothelial cells. In addition, the 
Western diet-induced MS promoted mitochondrial and 
caveolae adhesion in subsarcolemmal cardiomyocytes; 
however, in the control group, more lysosomes aggre-
gated in the subsarcolemmal region. It has been reported 
that the expression of caveolin is upregulated in diabetic 
myocardium [25]. The real-time polymerase chain reac-
tion (PCR), Western blot, and immunostaining assay 
were used to examine the expression of CAV-1 in cardiac 
tissue (Fig.  2F–H). Our data showed that Western diet-
induced MS significantly increased CAV-1 mRNA and 
protein expression in cardiac tissue.

The MS‑induced cardiac microvascular endothelial 
dysfunction in vivo
Endothelial dysfunction is a pathophysiological event 
involving endothelial cell activation and endothelial dys-
function. Endothelial cell activation is the first significant 
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Fig. 1  Long-term Western diet feeding caused obesity and MS in aged mice. Mice were fed either the normal feed diet (Control) or Western diet 
(WD) for 7 months. A Representative photo of mice after seven months of control and WD groups. B Body weight, C liver weight/body weight ratio, 
D size of the white belly sport, E GOT, and F GTP, G triglycerides, H fasting blood sugar, and I total cholesterol change after seven months of control 
or WD feeding. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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Fig. 2  The caveolae and VVO formation and CAV-1 expression in cardiovascular tissue in vivo. A, B The caveolae, and caveosome expression in 
cardiac vascular endothelial cells were examined by TEM assay. C The VVO formation only in the WD group was analyzed by TEM assay. D, E The 
expression of caveolae in the junction between perivascular cardiomyocytes and cardiomyocytes was analyzed by TEM assay. F–H The CAV-1 mRNA 
and protein expression were measured by real-time PCR, Western blot and immunostaining. *P < 0.05; ****P < 0.0001
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change, including pro-inflammatory and pro-thrombotic 
endothelial cell activation, resulting in decreased eNOS 
expression, and reduced nitric oxide (NO) bioavailabil-
ity [26]. The cardiac microvascular ultrastructure change 
was examined using TEM assay. Our data showed that 
in addition to exhibiting more caveolae, microvascular 
endothelial cells in the Western diet-induced MS group 
had impaired basement membrane integrity, increased 
extracellular matrix collagen fiber accumulation, 
decreased pericyte cell number, destabilization of inter-
endothelial cell junctions, and increased endothelial cells 
bleb, damage, or rupture (Fig.  3A). The real-time PCR, 
Western blot, and immunostaining assay were used to 
examine the level of eNOS in cardiac tissue (Fig. 3B–C). 
Our data showed that Western diet-induced MS signifi-
cantly decreased eNOS mRNA and protein expression in 
cardiac tissues. Previous studies have demonstrated that 
in the endothelium, NO is synthesized by eNOS and is 
negatively regulated by Cav-1; dysregulation of eNOS 
and CAV-1 contribute to endothelial dysfunction in dia-
betic dyslipidemia [27, 28]. The immunostaining and 
confocal microscope assays were used to analyze eNOS 
and CAV-1 interaction. Our results demonstrated that 
MS significantly increased eNOS and CAV-1 interac-
tion in microvascular endothelial cells and cardiomyo-
cytes (Fig.  3D). In addition, the immunostaining and 
confocal microscope assays were used to examine vas-
cular endothelial cadherin (VE-cadherin) and β-catenin 
expression and interaction to explore the endothelial 
adhesion molecular change in MS. Our results showed 
that MS reduced VE-cadherin expression levels and 
downregulated VE-cadherin and β-catenin interaction 
(Fig. 3E).

Lipid accumulation in cardiovascular tissue regulated 
by CAV‑1 in MS mice
CAV-1 plays a crucial role in caveolae-mediated low-
density lipoprotein (LDL) uptake and cholesterol tran-
scytosis across the endothelium [29]. In MS patients 
presenting with clinical symptoms such as systemic arte-
rial hypertension, dyslipidemia, obesity, and increased 
abdominal circumference, there is a marked upregulation 
of CAV-1 mRNA expression [1]. The immunostaining 
and confocal microscope were used to examine the regu-
lation of CAV-1 in lipid transport in vascular endothelial 
cells. Our data showed that the CAV-1 and lipid colo-
calization in cardiovascular endothelial cells was signifi-
cantly increased in the Western diet-induced MS group 
(Fig. 4A). In addition, to confirm the lipid accumulation 
in cardiac endothelial cells and atrial/ventricular cardio-
myocytes, Oil-red O staining was performed. Our data 
indicated that the lipid drop was significantly higher 
in the Western diet-induced MS group (Fig.  4B–C). 

Furthermore, the lipid distribution in cardiac tissue was 
examined using TEM assay. Our data indicated that the 
Western diet-induced MS increased the lipid accumu-
lated in cardiomyocytes, intramitochondrial, extravascu-
lar cardiomyocytes, and cardiac macrophages (Fig.  4D). 
These results indicated that Western diet-induced MS 
increased CAV-1 binding to lipids in vascular endothelial 
cells, further regulating lipid transport from blood vessels 
to cardiomyocytes, mitochondria, and macrophages for 
accumulation.

Disruption of MAM formation and mitochondrial 
remodeling in MS mice cardiomyocytes
The MAM is a cellular structure that connects and medi-
ates communication between the ER and mitochondria. 
MAM is involved in calcium signaling, lipid metabolism, 
oxidative stress generation in mitochondria and ER, pro-
tein folding, mitochondrial dynamics, and autophagy. In 
addition, MAMs play a crucial role in cellular metabo-
lism, and the dysfunction of MAMs is directly related to 
neurodegenerative diseases [30], heart failure [24], and 
MS [22]. TEM assay was performed to further confirm 
that MAM changes in MS`s cardiomyocytes. Our experi-
mental results found that the remodeling and deforma-
tion of mitochondria and ER significantly reduced the 
area of MAM in the cardiomyocytes of mice with MS 
(Fig.  5A). Moreover, to further confirm ER-mitochon-
dria dis-communication, immunostaining and confo-
cal microscope were used to examine the MAM maker 
proteins, MAVS and MFN2, expression and colocaliza-
tion. Our results showed that MAVS and MFN2 protein 
expression significantly reduced and lacked interaction 
in the myocardium of mice with MS compared to the 
control group (Fig.  5B). These results indicate that the 
ER-mitochondria communication was disrupted in the 
Western diet-induced MS group.

An increase in plasma cholesterol and TG has been 
associated with lipid toxicity and the development of 
mitochondrial dysfunction [31]. The TEM assay was 
used to examine the damaged mitochondrial ultrastruc-
ture and modulated dynamic caused by the Western 
diet. Our data indicated that the mitochondrial ultras-
tructure was changed, including the formation of mito-
chondrial fission, increased mitochondrial swelling, and 
accumulation of vacuolized mitochondria (Fig.  5C). It 
is worth mentioning that in the Western diet-induced 
MS group, mitochondria surround damaged organelles 
(vaccinated mitochondria or damaged ER) through self-
remodeling. This process resulted in changes in mito-
chondrial morphology and structure, such as rod-shaped, 
curved, and ring-shaped mitochondria; however, this 
phenomenon was rare in the control group (Fig.  5D). 
We further evaluated the mitochondrial damage by 
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Fig. 3  The MS induced cardiac microvascular endothelial dysfunction in vivo. A The cardiac microvascular ultrastructure change was examined 
by TEM assay. EC, endothelial cell; CM, cardiomyocyte; V, vascular; BM, basement membrane; ECM, extracellular matrix; P, pericyte cells; red arrow, 
endothelial cell rupture; blue arrow, damaged endothelial cell. B, C The eNOS mRNA and protein expression were examined by real-time PCR and 
Western blot assay. D The caveolin-1 and eNOS expression and interaction was measured by immunostaining and confocal microscope assay. E 
Endothelial adhesion molecular VE-cadherin and β-catenin expression and interaction was measured by immunostaining and confocal microscope 
assay. *P < 0.05; ***P < 0.001; ***P < 0.001
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Fig. 4  Lipid accumulation in cardiovascular tissue regulated by CAV-1 in vivo. A The immunostaining was used to identify lipid droplet transport 
from the cardiovascular to the myocardium mediated by endothelial cell`s CAV-1. Red color, CAV-1; green color, lipid, blue color DAPI, yellow color 
CAV-1/lipid colocalization. EC, endothelial cell; CM, cardiomyocyte; V, vascular. B, C The oil-Red O staining was used to confirm and quantify of lipid 
droplets accumulation in cardiac tissue. Data are presented as the mean ± SEM; ****P < 0.0001. D The lipid droplets accumulation in cardiomyocyte, 
intramitochondrial, extravascular cardiomyocyte and cardiac macrophages were examined by TEM assay. LD, lipid droplet; L, lysosome

(See figure on next page.)
Fig. 5  Disruption of MAM formation and mitochondrial remodeling in MS mice cardiomyocytes. A The mitochondria-associated endoplasmic 
reticulum membrane (MAM) was examined using TEM assay. ER, blue color, endoplasmic reticulum; m, red, color, mitochondria; ER-P, reticulophagy; 
MAM, red arrow. B MAM proteins mitochondrial antiviral signaling (MAVS) and mitofusin 2 (MFN2) expression and colocalization were examined by 
immunostaining and confocal microscopy. C, D The mitochondrial morphological remodeling was measured and quantified using TEM analysis. E, F 
Mitochondrial distribution and damage score quantification by TEM analysis
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Fig. 5  (See legend on previous page.)
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establishing a mitochondrial damage assessment score. 
The morphological appearance of mitochondrial dam-
age includes score 1: compact and regular cristae, dense 
mitochondrial matrix; score 2: cristae gape increasing 
and irregular, reducing mitochondrial matrix density, 
slight swelling; score 3: cristae irregular arrangement, 
mitochondrial matrix transparentizing, moderate swell-
ing; score 4: cristae fragment, mitochondrial inner mem-
brane dissociated with cristae, sever swelling; and score 
5: the disappearance of mitochondrial contents, mito-
chondria vacuolization (Fig.  5E–F). The distribution of 
mitochondria in mature cardiomyocytes presents three 
forms, which are unique compared to other myocardial 
mitochondria.

The three types are as follows: fibrillar mitochondria, 
which are densely distributed in myofibril and parallel 
to the sarcomere; subsarcolemmal mitochondria, which 
are distributed irregularly under the sarcolemma; para-
nuclear mitochondria, which are distributed around the 
nucleus [32]. Diabetes and cardiovascular disease are 
thus closely related to an imbalance between mitochon-
drial fission and fusion [33]. Our results demonstrated 
that dynamic mitochondrial morphology (fusion and 
fission) differs in control and WD groups. In the con-
trol group, the long spheroid and fusion-type mitochon-
dria are densely confined among myofibrils and adjacent 
to the sarcomere. Moreover, compared with the con-
trol group, mitochondria in WD become fission-type, 
smaller, have large vacuoles and damage under electron 
microscopy (Fig.  5E). The results showed that Western 
diet-induced MS caused dynamic mitochondrial mor-
phology change and damage.

The pathological cardiac remodeling in MS mice
Heart weight/body weight ratio was significantly 
increased in the long-term Western diet-feeding group 
(Fig. 6A). Therefore, we explored the cardiac function by 
M-mode echocardiography. Our results indicated that 
long-term Western diet feeding increased left ventricu-
lar internal diameter in diastole (LVIDd) and decreased 
stock volume (SV), ejection fraction (EF), and fractional 
shortening (FS). These results indicated that the long-
term Western diet feeding caused cardiac remodeling 
(Fig.  6B). In contrast, long-term Western diet-induced 
MS induced characteristic myocardial disarray, myofiber 

thickening, and significantly increased extracellular 
matrix area in the control group as observed using hema-
toxylin and eosin (H&E) staining. (Fig.  6C–D). In addi-
tion, the sarcomere length and myofibril fragment were 
increased in the long-term Western diet feeding group. 
As a result, the worst myofibrillar structure was observed, 
the overlapping structure of thick and thin filaments was 
destroyed, muscle structure was severely broken, and the 
Z-disk distorted and weakened (Fig. 6E–F). Furthermore, 
the long-term Western diet feeding increased the expres-
sion of myocardial damage marker B-type natriuretic 
peptide (BNP), cytochrome c, and cleavage caspase-3 
protein (Fig. 6G–I). Collectively, these data indicated that 
the long-term Western diet feeding significantly caused 
cardiomyocyte hypertrophy, decreased the overall integ-
rity of the myofibrils, and caused myocardial damage.

Discussion
Lipotoxicity is the accumulation of lipid intermedi-
ates and final products in non-adipose tissue, including 
the vascular endothelial cells, kidney, skeletal muscle, 
and heart, leading to mitochondrial dysfunction and 
increased endoplasmic reticulum stress, accelerating 
inflammation and cellular dysfunction [34]. Lipotoxic-
ity is essential in the progression of MS, atherosclero-
sis, diabetes, and heart failure [35]). Previous studies 
have shown that dyslipidemia can affect the regulation 
of nitric oxide (NO) signaling in endothelial cells. In 
addition, dyslipidemia can promote excessive produc-
tion of ROS in endothelial cells and cause mitochondrial 
dysfunction in vascular endothelial cells, promoting 
apoptosis or endothelial dysfunction [36]. Therefore, dys-
lipidemia causes very low-density lipoprotein (VLDL) 
and LDL to be susceptible to oxidation by macrophages, 
endothelial cells, and smooth muscle cells to produce 
cytotoxicity, which further damages vascular endothelial 
cells or cardiomyocytes and mediates the progression of 
cardiovascular disease [37, 38]. Our results indicated that 
Western diet-induced MS caused massive lipid accumu-
lation in endothelial cells, cardiomyocytes, macrophages, 
and cardiac mitochondria. Furthermore, MS caused lipo-
toxicity-induced cardiotoxicity, resulting in the progres-
sion of heart failure, including abnormal cardiac function 
(increasing LVESd, IVSd, IVSs, PWTd, and PWTs), 
high expression of BNP, increased cardiac muscle fiber 

Fig. 6  The pathological cardiac remodeling in the Western diet-induced MS mice. A Heart weight/body weight ratio was measured in vivo. B, 
C Cardiac function was examined by M‐mode echocardiography left ventricular end-systolic diameter (LVESd), inter-ventricular septal thickness 
in diastole (IVSd), inter-ventricular septal thickness in systole (IVSs), posterior LV wall thickness in diastole (PWTd), and posterior LV wall thickness 
in systole (PWTs). **P < 0.01, ***P < 0.001. D, E Cross-section cell area was examined and quantified by H&E staining. ***P < 0.0001. F, G Sarcomere 
length was measure and quantified using TEM analysis. ***P < 0.0001. H–J The BNP, cytochrome c (Cyt c), and cleaved caspase-3 (cleaved casp-3) 
protein expression in cardiac tissue were examined and quantified by immunohistochemistry and western blot assay. *P < 0.05, **P < 0.01

(See figure on next page.)
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Fig. 6  (See legend on previous page.)



Page 12 of 16Liu et al. Biology Direct            (2023) 18:9 

area and heart weight, and activated the mitochondria-
regulated apoptotic pathway to promote cardiomyocyte 
apoptosis.

Caveolae are specialized lipid rafts on the plasma mem-
brane, including endothelial cells, smooth muscle cells, 
epithelial cells, fibroblasts, adipocytes, and cardiomyo-
cytes. CAV-1 regulates intracellular lipid transport by 
binding with free cholesterol, glycolipids, and fatty acids, 
in the ER, Golgi, mitochondria, and caveolae. Previous 
studies have demonstrated that CAV-1 regulates the per-
meability of vascular interendothelial junctions and the 
expression of VE-Cadherin and β-catenin, and mediates 
vascular endothelial permeability and endothelial barrier 
dysfunction [39, 40]. Our results showed that Western 
diet-induced MS significantly increased the expression 
of caveolae and CAV-1 in the vascular endothelial cells, 
enhanced CAV-1 and eNOS interaction, increased the 
CAV-1 and lipid droplets binding efficiency, and reduced 
endothelial adhesion molecular expression. We specu-
late that this may increase the permeability of the vas-
cular endothelium, which promotes lipid deposition to 
cardiomyocytes and causes lipotoxicity. Previous reports 
have shown that CAV-1 deficiency promotes autophagy 
activation in the vascular endothelium, which reduces 
endothelial inflammation and atherosclerosis progression 
[41]. However, we did not have CAV-1 knockout mice 
to determine endothelial/cardiac dysfunction mediated 
by CAV-1 in the Western diet model. Therefore, this is a 
limitation of the study.

Relevant studies have confirmed that CAV-1 plays an 
integral role in maintaining mitochondrial shape, plas-
ticity, and function, and loss of CAV-1 promotes mito-
chondrial senescence and dysfunction [42–44]. Related 
studies have indicated that CAV-1 in the ER regulates 
lipid metabolism, ER stress, and maintenance of MAM 
function. In addition, CAV-1 deletion in the ER causes 
apoptosis by ER stress [45]. In our study, cardiomyocytes 
promoted the increased expression of CAV-1 in response 
to lipotoxicity and oxidative stress derived from excessive 
lipid metabolism in MS. However, the overexpression of 
CAV-1 in the myocardium seemed insufficient to provide 
mitochondria and endoplasmic reticulum with an anti-
stress effect. We speculate that Western diet-induced 
MS causes disruption of MAM formation and creates 
an imbalance between mitochondrial and ER stress, pro-
moting mitochondrial dysfunction and myocardial cell 
damage or death. The stress disorder between mitochon-
dria and ER caused by MS has not been further investi-
gated, which is a limitation to the study.

To maintain the balance of essential functions and 
dynamics of cells, mitochondria are remodeled by chang-
ing their structure and shape to meet intracellular and 

extracellular demands and stress to the intracellular envi-
ronment. The dysregulation of mitochondrial remodeling 
plays a critical role in the progression of many diseases 
[46]. Changes in the environment dynamics affects car-
diac mitochondria between cardiomyocytes and change 
in size, number, and shape of mitochondria to maintain 
function. This process, called mitochondrial shape tran-
sition (MST), is not associated with mitochondrial fis-
sion/fusion. Common MST-regulated mitochondrial 
shapes include elongated, rounded, and ring mitochon-
dria [21, 47]. MST is mediated by cytoskeleton and the 
ER [48]. Compared with other types of cells, the morpho-
logical changes of mitochondria in cardiomyocytes are 
significantly less. Our results showed that Western diet-
induced MS regulated MST, including stick, curve, C, 
and ring shape mitochondria. A previous study indicated 
that mitochondria with hollow chamber structures might 
be formed due to intrinsic or environmental factors, 
including aging, accumulation of toxins, drug action, 
and oxidative stress injury, leading to the formation of 
hollow chambers with similar inner and outer mito-
chondrial membrane structures [49]. In addition, these 
central void mitochondria have otherwise normal cristae 
and their overall respiratory activity may also be regular 
[50]. Furthermore, high-fat diet-induced hyperglycemia 
and hyperlipidemia promote the production of MST, 
which is directly related to the generation of intracellular 
ROS. A high-fat diet promotes MST, which significantly 
increases the elongated shape of mitochondria, and this 
remodeling process effectively reduces the occurrence of 
mitochondrial dysregulation, suggesting that mitochon-
drial remodeling plays an essential role in the challenge 
of hyperglycemia and dyslipidemia [51].

Conclusions
The Western diet-induced MS regulated cardiac remod-
eling by increasing caveolae and CAV-1 expression in 
endothelial cells and myocytes, promoting endothelial 
dysfunction, increasing lipid accumulation and lipotox-
icity in non-adipocyte tissue, disrupting MAM, regulat-
ing MST, activating mitochondrial-regulated apoptosis, 
and resulting in cardiac remodeling (Fig. 7). The protec-
tive effect of CAV-1 on the heart can provide a reference 
for the future clinical treatment of MS-derived heart 
disease.

Methods
Ethical statement
The animal experimental protocol was approved by the 
Ethics Review Committee for Animal Experimentation 
of the Kaohsiung Medical University (approval number: 
110065).
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Animal model
The administration of the Western diet was modified 
based on a previous study [52]. Briefly, male C57BL/6J 
mice (9  weeks old) were purchased from the National 
Lab Animal Center (Taipei, Taiwan) and housed under 
standard conditions in an Association for Assessment 
and Accreditation of Laboratory Animal Care Interna-
tional (AAALAC)-accredited facility (animal center at 
Kaohsiung Medical University). Mice were fed a normal 
chow diet and tap water (control group) or Western diet 
containing 21.2% fat, 48.5% carbohydrate, 17.3% pro-
tein by weight (Envigo Teklad Custom Diet, TD.120528, 
Wisconsin, USA), a high sugar solution (23.1 g/L d-fruc-
tose (Sigma-Aldrich, G8270, St. Louis, MO, USA), and 
18.9 g/L d-glucose (Sigma-Aldrich, F0127, St. Louis, MO, 
USA)) for 7 months.

Western blot analysis
Western blot analyses were performed as described in a 
previous study [53]. The protein concentrations of cell 
or tissue lysates were measured using the Lowry assay. 
Depending on the molecular weight of the target protein, 
10  μg protein samples were separated using 8% or 12% 
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS PAGE) and electroblotted onto a nitrocellulose 

membrane. The membranes were blocked with 5% non-
fat dry milk in Tris buffered saline plus Tween (TBST), 
immunoblotted with specific primary antibodies against 
CAV-1 (GTX79350, GeneTex, Irvine, CA, USA), eNOS 
(A15075, ABclonal, Woburn, MA, USA), BNP (1:500, 
sc-18813, Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), cytochrome c (1:1000, sc-13156, Santa Cruz), 
caspase 3 (1:1000, sc-56053, Santa Cruz), and β-actin 
(1:1000, T5168, GeneTex), and detected using horse-
radish peroxidase conjugated secondary antibodies. 
Fluorography with an enhanced detection kit was used to 
visualize the signals (ECL, GE Healthcare Life Sciences, 
Buckinghamshire Amersham Pharmacia International).

Transmission electron microscopy (TEM) assay
TEM was performed as described in a previous study 
[53]. Briefly, tissue samples were fixed with 2.5% glutar-
aldehyde for 2 h at 4 °C. After washing, the samples were 
post-fixed in 1% osmium tetroxide for 2 h, dehydrated in 
graded acetone, infiltrated, and then embedded in Epoxy 
resin. Ultrathin 70  nm sections were cut using a Leica 
microtome (Leica RM2165, Tokyo, Japan) and examined 
using an FE TEM (HITACHI HT 7700, Tokyo, Japan) at 
an accelerating voltage of 80 kV.

Fig. 7  Schematic representation in long-term Western diet-induced MS. Schematic representation of the association between cardiac 
microvascular dysfunction, caveolae and CAV1 expression, myocyte mitochondrial shape transition and remodeling, and cardiac remodeling in 
long-term Western diet-induced MS
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Histology, immunohistochemistry, and Oil Red O staining
Parts of the heart were fixed with 4% paraformaldehyde 
and then wax embedded and sectioned (5  μm thick) 
for hematoxylin and eosin staining (H&E, Invitrogen, 
Carlsbad, CA, USA), as previously described [54]. The 
lipid content was quantified by Oil Red O staining (Bio 
Vision, Catalog # K58024, Mountain View, CA, USA). 
After staining with hematoxylin and washing with dH2O, 
the section samples were washed and treated with 60% 
isopropanol for 5  min each time with gentle rocking. 
Thereafter, the section samples were extracted after Oil 
Red O staining with 100% isopropanol for 5  min with 
gentle rocking. Immunohistochemical staining was used 
to measure autophagic or apoptotic protein expression, 
with tissue sections  (5  μm thick) incubated in blocking 
buffer (0.5% BSA, 0.05% Tween 20, and PBS) for 1  h at 
room temperature, followed by specific primary anti-
bodies against BNP (1:100, sc-271185, Santa Cruz), 
cytochrome c (1:100, sc-13156, Santa Cruz), and caspase 
3 (1:100, sc-56053, Santa Cruz) for 1 h at room tempera-
ture. The antibody staining was developed using a diam-
inobenzidine (DAB) detection system (Catalog # 760124, 
Ventana Medical Systems, Tucson, AZ, USA) accord-
ing to the manufacturer’s protocol, counterstained with 
hematoxylin, and examined under a microscope (Nikon 
E600, Japan).

Immunostaining
Immunostaining was performed as described in a previ-
ous study [53]. First, paraffin tissue sections (5 µm-thick) 
were incubated in a blocking buffer for 1  h, at room 
temperature. Second, sections or cells were incubated 
for 1  h with primary antibodies against CAV-1 (1:100, 
GTX79350, GeneTex), VE-cadherin (1:100, GTX633705, 
GeneTex), β-catenin (1:100, sc-7199, Santa Cruz Bio-
technology), mitochondrial antiviral-signaling protein 
(MAVS) (1:100, Cat #PA5-17256, Invitrogen), Mitofusin 2 
(MFN2) (1:100, sc-100560, Santa Cruz), and lipid (70065-
T, Biotium, Fremont, CA, USA). Finally, the cell nuclei 
were counterstained with 4ʹ,6-diamidino-2-phenylindole, 
washed, mounted with VECTASHIELD® mounting 
medium (Vector Laboratories, Burlingame, CA, USA), 
and examined under a fluorescence microscope (Leica, 
Wetzlar, Germany). Confocal images were analyzed using 
the Imaris 3D/4D analysis software (OXFORD instru-
ments, USA).

Data and statistical analysis
Numerical values are reported as mean ± standard devi-
ation (SD) or mean ± standard error of the mean (SEM). 
Statistical analyses were performed using the GraphPad 
Prism 7.0. Unless otherwise stated in the figure legends, 

statistical significance (*P < 0.05; **P < 0.01; ***P < 0.001, 
****P < 0.001) was determined using unpaired two-tailed 
t-test or one-way ANOVA with relevant post-hoc tests 
(Dunnett, unless specified otherwise).
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