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Abstract

Objective assays of human cochlear synaptopathy (CS) have been challenging to develop. It is 

suspected that relative summating potential (SP) changes are different in listeners with CS. In this 

proof-of-concept study, young, normal-hearing adults were recruited and assigned to a low/high-

risk group for having CS based on their extended audiograms (9–16 kHz). SPs to paired-clicks 

with varying inter-click intervals isolated non-refractory receptor components of cochlear activity. 

Abrupt increases in SPs to paired- vs single-clicks were observed in high-risk listeners. Critically, 

exaggerated SPs predicted speech-in-noise and subjective hearing abilities, suggesting relative SP 

changes to rapid clicks might help identify putative synaptopathic listeners.

1. Introduction

Recent animal studies reveal that intense noise overexposure can lead to cochlear neuronal 

degeneration, even when hair cells recover and thresholds return to normal.1 Up to 50% loss 

of synapses between inner hair cells and cochlear nerve fibers can occur in noise-exposed 

or aging ears without prominent hair cell loss or auditory threshold elevation.2,3 Hence, 

this cochlear synaptopathy is “hidden” because it is not detected by routine behavioral or 

electrophysiological measures (e.g., clinical audiogram thresholds).4 Moreover, although 

loss of cochlear synapses can happen immediately after extreme noise exposure, the 

subsequent degeneration of the cochlear nerve fibers develops over a more protracted time 

course.1 Neural degeneration following cochlear synaptopathy is thought to manifest in poor 

word-recognition scores,3,5–7 particularly in noise,8–11 but not pure-tone detection in quiet. 

This is partly because cochlear neurons with high thresholds and low spontaneous rates 

are preferentially affected by cochlear synaptopathy,12,13 though this does not apply to all 

species.14
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One common way to diagnose cochlear synaptopathy in noise-exposed or aged animals with 

normal-hearing thresholds is by using the suprathreshold amplitude of auditory brainstem 

response (ABR) wave I, which represents the summed activity of cochlear neurons and 

correlates with loss of cochlear synapses in corresponding frequency regions.1,2,15 However, 

using ABR wave I amplitude as a diagnostic tool in humans is challenging16,17 and has 

provided mixed results.18 The low-amplitude response is highly variable and sometimes 

unmeasurable at the scalp. On the other hand, the summating potential (SP), reflecting 

aggregated hair cell receptor activity,19 is larger in listeners with poor speech-in-noise 

scores7 or with greater acoustic overexposure.8 SP enhancement was also reported in 

listeners immediately after recreational acoustic overexposure.20 Given that the SP reflects 

hair cell-dendritic integrity rather than the output of the auditory nerve (cf. wave I), it 

may be more sensitive to synaptopathic pathology. In normal-hearing human listeners, SP 

amplitudes to short duration stimuli are found to be reducing as stimulus repetition rate 

increases.21 In contrast, as excitatory post-synaptic potentials (EPSPs) from cochlear nerve 

terminals under the inner hair cells may contribute to SP,8 the loss of a negative EPSP could 

enhance SP in cochlear synaptopathy. SP enhancement is also reported in synaptopathic 

mice with attenuated middle-ear-muscle reflex (MEMR).22 However, like ABR wave I, a 

critical limitation to overcome is the low-amplitude nature of the SP, which hinders the use 

of absolute measures of the response as a viable diagnostic.

Here, in this proof-of-concept study, we evaluated whether relative changes in SP to rapid 

auditory stimuli might serve as a new potential assay of cochlear synaptopathy. We recruited 

young participants with normal and similar hearing thresholds in the normal audiometric 

range (250–8000 Hz) but who differed in their extended high-frequency (EHF; 9–16 kHz) 

thresholds. We divided the sample into low- and high-risk groups based on their average 

EHF thresholds of both ears. We then measured SPs elicited by standard single-clicks and 

paired-clicks23 (in separate stimulus conditions). In this paired-click paradigm, two clicks 

were presented within a short interval (e.g., 0.1–4.0 ms) to boost the generation of SP. As 

ABR wave I is the sum of action potentials generated by auditory neurons upon activation 

by a stimulus, there is a refractory period in which neurons are not excitable again in 

response to another stimulus. Unlike ABR wave I, SP is not limited by refractoriness in 

response to the first click of a pair. However, SP elicited by the second click of a pair is still 

regulated by synaptic processes due to neurotransmitter release24 and re-uptake.25 When a 

click is placed within 1 ms of a preceding click (i.e., within the absolute refractory period 

of the auditory nerve), short-term adaptation inhibits a (neural) response to the second click, 

which should minimize the ABR to the second click and isolate activities of (pre-neural) 

afferent spiral ganglion dendrites.23 Hence, SP stimulated with double-clicks may provide a 

more “pure” measurement of receptor and dendritic response integrity. Instead of measuring 

absolute SP amplitude, we were also interested to test whether relative measures of the SP 

to rapid auditory stimuli, which minimize inter-subject differences, would provide a more 

sensitive assay of putative cochlear synaptopathy in humans.

Lai and Bidelman Page 2

JASA Express Lett. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Materials and methods

2.1 Participants

The sample included N = 18 young participants with age range 23–33 years [mean (M) 

= 25, standard deviation (SD) = 2.8 years; 10 females]. All spoke American English 

and had normal hearing [20 dB hearing level (HL); 250–8000 Hz] when tested by 

conventional audiometric standards. Each gave written informed consent in compliance with 

the University of Memphis institutional review board (IRB).

2.2 Auditory test battery

We obtained subjective hearing acuity and noise-exposure history of each participant 

by using the Lifetime Exposure to Noise and Solvents Questionnaire (LENS-Q)26 and 

two additional noise questionnaires (see Appendix 1 of Liberman et al.8). Moreover, 

we conducted otoscopy, ipsilateral acoustic reflex thresholds (ARTs), and distortion 

product otoacoustic emissions (DPOAEs) in participants’ right ears according to standard 

audiological conventions. The final ART was defined as the averaged threshold obtained 

across the four elicitor frequencies (0.5, 1, 2, and 4 kHz).

2.3 Audiometric thresholds and QuickSIN

We measured pure-tone air-conduction thresholds bilaterally from 0.25 to 16 kHz at octave 

intervals and also at 9, 10, 11.2, 12.5, and 14 kHz. For 8 kHz and below, ER-3A inserts were 

used for testing; for EHFs above 8 kHz, circumaural headphones were used (Sennheiser 

HDA 200, Wedemark, Germany) that were specialized for high-frequency audiometry. 

We divided participants into two groups, low- vs high-risk, based on their average EHF 

thresholds. High-risk participants (N = 9, 4 females) had an average EHF threshold of 12.9 ± 

8.24 dB HL, while low-risk participants (N = 9, 6 females) had an average EHF threshold of 

−1.71 ± 2.91 dB HL.

To assess participants’ speech perception in noise, we used the Quick Speech-in-Noise 

(QuickSIN) test.27 Participants heard lists of six sentences, each with five target keywords 

spoken by a female talker embedded in four-talker babble noise. Target sentences were 

presented binaurally at 70 dB sound pressure level (SPL) at signal-to-noise ratios (SNRs) 

decreasing in 5 dB steps from 25 dB (relatively easy) to 0 dB (relatively difficult). SNR-loss 

scores reflect the difference between a participant’s SNR-50 (i.e., SNR required for 50% 

keyword recall) and the average SNR threshold for normal-hearing adults (i.e., 2 dB).27 

Higher scores indicate poorer SIN performance. Participants’ scores ranged from −4 to 2 dB 

of SNR-loss (M = −0.03, SD = 1.74). High-risk participants’ mean score was 0.6 ± 1.19 

SNR-loss, whereas low-risk participants’ mean score was −0.6 ± 2.02 SNR-loss (i.e., 1 dB 

better performance). The QuickSIN scores of both groups fell within the normative range for 

normal-hearing individuals.

2.4 Stimuli and electrophysiology

Standard single-clicks with a duration of 0.1 ms and inter-stimulus interval of 125 ms 

(repetition rate = 8 Hz) were presented monaurally at 80 dB SPL to participants’ right ears. 

Acoustic stimuli were delivered in alternating polarity via ER-3A earphones. A vertical 
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montage (Fpz to tiptrode) was used to record ABRs. A tiptrode (ear canal) reference was 

used to enhance the more peripheral (i.e., cochlear) components of the electrocochleogram 

(ECochG) and better visualize the pre-synaptic SP.8,28 Inter-electrode impedance was kept 

below 2 kΩ. Electrical responses were amplified 100 000 x, sampled at 10 kHz, and filtered 

with a 50–3000 Hz bandpass plus 60 Hz notch filter. Total 2500 artifact-free sweeps were 

averaged to obtain low-noise ECochGs.

Following standard single-clicks, we also recorded ECochGs from participants using a 

paired-click paradigm.23 In this paradigm, paired-click stimuli with seven different inter-

click intervals (ICIs) of 4.0, 2.0, 1.0, 0.8, 0.4, 0.2, and 0.1 ms were presented (in separate 

stimulus sessions and random condition order). Stimulus delivery and recording settings 

were kept the same as the single-clicks. The time intervals were chosen to be shorter 

than, encompass, and exceed the duration of absolute (1.0–1.2 ms) and relative (4–5 ms) 

refractory periods of the auditory nerve.29 This resulted in a total of eight ECochG/ABR 

waveforms per listener.

2.5 ECochG waveform analysis

All ECochG waveforms were processed and analysed using customized scripts in PYTHON 

3.9.7. First, each waveform per participant and condition (epoched from −12 to 12 ms 

relative to the first click onset) was low-pass filtered at 2500 Hz to remove high-frequency 

noise. For waveform, we then performed baseline correction by obtaining an average 

amplitude at −5 to 0 ms and subtracting this average amplitude from all amplitudes within 

the epoch window. Next, we defined SP time range as 0.5–1.3 s after click onset as the 

reported mean latency of SP is 0.97 (±0.1) ms, while wave I mean latency is 1.83 (±0.1) 

ms.23 This SP time range and latency are also consistent with definitions in other recent 

studies on ECochG/ABR and synaptopathy.8,9 Subsequently, we fit a logarithmic curve 

[refer to Fig. 2(A)] using log*(SP time) and original amplitudes of SP time by performing a 

polynomial fitting (degree = 1) with “numpy” package in PYTHON,

f′(x) = a * log( SP time ) + b, (1)

where SP time is the sampled time vector within 0.5–1.3 ms, a is the fitted slope, b is the 

fitted constant, and f′(x) is the predicted amplitudes of SP time. The SP inflection point was 

estimated at 85% of the min-max rise of the fitted curve, as

y = 0.85 * max f′(x) − min f′(x) + min f′(x) , (2)

where ŷ is the estimated SP inflection point. Finally, SP amplitudes were defined as the 

difference between the estimated SP inflection point and SP baseline, which was defined 

as the lowest amplitude within −0.5–0.5 ms (cf. Ref. 8). Meanwhile, if the fitted slope 

(i.e., a) was ≤0, SP amplitude was defined as the mean of original amplitudes in SP 

time subtracting SP baseline. In a few instances where SP amplitudes were lower than 

SP baseline, SP measures were excluded and considered no response (i.e., missing data). 

To measure relative changes in SP with increasing click ICI, SP amplitudes for each ICI 

condition were normalized to the SP amplitude of single-clicks per participant to obtain an 
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SP ratio. This differential metric allowed us to assess changes in the SP within each listener, 

thus, avoiding confounds of absolute measures.

2.6 Statistical analysis

To compare audiometric thresholds and behavioral measures between low- and high-risk 

groups, we used non-parametric Mann-Whitney U test (“pingouin” package in PYTHON). We 

performed a two-way, mixed-model analysis of variance (ANOVA) (participants = random 

factor) using “lme4” package in Rstudio to compare SP ratios across the two main factors 

(ICI; risk group). Initial diagnostics were performed using residual and Q-Q plots to assess 

heteroscedasticity and normality of data. Effect sizes are reported as ηp2. To assess pairwise 

linear relations between electrophysiological measures (i.e., normalized SP amplitudes or 

SP ratios) and behavioral measures (i.e., QuickSIN, LENS-Q, average EHF thresholds, 

average EHF threshold differences between ears, subjective acuity rating, and ARTs), we 

used Spearman’s correlations (“scipy” package in PYTHON).

3. Results

3.1 Audiometry, QuickSIN, and self-reported hearing acuity

Behavioral measures, including normal and EHF thresholds, ARTs, QuickSIN, LENS-Q 

scores, and subjective acuity ratings, are shown for low- vs high-risk listeners in Fig. 1. 

Average EHF thresholds of the high-risk group were worse (Mann–Whitney U test, U-val = 

0, p < 0.05) than the low-risk group, although auditory thresholds of both groups fell within 

the clinically normal range (i.e., better than 20 dB HL). The high-risk group also showed 

more than 12 dB asymmetry between left and right thresholds for 9–16 kHz. Asymmetry in 

EHFs, however, was only 3.8 dB in the low-risk group. Asymmetry in EHFs associated 

strongly with average EHF thresholds (Spearman’s r = 0.59, p = 0.01). Meanwhile, 

differences in ipsilateral ARTs, QuickSIN, and LENS-Q scores were not significant when 

compared across the low- and high-risk groups [Figs. 1(B)–1(D)]. Average subjective acuity 

rating [Fig. 1(E)] was significantly lower (i.e., poorer hearing sensitivity, U-val = 0.69, p = 

0.01) in the high-risk group.

3.2 Electrocochleography

SP amplitudes, which reflect hair cell receptor potentials,19,30 evoked by standard single- 

and paired-clicks (ICI = 0.1 ms) are shown in Fig. 2(C). An example of SP quantification 

using curve fitting (see Sec. 2) is shown in Fig. 2(A). We normalized SP amplitudes 

of paired-clicks to SP amplitudes of single-clicks per participant to lessen the impact of 

the inter-subject differences in head size, electrode contact, etc., which confound absolute 

measures and ECochG amplitude. SP ratios were generally larger (F1,16 = 4.47, p = 0.05, 

ηp2 = 0.22) in the high-risk than in the low-risk group across ICI conditions [Fig. 2(B)]. Grand 

average waveforms clearly show the prominent increase in SP amplitude in the high-risk 

group when evoked by paired-clicks [right panel of Fig. 2(C)].
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3.3 Brain-behavior associations

We ran correlations to determine if SP ratios across ICI conditions (0.1–4.0 ms) were 

related to behavior. Figures 3(A) and 3(B) show that SP ratios at ICI = 0.1 (Spearman’s 

r = 0.57, p = 0.03) and 0.2 ms (r = 0.6, p = 0.02) were predictive of QuickSIN scores; 

poorer speech-in-noise performance was associated with larger (i.e., exaggerated) SP ratios. 

Furthermore, SP ratios at ICI = 1.0 ms were predictive of subjective acuity ratings [Fig. 

3(C)]. We also found that subjective acuity ratings had strong associations with average EHF 

thresholds and average EHF threshold differences between ears [Figs. 3(D) and 3(E)]. These 

results indicate links between poorer subjective hearing acuity and (i) poorer high-frequency 

hearing abilities and (ii) more asymmetric high-frequency hearing thresholds. Additional 

correlation analyses treating average EHF threshold or average inter-aural EHF threshold 

difference as a continuous variable did not reveal significant associations with SP ratios 

at various ICIs, though trends of positive associations were observed. Similar correlation 

analyses were also performed on SP ratios at all ICIs and other behavior measures (e.g., 

LENS-Q, ipsilateral ART, etc.), but not all correlations were significant, and only significant 

correlations were reported here.

4. Discussion

The present study assessed behavioral and electrophysiological assays of hearing integrity 

in young, normal-hearing listeners with normal audiograms (i.e., 250–8000 Hz) but who 

varied in their EHF thresholds (9–16 kHz). Listeners with elevated EHF thresholds were 

considered the “high-risk” group, suspected of degeneration in the cochlear synapses, i.e., 

the characteristic of cochlear synaptopathy.8 We presented single- and paired-clicks to both 

low- and high-risk participants to test if differential changes in the cochlear-initiated SP 

potential with ICI would differentiate hearing groups and/or participants with degraded 

auditory processing as indexed by perceptual speech-in-noise measures.

Unlike most studies, which measured SP by human visual inspection,7–9 we automated our 

SP measurements by fitting a logarithmic curve preceding ABR wave I through the SP 

“pedestal” to estimate the SP inflection point [Fig. 2(A)]. This method not only saved time 

but also reduced human error due to inter- and intra-observers’ variability. Additionally, SP 

amplitudes to paired-clicks were normalized to those of single-clicks to minimize the impact 

of inter-subject differences in head size, tissue conductivity, etc., that normally confound 

absolute measures of ECochG quantification. Critically, we observed an increase in SP 

amplitudes evoked by paired-clicks compared to standard single-clicks in high-risk listeners 

[Fig. 2(B)]. However, fewer changes in SP amplitudes were found in low-risk listeners when 

stimulated with either single- or paired-clicks. SP ratios were also predictive of behavioral 

SIN perception [Figs. 3(A) and 3(B)] and subjective hearing acuity [Fig. 3(C)], confirming 

the behavioral relevance of our electrophysiological markers.

4.1 SP responses evoked by single- vs paired-click

ABR wave I [i.e., the action potential (AP) of the ECochG] originates from the cochlear 

nerve. The single-fiber AP component is an “all-or-none” response that exhibits neural 

refractoriness to a preceding stimulus. There are two observed refractory mechanisms: 
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the absolute refractory period and the relative refractory period. The absolute refractory 

period of a human cochlear nerve AP is reported to be ~1.025 to 1.2 ms.31 Following AP 

generation to a first click, the auditory nerve cannot again discharge to a second click 

within this absolute refractory period. During the relative refractory period, it is difficult, 

but not impossible, for the cochlear nerve fibers to discharge and generate new APs as it is 

characterized by an exponentially decreasing threshold for the AP to a resting level with a 

time constant of 4–5 ms.25 Unlike the AP (i.e., ABR wave I), the SP is a receptor response 

originating from the hair cells. Consequently, it is not constrained by neural refractoriness. 

Two types of potentials related to hair cells can contribute to SP: (1) non-linear components 

in the receptor potentials from inner and/or outer hair cells that are not removed by 

alternating stimulus polarity and (2) EPSPs from cochlear nerve terminals under the inner 

hair cells.8 It is possible that the loss of a negative EPSP could contribute to SP enhancement 

in listeners who have putative cochlear synaptopathy and attenuated MEMR, as reported in 

synaptopathic mice.22 As the SP is not constrained by refractoriness, paired-clicks with ICIs 

within the absolute refractory period can thus elicit additional and enhanced SP responses.8 

While we did not find attenuated ARTs in our listeners, we suggest the former mechanism 

might account for the larger SPs we found in high-risk ears.

4.2 Differential changes in SP relate to hearing acuity and speech-in-noise perception

Our results show that SP ratios of rapid auditory stimuli (ICI = 0.1 and 0.2 ms) correlated 

with QuickSIN [Figs. 3(A) and 3(B)], while SP ratios for ICI = 1.0 ms correlated with 

subjective acuity rating [Fig. 3(C)]. The rapid ICIs (0.1–0.2 ms) fall within the absolute 

refractory period of the auditory nerve, while an ICI of 1.0 ms is closer to the limit of 

absolute refractory period. In addition to not being influenced by neural refractoriness, larger 

SP ratios for very rapid ICIs in listeners with worse SIN perception (i.e., larger SNR-loss) 

could be due to unusually small synaptic adaptation in terms of neurotransmitter re-uptake. 

On the other hand, larger SP ratios at longer ICIs (1.0 ms) correlated with worse hearing 

acuity. Given that longer intervals contain neural refractory effects, this association could 

be related to both reduced synaptic and neural effects. It is possible our SP effects are at 

least partially driven by inner hair cell dysfunction in basal cochlear regions, as implied 

by the elevated EHF thresholds in high-risk subjects. However, hair cell impairment would 

tend to reduce electrophysiological responses, whereas we instead see the opposite: enlarged 

SPs in risk adverse ears. This argues for a neural rather than pure sensory account of our 

data. We speculate that, in addition to the loss of negative EPSPs, the reduction of synaptic 

adaptation due to synaptic loss may also contribute to larger SP ratios to very short ICIs 

in cochlear synaptopathy. In contrast, SP amplitudes to short stimuli were reported to be 

slightly reducing, because of adaptation, in normal-hearing humans as stimulus repetition 

rate increased.21 Proper adaptation is important in maintaining normal hearing function 

because it is a fundamental principle of sensory processing that enables sensory information 

to be represented adequately32 and remain robust to noise.33

High-risk subjects in Liberman et al.8 who had putative cochlear synaptopathy were shown 

to have poorer speech discrimination scores when the task was performed under conditions 

of degradation (e.g., noise, time-compression, reverberation). Listeners in that study were 

assigned to a high-risk group based on subjective responses on questionnaires related to 
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medical history of ear and hearing function, history of noise exposure, and use of hearing 

protection. In contrast, in this study, we defined high-risk listeners objectively based on their 

average EHF thresholds and not noise-exposure history. Arguably, the stark differences in 

EHFs (without elevated thresholds in the normal audiometric range) suggest the hearing loss 

in our high-risk ears was far from “hidden.” Still, the association of SP and QuickSIN score 

or subjective acuity rating in this study and poorer SIN performance in the high-risk group 

of Liberman’s study suggest that recruiting and assigning subjects into different hearing risk 

groups based on more difficult SIN perceptual tests or more detailed subjective responses 

regarding hearing and historical noise exposure might be a better approach.

4.3 SP vs ABR measures of cochlear synaptopathy

Although ABR wave I amplitudes are usually reduced by neural damage, SP amplitudes 

remain robust in animals with both noise-induced and age-related synaptopathy.2 The 

literature is, however, highly equivocal, and some studies fail to find associations between 

ABR wave I amplitude and noise exposure in humans.34–38 Absolute amplitude of ABR 

wave I is highly variable in humans when recorded at the scalp. This is also true for the 

SP. However, the fact that SP is a receptor potential and not neural response might render 

it more sensitive to synaptopathic effects since these listeners usually have intact hair cells 

but loss of synapses. In addition, our use of relative (i.e., SP ratios comparing responses 

across stimuli) rather than absolute amplitude measures seems to make it less susceptible to 

confounding sources of variances and thus sensitive to putative cochlear synaptopathy.

Recently, envelope-following responses (EFRs) recorded to rectangular sinusoidal 

modulation (RAM) sounds were shown to predict speech-in-noise performance in normal-

listening listeners with suspected cochlear synaptopathy.39 It was claimed that RAM EFRs 

yielded greater diagnostic utility than other metrics, including click-evoked ABRs and 

MEMRs, in predicting cochlear neural deficits in normal-hearing listeners. EFRs, however, 

may still be confounded by other unknown deficits in the auditory system since the response 

generators are located in the rostral brainstem rather than auditory periphery.40 As such, 

auditory deficits reported in EFRs might not reflect degeneration in cochlear synapses 

or nerve fibers, per se, but rather more central effects that are entirely independent of 

cochlear synaptopathy. In contrast, the source of SP is specifically localized to cochlear 

processes, which are the central etiology of cochlear synaptopathy. As a result, the more 

direct interpretation of the SP renders it a higher potential than EFRs to be used as a 

diagnostic tool for cochlear synaptopathy and related neural degeneration.

Last, sample size limitations of this study are worth mentioning. While the group differences 

and correlational effects observed here (e.g., ηp2 > 0.22; r > 0.55−0.6) are considered 

intermediate to large effects41 and, thus, provide moderate to strong evidence favoring 

the alternative hypothesis, we acknowledge the limitation of our smaller sample size. 

Additional studies with larger populations of low- vs high-risk listeners are needed to 

replicate and confirm the preliminary findings of our proof-of-concept SP measures. Still, 

the convergence of group differences across several behavioral and electrophysiological 

measures is promising.
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Fig. 1. 
High-risk listeners have poorer and more asymmetric auditory thresholds at extended high- 

frequencies (EHF; 9–16 kHz) and poorer subjective acuity than low-risk listeners. (A) Low- 

and high-risk groups have similar auditory thresholds in the normal audiometric range (250–

8000 Hz) indicative of “hidden” hearing loss (HHL). For EHFs, thresholds of high-risk 

participants were significantly poorer (Mann-Whitney U test) than low-risk participants. The 

inset in (A) shows the strong association of average EHF threshold differences between left 

and right ears (Δ EHF) with average EHF thresholds of both ears. Despite trends, risk groups 

did not differ in ipsilateral ARTs (B), QuickSIN (C), or LENS-Q (D) noise-exposure scores. 

(E) Subjective acuity ratings were better in the low- vs high-risk group (Mann–Whitney U 

test, U-val = 69, p = 0.01). Error bars = ±standard error of the mean (s.e.m.); *, p < 0.05; **, 

p < 0.005; r = Spearman’s correlation; shaded area indicates 95% confidence interval of the 

regression line.
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Fig. 2. 
SP ratio (SP amplitudes to paired-clicks/SP amplitudes to single-clicks) were larger in 

the high- compared to low-risk group. (A) An example of ECochG/ABR recorded from a 

representative high-risk subject (left panel; paired-click response, ICI = 0.1 ms). The SP 

is labeled with a gray box and enlarged in the right panel. A logarithmic curve (blue line) 

was fit from 0.5 to 1.3 ms (the region within two dashed vertical lines) to predict the SP 

inflection point (red circle) at 85% of min-max amplitude. SP amplitude was measured as 

the difference between the predicted SP inflection point and the SP baseline (minimum 

amplitude within −0.5 to 0.5 ms, black circle). In some cases when the fitted curve had a 

slope of ≤0, SP amplitude was measured as the difference of the mean amplitude within 0.5–

1.3 ms (gray dashed line) and the SP baseline. (B) Increased SP amplitudes to paired-clicks 

were observed in high-risk participants when normalized to the SP amplitude of single-click 

(within each participant). (C) Grand average ECochGs to single- and paired-clicks (ICI = 0.1 

ms) in low-risk (left) and high-risk (right) groups. Error bars and shaded area = ±s.e.m.
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Fig. 3. 
Brain-behavior correlations. [(A) and (B)] SP ratios are related to speech-in-noise 

perception. SP ratios (plotted in dBV scale) of ICI = 0.1 ms (A) and 0.2 ms (B) correlated 

significantly with QuickSIN SNR-loss. (C) Larger SP ratios for 1.0 ms predicted poorer 

subjective acuity rating. [(D) and (E)] EHF hearing abilities are related to subjective hearing 

acuity. Subjective acuity rating was strongly predictive of average EHF thresholds (D) 

and average EHF threshold difference between left and right ears (E). r = Spearman’s 

correlation, shaded area indicates 95% confidence interval of the regression line.
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