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ABSTRACT

Across languages, word frequency and rank follow a power law relation, forming a distribution
known as the Zipfian distribution. There is growing experimental evidence that this well-
studied phenomenon may be beneficial for language learning. However, most investigations
of word distributions in natural language have focused on adult-to-adult speech: Zipf’s law has
not been thoroughly evaluated in child-directed speech (CDS) across languages. If Zipfian
distributions facilitate learning, they should also be found in CDS. At the same time, several
unique properties of CDS may result in a less skewed distribution. Here, we examine the
frequency distribution of words in CDS in three studies. We first show that CDS is Zipfian
across 15 languages from seven language families. We then show that CDS is Zipfian from
early on (six-months) and across development for five languages with sufficient longitudinal
data. Finally, we show that the distribution holds across different parts of speech: Nouns, verbs,
adjectives and prepositions follow a Zipfian distribution. Together, the results show that the
input children hear is skewed in a particular way from early on, providing necessary (but not
sufficient) support for the postulated learning advantage of such skew. They highlight the need
to study skewed learning environments experimentally.

INTRODUCTION

When it comes to frequency, not all words are created equal: it is known that words in lan-
guage are not uniformly distributed. Instead, a small number of word types accounts for most
of the tokens across languages. In English for example, 0.3% of word types account for 50% of
all tokens, with the remaining words having very low frequencies (Yang, 2013). The relation
between a word’s rank and its frequency can be described using a power law: Differences in
frequency are large among the most frequent words, and almost non-existent among the least
frequent words. This power law relation results in a highly skewed frequency distribution with
a narrowed peak for the most frequent words, and a very long tail for the low frequency words
(Figure 1). This distribution is known as the Zipfian distribution (Zipf, 1949), and is character-
ized by a linear relation between log frequency and log rank (Figure 2). Natural language does
not follow Zipf’s law completely, with consistent prediction errors on both edges of the fre-
quency scale (Montemurro, 2001; Piantadosi, 2014). For example, the most frequent words
are not as frequent as they are expected to be. We follow Piantadosi (2014) and use the term
“near-Zipfian” to refer to a distribution where Zipf’s law holds approximately.

Near-Zipfian distributions are found across languages, for multiple linguistic domains: They
are found when looking at the entire lexicon, at different parts of speech separately, and even
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Figure 1. The observed word distributions for each language.
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Figure 2. The observed (in green) and expected (in red) word distributions for each language on a log-log scale.
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for specific semantic classes such as taboo words (Bentz, Alikaniotis, Samardžić, & Buttery,
2017; Ferrer-i-Cancho, 2005; Mehri & Jamaati, 2017; Piantadosi, 2014). There are many dif-
ferent explanations for the origin of Zipfian distributions in language, with ongoing controversy
about the significance of this law and whether it tells us something fundamental about lan-
guage or not (e.g., Ferrer-i-Cancho et al., 2020). On the one hand, such distributions are found
in numerous domains across the physical world - from the distribution of visual objects
(Clerkin et al., 2017) and their co-occurrences (Lavi-Rotbain & Arnon, 2021), to population
size in American cities (Clauset et al., 2009) and crater size on the moon (see Newman,
2005 for a review) - where they are thought to reflect general mathematical principles not
unique to language (e.g., scale-invariance: Chater & Brown, 1999). On the other hand, lan-
guage, unlike the physical world, is created and shaped by humans (Ferrer-i-Cancho et al.,
2020; Piantadosi, 2014; Semple et al., 2022). Consequently, the recurrence and preservation
of Zipfian distributions in language may reflect foundational properties of human language or
cognition (Christiansen & Chater, 2008; Ferrer-i-Cancho et al., 2020; Gibson et al., 2019;
Piantadosi, 2014; Semple et al., 2022).

Some explanations emphasize the impact of language being a communication system
under cognitive pressures, and suggest that Zipfian distributions emerge spontaneously under
the pressure to minimize listener and speaker efforts (Ferrer-i-Cancho & Sole, 2003), or from
the need for easy and fast communication (Ferrer-i-Cancho, 2016). A similar perspective
emphasizes the role of Shannon’s information theory (Shannon, 1948): Given that language
is a noisy communication channel, there is pressure for optimal coding of the lexicon (Coupé
et al., 2019; Ferrer-i-Cancho et al., 2020). Zipfian distributions are seen as a form of optimal
coding under such accounts. These explanations attribute the presence of Zipfian distributions
to the communicative and cognitive pressures that impact language learning and use.

A different line of work highlights semantics as the driving force of Zipfian distributions.
Manin (2008) suggests a mechanism by which the tendency to avoid excessive synonymy
results in a Zipfian distribution. According to his model, the measure of specificity of a word
is closely related to frequency: Words that are more generic tend to be more frequent (e.g.
“city”), while words that are more specific are less frequent (e.g., “London”). The variance
in specificity level across words, together with the changes in words’ meaning over time
and with the pressure to avoid excessive synonymy (using a word that is too specific for a
certain scenario), lead to a Zipfian distribution in which the semantic space can be divided
to layers of varying specificity (Manin, 2008). In a more recent model, Lestrade (2017) adds to
Manin’s specificity model and claims that semantics alone is not enough: it takes both seman-
tics and syntax in order to form a Zipfian distribution. According to Lestrade, syntax leads to
division of words into parts-of-speech categories that differ greatly in size. As in Manin (2008),
Lestrade claims that semantics leads to a variation in specificity level across words from the
same part-of-speech category. Using a computational model, Lestrade shows that only when
accounting for both semantics and syntax, the resulted distribution is Zipfian (Lestrade, 2017).

A host of additional explanations tie the presence of Zipfian distributions in language to
learnability pressures (Bentz, Alikaniotis, Cysouw, & Ferrer-i-Cancho, 2017; Coupé et al.,
2019; Lavi-Rotbain & Arnon, 2019, 2020, 2022). Skewed distributions, like the Zipfian one,
are more predictable than uniform distributions, making it easier to guess the next word. This
increased predictability may confer a learnability advantage for certain aspects of language
learning, like segmenting and learning words, for several reasons. First, when it is easier to
predict upcoming elements, processing resources can be used more efficiently. In addition,
high frequency words can be learned early on, and used to facilitate learning of lower fre-
quency elements, as can be seen in infants use of their own name to segment adjacent words
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(Bortfeld et al., 2005), or in the use of familiar words to segment novel phonologically similar
words (Altvater-Mackensen & Mani, 2013). Finally, lower frequency words may also benefit
from appearing next to high frequency ones: the contrast between high and low frequency
could make the lower frequency words easier to identify or learn. The facilitative potential
of the contrast between high and low frequency is supported by findings from several domains.
In a phenomenon known as stimulus-specific adaptation, rare tones cause an increased neu-
ronal reaction in rats, but only when they were rare enough (Rubin et al., 2016). Similarly, in
memory tasks, adults show improved memory for novel items only when these items were
relatively rare (Reggev et al., 2018).

The idea that Zipfian distributions may facilitate learning is starting to gain empirical sup-
port. The vast majority of lab-based studies looking at word segmentation and learning use a
uniform distribution where each item appears the same number of times (e.g., Saffran et al.,
1996). This allows researchers to better control for frequency effects, but does not reflect the
natural skew of words in language. However, several recent studies compared learning in
Zipfian and uniform distributions and found facilitative effects: Across different aspects of
language learning, including mapping between phrasal form and meaning, word segmenta-
tion, noun learning, and category formation, exposure to Zipfian distributions did not harm
learning, despite the lower frequency of certain elements (Kurumada et al., 2013; Schuler
et al., 2017) and even led to facilitation in certain cases (Goldberg et al., 2004; Hendrickson
& Perfors, 2019; Lavi-Rotbain & Arnon, 2019, 2020, 2022). Importantly, if the propensity of
this distribution in language can be explained (even partially) by its learning advantage, then
language directed to learners should also be Zipfian. If it is not, then the facilitation found in
the lab may be less relevant for actual language learning. More broadly, if CDS is not Zipfian,
this could undermine the role of learnability pressures in the emergence of Zipfian distribu-
tions. For both reasons, it is important to ask whether CDS is Zipfian or not.

What reason is there to think that CDS will not follow a Zipfian distribution? While CDS is
similar in certain aspects to adult-to-adult speech, some of its’ unique and well-documented
properties may lead word distributions to be less skewed. In particular, CDS has a smaller
lexicon than adult-to-adult speech (Fernald & Simon, 1984; Roy et al., 2015), which may lead
to a more uniform distribution of types. CDS also includes many repeated sequences, such as
variation sets (where consecutive sentences have overlapping words, e.g., “Where is the
bunny? Here is the bunny”; Brodsky et al., 2007; Tal & Arnon, 2018), and recurring frequent
frames (Cameron-Faulkner et al., 2003; Mintz, 2003). These differences could lead to word
distributions that have fewer types and more similar frequencies across ranks, in contrast with
the steep change in frequency that is a hallmark of Zipfian distributions. That is, the lexical and
structural differences between CDS and adult-to-adult speech could theoretically lead to a
word distribution that differs from the Zipfian one. In such a scenario, word distribution might
change over time, becoming “more Zipfian”: Several aspects of CDS, such as mean length of
utterance and type-token ratio, change across development and become more “adult-like”
with age (Roy et al., 2009). Word distributions may show a similar trend, starting with a less
skewed distribution and becoming more Zipfian as the child grows and their vocabulary
expands.

What do we currently know about word distributions in CDS? Interestingly, there is little
research on this question. Even though Zipfian distributions are assumed to be a basic property
of natural language, the existing findings documenting them are based on adult-to-adult
speech (most often written language), where both speakers and listeners are proficient
language users. To our knowledge, only few prior studies explored the distribution of words
in the input directed to young children (Dale & Spivey, 2006; Hendrickson & Perfors, 2019;
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Lavi-Rotbain & Arnon, 2022; Montag et al., 2018). Montag et al. (2018) focused on whether
the amount of the available input or its diversity are more important for learning. One of the
measurements the authors looked at was the distribution of words. The authors found that sam-
ples of 50,000, 20,000 and 2,000 words in CDS had a skewed frequency distribution that was
close to linear on a log-log scale. Hendrickson and Perfors (2019) focused on the facilitative
effect of Zipfian distributions for cross-situational word learning in an experimental setting. In
the appendix, they provide an analysis of the frequency distribution of nouns in a corpus of
English child-directed speech, as a validation of the use of this skewed distribution in the
experimental setting. For this dataset, they find that English nouns in CDS follow a near-Zipfian
distribution (as reflected in a linear relationship between log frequency and log rank). Dale and
Spivey (2006) analysed the correlations of different linguistic measures between child’s and
care-giver’s utterances within conversations by using three English corpora from CHILDES
(MacWhinney, 2000). One of these measures was frequency distributions of n-grams (for
n = 2, 3 and 4). They showed that on a log-log scale there is a linear relation between the
n-grams frequency and their rank (Dale & Spivey, 2006). Lavi-Rotbain and Arnon (2022)
looked at the effect of skewed frequency distribution on speech segmentation. First, they ana-
lysed corpora of CDS using measures from Shannon’s information theory and found that across
languages CDS has similar entropy levels, meaning it is similarly skewed. Then they used these
values to create artificial language distributions (Lavi-Rotbain & Arnon, 2022).

Importantly, in these studies, analysing the frequency distribution of words was not the
main focus of the study, leaving many open questions. We do not know whether a similar
distribution holds for the entire lexicon, across languages, across development and for different
parts of speech. In addition, the fit to the Zipfian distribution was illustrated by finding a close
fit to a linear distribution on a log-log scale. While informative, this does not necessarily indi-
cate that the original distribution is a Zipfian one, since several different distributions appear
linear on a log-log scale (Clauset et al., 2009).

The Current Study

In the current study, we expand on the existing literature by exploring word distributions in
child-directed speech across 15 languages with three goals in mind. The first, and primary one,
is to see if words follow a Zipfian distribution in child-directed speech across different
languages (Study 1). Such a finding would support the generality of Zipfian distributions in
language and their possible role in language learning. We can also use this data to see whether
the parameters of the Zipfian distribution - α and β - are similar across languages. A previous
study estimated the parameters of the Zipfian distribution based on Holy Bible translations
across a large number of languages and found differences across languages (Mehri & Jamaati,
2017). However, they looked at written language, rather than spoken, and tried to fit only the
middle region of the distribution, excluding the most and least frequent words (Mehri &
Jamaati, 2017). We will ask whether a similar variation will be found in CDS. The second goal
is to ask whether there is a developmental change in the distribution of words in child-directed
speech - as was found for other structural properties - or whether the distribution is Zipfian
from the very start (Study 2). Finally, we want to see if words follow a Zipfian distribution in
child-directed speech across different parts of speech (Study 3), as was found for adult-to adult
speech (Piantadosi, 2014).

We decided to look at four parts of speech: nouns, verbs, adjectives and prepositions. The
skewed distribution of content words like nouns, verbs and adjectives, can be attributed in part
to meaning: We talk with infants more about teddy-bears, for example, than stocks. While this
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does not explain the particular way frequency decreases, it could explain the presence of few
highly frequency words and the long tail of the distribution. However, finding such a distribu-
tion for prepositions would suggest the impact of factors beyond meaning on frequency for
several reasons. First, prepositions are not expected to vary so much in their real-world fre-
quency: there is no reason to think people talk more about objects being “on” other object
than “behind” other objects. In addition, different prepositions can be used to describe the
same event: We can describe things as being placed ‘under’ or ‘above’, or happening ‘before’
or ‘after’, and so on, meaning that the presence of an event is not fully predictive of the prep-
osition used to describe it. Finally, and most importantly, the meaning of prepositions varies
across languages, with languages carving up the meaning space differently (e.g., Bowerman &
Choi, 2001; Christiansen & Chater, 2008; Levinson et al., 2003). For instance, the difference
between ‘in’ and ‘at’ in English is not reflected in Hebrew where the same preposition is used
for both meanings. That is, despite the physical world being the same, the choice of preposi-
tions differs across languages, meaning the world itself cannot be the leading cause for finding
a Zipfian distribution in the use of prepositions.

We explore the first question by asking how closely word distributions adhere to Zipf’s law
in CDS across 15 languages from seven language families. We address the second question by
analysing word distributions across development for the five languages for which we have
large enough longitudinal corpora. We address the third question by analysing word distribu-
tions across different parts of speech for the five languages for which we have morphologically
tagged data. Together, the studies aim to provide a comprehensive assessment of word distri-
butions in CDS. To pre-empt the results, we find that word distributions follow a near-Zipfian
distribution across languages, across development and across parts of speech illustrating their
prominence in children’s learning environment.

STUDY 1: DO WORDS IN CDS FOLLOW A ZIPFIAN DISTRIBUTION
ACROSS LANGUAGES?

We analysed the distribution of words in CDS for all the languages whose corpora on
CHILDES (MacWhinney, 2000) matched our selection criteria (see details below). This resulted
in the analysis of 15 languages, from seven language families: Germanic (including English -
British and North-American, German, Dutch, Swedish, Danish and Norwegian); Latinate
(including French, Spanish, Portuguese and Catalan); Uralic (Estonian); Slavic (Polish); Semitic
(Hebrew), Japonic ( Japanese), and Sino-Tibetan (Mandarin), (see Table 1 for more information
about the corpora). We performed two analyses: First, we looked at the entire corpora avail-
able for each language and tried to fit it to a Zipfian distribution in order to see if CDS is Zipfian
across languages. We then used small samples from languages with large enough corpora to
assess the stability of our estimates. This additional analysis allowed us to also ask how similar
the parameters of the Zipfian distribution are across languages, or whether they differ between
languages, as was previously found for the Holy Bible translations (Mehri & Jamaati, 2017).

Methods

We included all the corpora available in these languages with the following restrictions: the
data was collected during parent-child interactions (as opposed to investigator-child or peer
interactions); from typically developing children who were 3;6 years old or under during the
recording. We only looked at younger ages since we wanted to focus on the input to young
learners. We extracted the child’s age from the transcripts directly or from the corpora descrip-
tion available on CHILDES. The age criterion was not applied in Catalan since the data was
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Table 1. Summary of corpora measures across languages for Study 1.

Language
Child’s Age

Range
No.

Corpora
No.

Tokens
No.
Types Word Frequency (per million) α β Pearson’s-r

British English 0;2–3;6 12 6311249 27476 1 - 303005 (0.16 - 48010.31) 1.57 19.48 0.97

North-American
English

0;5–3;6 34 4876774 24573 1 - 230355 (0.21 - 47235.12) 1.52 18.34 0.965

German 0;5–3;6 7 2168002 37018 1 - 71238 (0.46 - 32858.83) 1.42 12.69 0.998

French 0;11–3;6 8 1540284 19327 1 - 59852 (0.65 - 38857.77) 1.53 17.98 0.99

Dutch 1;5–3;6 5 1036586 18717 1 - 41646 (0.96 - 40176.12) 1.48 12.63 0.998

Japanese 0;6–3;6 6 941006 25648 1 - 45886 (1.06 - 48762.71) 1.30 7.12 0.993

Polish* 0;10–6;11 8 794183.7 44425 1 - 32172.19 (1.26 - 40509.76) 1.16 4.04 0.997

Spanish 0;11–3;6 12 353104 10057 1 - 13437 (2.83 - 38053.94) 1.39 9.96 0.994

Swedish 1;0–3;6 2 341280 9466 1 - 16924 (2.93 - 49589.78) 1.40 7.58 0.998

Portuguese 1;5–3;6 2 309296 7562 1 - 21416 (3.23 - 69241.12) 1.37 5.44 0.981

Hebrew 0;8–3;6 6 300766 13801 1 - 16048 (3.32 - 53357.09) 1.19 3.69 0.996

Norwegian 1;1–2;9 2 183658 8306 1 - 9135 (5.44 - 49739.19) 1.32 6.92 0.996

Estonian 0;9–3;6 5 167666 10057 1 - 10344 (5.96 - 61694.08) 1.21 6.02 0.956

Danish 0;11–3;5 1 155826 4102 1 - 8421 (6.42 - 54041.05) 1.50 7.71 0.997

Mandarin 1;8–2;3 2 150852 7095 1 - 6305 (6.63 - 41795.93) 1.42 11.94 0.989

Catalan 1;1–4;2 4 132410 6416 1 - 8051 (7.55 - 60803.56) 1.30 6.27 0.985

Summary Mean = 1.38;
SD = 0.13

Mean = 9.86;
SD = 5.13

Mean = 0.988;
SD = 0.013

* For Polish the data is taken from a list including a summary of words and their relative frequencies. Hence the one digit precision.
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too limited to be screened out by age, nor in Polish since the data we have is a summary of
words and their relative frequencies instead of the original transcripts (see Table 1 for details).

In all analyses, we looked only at utterances produced by adults (both care-givers and
experimenters) and removed utterances produced by the child. Finally, we only looked at lan-
guages that had at least 100,000 tokens after applying the previous restrictions. This minimal
threshold was applied to increase the reliability of the estimations of the Zipfian distribution
parameters we are calculating (see Equation 1). Previous work has shown that other distribu-
tional measures such as entropy are reliable with a corpus of 50,000 tokens and above (Bentz,
Alikaniotis, Cysouw, et al., 2017). We chose a more stringent threshold of 100,000 tokens to
ensure reliable results. After applying these criteria, we were left with 15 languages: English
(British and North-American), German, Dutch, Swedish, Danish, Norwegian, French, Spanish,
Portuguese, Catalan, Polish, Estonian, Hebrew, Japanese and Mandarin.

For each language, we assessed words distributions for the entire corpus (collapsing over
individual conversations/dyads, as was done in previous studies of adult speech (Piantadosi,
2014). We did not assess word distributions within single conversations because (a) there is no
expectation that each individual conversation will follow a Zipfian distribution (in the same
way that word frequencies in a single conversation may not reflect their frequency in a lan-
guage), and (b) because each conversation does not provide enough types/tokens data to
accurately estimate the distribution. We started by extracting single word frequencies from
all of the available corpora. Aword was defined by its orthographic form. While this definition
has its limitations (we discuss them further in the discussion), such as treating “dog” and
“dog’s” as two independent words, it is the standard definition of a word in the study of Zipfian
distributions and in many cross-linguistic corpus studies (e.g., Bentz, Alikaniotis, Cysouw,
et al., 2017; Geertzen et al., 2016; Tal & Arnon, 2018). We cleaned the data by removing
comments made by the transcriber (see available Python code at https://osf.io/bp62q/). After
creating a list of words and their frequencies, we calculated the rank for each word (the most
frequent word was ranked 1, the 2nd frequent was ranked 2 and so on). Words with the same
frequency were assigned ranks randomly (e.g., if two words appeared 100 times, one was
given rank X and the second rank X + 1)1.

How to Assess Whether Word Distributions Are Zipfian? After obtaining a frequency distribution
of words, we evaluated “how Zipfian” it is. It is not straightforward to estimate whether a
particular word distribution is Zipfian. The simplest approach would be to look at the corre-
lation between frequency and rank on a log-log basis and assess how linear this relation is
(under a Zipfian distribution it should be linear). This is the criteria used in some studies
(e.g., Hendrickson & Perfors, 2019). However, since other distributions, beside a power
law, are linear on a log-log scale, this cannot tell us if the original distribution follows a power
law or not (Clauset et al., 2009). Therefore, another approach is needed. One method, pro-
posed by Clauset et al. (2009) involves estimating the minimal rank from which the power-law
distribution is supposed to hold; estimating only alpha and then measuring the maximal dis-
tance between the observed distribution and the expected power-law distribution using
Kolmogorov–Smirnov statistic. This method assumes that word distributions follow a true
power-law. We opted not to use it to assess the fit for several reasons: (a) word distributions
in language are only nearly-Zipfian, diverging from from the expected Zipfian distribution in

1 We did not use the split-to-half method proposed by Piantadosi (2014) where the corpus is divided into half
by a binomial distribution with one half used to assess frequency and the second used to assess rank (which
reduces the dependency between the measures of rank and frequency) since we did not want to reduce the
number of languages we can look at (see details on page 15 and Appendix A).
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systematic ways (Piantadosi, 2014), (b) Clauset’s method has not been applied broadly to
linguistic data (Clauset et al only use it to analyze Moby Dick in English) and we wanted
our investigation of child-directed speech to be comparable to existing analyses of the fit to
the Zipfian distribution in adult speech, and (c) most importantly, we conducted several anal-
yses of our data using this method, which suggest that it generates inconclusive results that do
not reflect meaningful variation (see Appendix B). Instead, we opted to use the method used in
previous studies of adult speech (Piantadosi, 2014) where the Zipfian nature of the distribution
is assessed by (1) estimating the parameters of the distribution (as described below, Equation 1),
(2) finding the expected frequency distribution based on the estimated parameter values, and
(3) evaluating the goodness of the fit between the observed frequency distribution and the
expected one under a Zipfian distribution (Piantadosi, 2014).

Here, we use the same method. We start by estimating the parameters of the Zipfian distri-
bution (see Equation 1). In this equation, r is the word’s rank; α is the exponent of the power
law while β is a correction added to the original Zipf’s law by Mandelbrot to create a better fit
to actual language data (Mandelbrot, 1953). The sign “∝” indicates proportionality: f(r) is pro-
portional to the right-hand side of the equation.

f rð Þ∝ 1
r þ βð Þα (1)

Our application differs from that of Piantadosi (2014) only in that we did not use the split-to-
half method where the corpus is divided into half, with one half used to assess frequency and
the second used to assess rank. This is claimed to reduce the dependency between the mea-
sures of rank and frequency. However, we did not use it here since we did not want to reduce
the number of languages we can look at. We need at least 100,000 tokens to reliably estimate
the parameters, and did not want to exclude corpora with fewer than 200,000 tokens (we
would have to remove five of the languages we currently use). To validate our use of the entire
sample, we conducted the split-to-half method for the ten languages for which there was
enough data, showing that the parameter estimates and the fit to a Zipfian distribution are
almost identical when using this method and using the entire sample (Pearson’s-r between
the alpha based on the entire sample and the alpha estimated using the split-half method =
0.999; Pearson’s-r for beta from the entire sample and the split-half method = 0.999, see
Appendix A for details).

In order to estimate the α and β that give the best fit of the data to Equation 1, we used the
maximum likelihood estimator (MLE, using the following code in R: https://osf.io/bp62q/), which
is a commonly-used algorithm to solve parameter estimation problems (Linders & Louwerse,
2020; Piantadosi, 2014). Finding α and β allows us to (1) estimate the fit of a Zipfian distribution
to the data, and (2) see if they are similar across the different languages, despite differences in
corpus size, lexicon size, and morphological complexity. For each language, we find the
expected Zipfian distribution, based on the α and β values we found. We used the formula for
the probability mass function of a Zipfian distribution to calculate the expected frequency (see
Equation 2): multiplying each probability by the total number of tokens in the language.

p rð Þ ¼ 1
r þ βð Þα *

XN

r¼1

1
r þ βð Þα (2)

We correlated the observed frequencies with the expected frequencies using Pearson correla-
tions and obtained the Pearson’s-r of the correlation. Note that the correlation we report is the
one between observed and expected frequency, and not between frequency and rank: We want
to know how much of the observed frequency can be explained by the predicted frequency
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based on a Zipfian distribution (and not how much the change in rank explains the change in
frequency). While α and β were estimated from the data, they are not expected to predict the
observed data perfectly. As in any attempt to explain real-world behaviour, there is a certain
degree of noise in our estimates. By calculating the fit between the observed (real) distribution
and the expected one (generated by plugging the α and βwe found into Equation 2), we can see
how close they are to each other. In other word, we can see how “Zipfian” the observed distri-
bution is.We present graphs of the observed and expected frequency given rank on a regular and
a log-log scale (Figure 1 and 2 correspondingly). The regular scale shows the skewness of the
distribution, the sharp decrease in frequency, and the long tail for the least frequent words. The
log-log plots show the linear relation between log(rank) and log (frequency).

We wanted to check the reliability of our estimates and also to see if the parameters of the
distribution will differ across languages in CDS, as was found for bible translations (Mehri &
Jamaati, 2017). To do this, we divided the full corpora into smaller samples of 100,000 tokens.
We only examined languages that provided at least three samples of this size, so we would
have a reasonable number of data points. This resulted in the use of nine languages from four
language families (British English, Dutch, German, Swedish, French, Portuguese, Spanish,
Japanese and Hebrew). We did not use North-American English even though it had a large
enough corpus, since we did not want too many English samples (British alone had 69 sam-
ples). We created the small samples for each language by reading each transcription file from
beginning to end until a sample of at least 100,000 tokens was created. This way the samples
were conversationally continuous. For each sample we estimated α and β as described above.
This yielded several estimations of each parameter for each language, which enabled us to see
whether the parameters from the entire corpus were similar to those from the sub-samples, and
to compare our estimations within and across languages.

Results

Is CDS Zipfian Across Languages? The observed and expected distributions for each language
are plotted in Figure 2. In these plots, we can see that the two curves are close to one another,
indicating that the observed distribution is very close to the expected Zipfian one. This is
reflected in the high and significant Pearson’s-r for the fit between the two, indicating that α
and β we found provide a good fit to the data2. That is, the distribution of words in CDS is very
close to a Zipfian distribution across languages.

Are Word Distributions in CDS Similar Across Languages? To see how similar word distributions
are across languages, we first compared the parameter values we estimated based on the full
corpora for each language to the other languages. These parameters, and especially α, directly
affect the shape of the distribution. β affects the distribution less and is not expected to be
similar across language. However, since α is the exponent, it dictates the slope of the curve:
For larger values of α, the resulting distribution will be steeper with a faster decrease in
frequency along the rank axis. A similar α across languages, will suggest that word distribu-
tions show a similar decrease in frequency, resulting in a steady difference in frequency along
the slope.

When we look at these values, we see that α has a small SD across languages compared to
β (α: mean = 1.38, SD = 0.13, range = 1.16–1.57; β: mean = 9.86, SD = 5.13), suggesting that

2 The reported Pearson’s-r values were obtained by correlating the observed and expected distribution. In
addition, a similar calculation was performed on a log-log scale of these variables, with similar results.
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the decrease in frequencies by rank is relatively similar across languages. For example, for
Catalan we received the same α as for Japanese (α = 1.3) even though our Catalan corpus
had only 130,000 tokens and 6,400 types, while the Japanese corpus had over 900,000 tokens
and over 25,000 types. To see whether α is similar across languages and language families, we
estimated the parameters again using smaller samples of 100,000 tokens each (as described in
the Methods section). We generated a total of 149 samples with the following division across
languages: 69 for British English; 21 for German; 19 for French; 14 for Japanese; 11 for Dutch;
6 for Spanish; and 3 for Portuguese, Hebrew and Swedish. We estimated the parameters for
each sample and plotted the results per language (Figure 3). A one-way ANOVA showed that
the effect of language on α is significant (F(8, 140) = 28.26, p < 0.001), as well as the effect of
language family on α (F(3, 145) = 36.03, p < 0.001). Both effects remained significant after
excluding Hebrew that has the lowest α. In addition, α differed across languages from the same
language family: the effect of language was significant also when looking only at the four Ger-
manic or at the three Latinate languages (Germanic: F(3, 100) = 11.02, p < 0.001; Latinate: F(2,
25) = 21098, p < 0.001). That is, while α spans a relatively small range across languages in
CDS, it still shows variation between languages, even ones from the same language family.
These results are consistent with the variation found for bible translations across languages
(Mehri & Jamaati, 2017), and when comparing word frequency distributions for the Swadesh
list across languages (Piantadosi, 2014).

To examine the stability of the parameters we estimated for each language based on the
entire corpus, we wanted to compare them to the α estimates based on the sub-samples.
Finding that the parameters are similar, would validate the use of the smaller samples for com-
paring α across languages, and for estimating α from relatively smaller corpora (each of our
sub-samples had only 100,000 tokens). To explore this, we compared α calculated for the
entire corpora to the range of α values estimated for the sub-samples. For visualisation, we
added to Figure 3 the α from the entire corpora (represents by “X”). The correlation between
the two is very high (Pearson’s-r = 0.98). Interestingly, for all tested languages, the α calculated
based on the full corpora is slightly higher than the ones averaged across samples (e.g., for

Figure 3. The estimated α by language. Color represents language family. Boxes indicate quartiles. “X” represents α value obtained based on
the full corpora.
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Hebrew α for full corpora is 1.19 while the average of the three smaller samples is 1.17). How-
ever, the values for the entire corpora fall within the range obtained from the different samples
for all languages except Portuguese (see details and more discussion of the relation between α
and corpus size in Study 2, Figure 5)3.

Is the Word Distribution in CDS Similar to That of Adult-to-Adult Speech? Another interesting com-
parison is between the parameters of the distribution obtained for CDS and for adult-to-adult
speech. The α values found here are generally similar to what was previously found for adult-
to adult speech, though there is large variation between different adult corpora. For example,
based on the American National Corpus (Reppen & Ide, 2004), Piantadosi reports that α = 1.13
(Piantadosi, 2014). However, other adult-to-adult spoken and written English corpora yielded
higher values for English (range = 1.728–1.940; Arnold, 2015, page 14; α = 1.95 for words
appearing in Moby Dick; Clauset et al., 2009). Putting aside the variation between different
corpora of the same language, the previous section showed differences in α across languages
(e.g., English has the highest α while Hebrew has the lowest). We can ask if α varies in similar
ways across languages in both adult and child-directed speech. If so, it can suggest that the
variation is driven by linguistic properties of the languages shared by all speech registers (such
as morphological complexity or lexicon size). To examine this more closely, we compared the
α we received based on the entire corpus to the ones generated from bible translations (Mehri
& Jamaati, 2017, Table 1, p. 2473). There were 12 overlapping languages between the studies,
with two estimations for each (Figure 4). Note that there are differences in how α was assessed
in each of the studies: In our study we tried to fit the entire distribution to Equation 1 (including
both α and β as parameters), while Mehri & Jamaati tried to fit only the middle portion of the
distribution to the simplified version of Zipf’s law (including only α). Interestingly, despite these
differences, the correlation between the two α values is positive and significant. Languages

3 The difference in α may be related to corpus size, for example, larger samples tend to have larger vocab-
ularies, but may also have higher frequencies for the frequent words making the slope slightly steeper. We dis-
cuss the relation between corpus size and α further in Study 2 (Figure 5).

Figure 4. The correlation between α calculated based on CDS (y-axis) and α calculated based on
bible translations for 12 languages (x-axis, taken from Mehri & Jamaati, 2017, Table 1, p. 2473).
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that have a higher α based on bible translations also have a higher α in CDS (n = 12,
Pearson’s-r = 0.67, p < 0.05), suggesting the variation is impacted (at least in part) by
linguistic/structural properties of the language itself. In the next study, we ask whether the good
fit to a Zipfian distribution is found across development.

STUDY 2: DOES CDS FOLLOW A ZIPFIAN DISTRIBUTION ACROSS DEVELOPMENT?

In Study 1, we found that CDS follows a Zipfian distribution when we collapse across ages.
However, it is possible that the skew is driven by speech directed to older children. To test this,
we now analyze the distribution of words in CDS separately for different ages. This enabled us
to see if the shape of the distribution is already found in infancy or whether it changes over
time, like other linguistic measures that become more “adult-like” as the child grows (Roy
et al., 2015). We only looked at languages where there was sufficient data to divide into
age bins, and that had an age range that started in early infancy. We also wanted to look at
languages from diverse language families. Based on these two parameters, we focused on five
languages: English (British), German, French, Japanese and Hebrew.

Methods

For each language, we divided the available transcripts into fixed age bins of six months, rang-
ing from birth up to five years old (i.e., the 1st bin included all available data between 0;0–0;5
months, the 2nd bin included 0;6–0;11 months and so on). Because the available data in each
language began and ended at different ages (i.e., the youngest available age in French was
eleven months, while in English it was 2-months), we could not look at the entire range for
all languages (see Table 2 for details). For each age bin, we plotted the observed distribution of
words (Figure 6).

To further analyze the data, we needed to determine the minimal corpus size (in tokens) for
which the parameter estimates would be stable. This step was required since the amount of
data we had was not uniformly distributed across age: We had more data (in terms of both

Figure 5. α by number of tokens per sample. Each point represents ten samples. Bars indicate the
SD of the samples.
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Table 2. Summary of corpora measures across development for Study 2 for British English.

Child’s Age Range No. Tokens No. Types Word Frequency (per million) α β Pearson’s-r
0;2–0;5 5672 694 1 - 336 (176.3 - 59238.36) – – –

0;6–0;11 15011 1147 1 - 735 (66.62 - 48964.09) 1.42 16.43 0.969

1;0–1;5 24047 2954 1 - 1916 (41.59 - 79677.3) 1.14 3.18 0.96

1;6–1;11 222896 5627 1 - 9309 (4.49 - 41763.87) 1.54 18.33 0.984

2;0–2;5 2432536 15012 1 - 116879 (0.41 - 48048.21) 1.55 18.38 0.971

2;6–2;11 2276518 16728 1 - 110405 (0.44 - 48497.31) 1.54 18.15 0.971

3;0–3;5 1272241 12695 1 - 62026 (0.79 - 48753.34) 1.52 17.42 0.972

3;6–3;11 321097 8176 1 - 12771 (3.11 - 39773.03) 1.46 16.4 0.979

4;0–4;5 262627 7694 1 - 10464 (3.81 - 39843.58) 1.44 14.9 0.982

4;6–4;11 186765 6375 1 - 7288 (5.35 - 39022.3) 1.41 13.56 0.988

Summary Mean = 1.49;
SD = 0.06

Mean = 16.73;
SD = 1.88

Mean = 0.978;
SD = 0.006
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number of tokens and types) for ages 24–36-months, and less for the other ages (see Figure S1).
This inherent bias in our data could influence our variables estimates. We used the largest age
bin (2;0–2;6 years old, British English, containing 2.4 million tokens) to find the minimal
bound for reliable parameter estimation. We sampled data from this age bin to create samples
of varying size: We started from 5,000 words, and increased the sample by 5,000 words until
we reached 100,000 words. We created the samples by randomly selecting transcripts, and
then reading each transcription file from beginning to end until we reached the required num-
ber of tokens. This created samples that were conversationally continuous. We created ten

Figure 6. Word distributions in British English across development, in bins of six months. Note that the age bin of 0;2–0;5 did not pass the
minimal size requirement of 50,000 tokens, but still shows a highly skewed distribution.
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different samples for each sample size (e.g., ten 5,000-word samples, ten 10,000-word sam-
ples, etc.)

Figure 5 shows the change in α as a result of changing the sample size: α increased with
sample size, and began to stabilize at 50,000 tokens (as reflected in the small SD of 0.02 and
the smaller changes in its value). This finding is in the same direction as in Study 1: α calcu-
lated on the full corpus was slightly higher than α calculated on samples of 100,000 tokens
(Figure 3). While in Study 1 we chose a minimal size of 100,000 tokens per sample, here we
could not choose such a stringent minimal bound since it would have left us with too little
samples. Therefore, we chose 50,000 tokens as our minimal bound. This left us with thirty
usable age bins.

For age bins with at least 50,000 tokens, we conducted the same analyses as in Study 1: (1)
evaluating α and β; (2) calculating Pearson’s-r between the observed and the expected distri-
butions; (3) plotting the two curves together. We used mixed effect regression models to see if α
or Pearson’s-r are affected by age. Specifically, we ask two questions. The first, does the dis-
tribution become more Zipfian during development, or is it near-Zipfian from the start? To test
this, we looked at whether Pearson’s-r changes across the different age bins, and whether it is
high even for the youngest age bins. The second question was whether the slope of the dis-
tribution changes across development. Such a change would indicate that the distribution
becomes more or less skewed as the child grows. To test this, we looked at whether α changes
across the different age bins.

Results

Due to lack of space, we only show the results for British English (Table 2), where we had the
largest age range (the full results are provided in Table S1 and Figure S1–S5 in the
Supplementary section). Figure 6 shows word distributions for British English across develop-
ment. Both Table 2 and Figure 6 include all age bins for British English, including the one
containing less data than our minimal bound. All age bins (even the age bin of two-to-five
months that included only 5,000 tokens), followed a skewed frequency distribution. This held
for all age bins in the other languages as well, meaning that even small samples of CDS are
skewed. Thirty age bins passed the minimal size restriction (twelve were removed since they
were too small) and were further analyzed. Figure 7 shows the observed and expected word
distributions of the age bins that passed the minimal size restriction (three age bins per lan-
guage, other bins appear in Figure S6–S10). Importantly, there was a good fit between the
observed frequency distribution and the expected Zipfian distribution for all age bins, reflected
in a very high Pearson’s-r (see Table 2 and Table S1 for details).

We wanted to further ask whether the distribution becomes “more Zipfian” as the child
grows (has higher Pearson’s-r), and whether the slope of the distribution changes with age.
To answer these questions, we ran two mixed-effect regression models. Following Barr et al.
(2013), the models had the maximal random effect structure justified by the data that would
converge. In the first model, our dependent variable was Pearson’s-r; age (in months, centred)
was our fixed effect, and we had a random intercept for language as well as by-age random
slope for the effect of language (Table 3). Age was defined as the minimal age per bin (e.g., for
an age bin of 1;0–1;5 years, age for the regression was 12 months). While CDS follows a Zip-
fian distribution from the very start, it does not become “more Zipfian” with age: Pearson’s-r
did not change with age (β = 0.00004, SE = 0.00008, p > 0.6). This trend can be seen in
Figure 8A: Pearson’s-r is significantly high throughout development, without any visible
change. The second model had the same fixed and random effects as the previous one, but
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Figure 7. Observed (in green) and expected (in red) word distribution on a log-log scale. Three age bins per language are presented. All age
bins here passed the minimal size restriction of 50,000 tokens.
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this time α was our dependent variable (Table 4). Here we saw a minor effect of age on α: The
slope of the distribution became somewhat more moderate across development, as α
decreased with age (β = −0.0021, SE = 0.0007, p = 0.062, Figure 8B). While this effect did
not reach significance, it may indicate that speech directed to younger infants is more skewed
than speech directed to older children.

Study 2 showed that CDS is skewed from the very start, and throughout development. This
skewed nature is seen in all of our samples, including the ones that did not reach the minimal
size requirement. In addition, while CDS does not become more Zipfian, its exponent
becomes mildly smaller with age, suggesting the contrast between high and low frequency
decreases somewhat with age (see Discussion). In the next study, we will ask if different parts
of speech also show such a skewed frequency distribution.

Table 3. Mixed-effect regression model looking at Pearson’s-r as a function of age. Variables in
bold were significant. Significance obtained using the lmerTest.

Estimate Std. Error df t value p-value
(Intercept) 9.903e−01 3.631e−03 3.982e+00 272.740 <.001***

Age (in months) 4.395e−05 8.249e−05 6.098e+00 0.533 >0.1

Figure 8. (A) Pearson’s-r and (B) α as a function of age.
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STUDY 3: DOES CDS FOLLOW A ZIPFIAN DISTRIBUTION ACROSS PARTS
OF SPEECH?

In the third study, we askwhether different parts of speech in child-directed speechwill also show
a Zipfian distribution, as was previously found for adult directed speech (Piantadosi, 2014;
Ramscar, 2020). We looked at the following five languages - British English, German, French,
Spanish andHebrew – because they all had largemorphologically tagged corpora, and represent
different language families.We looked atword distributions in these languages across four parts of
speech: nouns, verbs, adjectives and prepositions.While the distribution of the first three parts of
speech can be attributed, at least in part, to meaning (we talk about certain entities more than on
others, or do certain actions more than others), it is hard to attribute a similar real-world meaning
to prepositions, because they do not overlap in meaning across languages (e.g., Bowerman &
Choi, 2001; Levinson et al., 2003), and because different prepositions can be used to describe
the same event. Finding that prepositions also followaZipfian distributionwill emphasize the role
of pressures beside meaning – such as communicative efficiency or learnability – in the propen-
sity of such skewed distributions in language (see Discussion for more on this).

Methods

We used all the available corpora in British English, German, French, Spanish and Hebrew. We
used the morphological tagging provided in the corpora to automatically extract the relevant
words (nouns, verbs, adjectives, and prepositions). However, we wanted to make sure the tagging
in the corpora was accurate. To examine this, all the data was manually examined by research
assistants, whowere proficient speakers of the languages in question. The research assistants were
asked to go over the extracted lists for each POS, and remove the words that did not belong to that
part of speech. The words were not added to their correct part of speech list, since the part of
speech for many words cannot be fully determined out of the context (i.e., “run” can be either
a verb or a noun) and we did not want to introduce additional noise. After the manual cleaning,
we calculated the error rate per language and per POS by dividing the number of types that were
mistakenly tagged in each category by the total number of types in each category (e.g., 37 types
erroneously classified as Spanish adjectives out of a total of 754 Spanish adjectives). Error rates
were very high for prepositions across all languages, but much lower for nouns, verbs and adjec-
tives (see Table 5 for full details). We do not know why the error rates are so high, this may reflect
our automatic extraction of the tagged data (rather than errors in the tagged data itself ).

We used the manually cleaned dataset to calculate the frequency distribution for each part
of speech in each language and then did the same analyses as in the previous studies: (1) eval-
uating α and β; (2) calculating Pearson’s-r between the observed and the expected frequency
distributions; (3) plotting the two curves together.

Results

All four POS in the five languages had a skewed frequency distribution (Figure 9). To ask if this
distribution is Zipfian, we estimated the parameters and compared the expected frequency

Table 4. Mixed-effect regression model looking at α as a function of age. Variables in bold were
significant. Significance obtained using the lmerTest.

Estimate Std. Error df t value p-value
(Intercept) 1.3511334 0.0701455 3.9882635 19.262 <.001***

Age (in months) −0.0020710 0.0007186 3.0599781 −2.882 =0.062
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Table 5. Summary of corpora measures across parts of speech for Study 3.

Language Part of Speech No. Tokens No. Types Word Frequency Error Rate α β Pearson’s-r
British English nouns 1,088,319 17,555 (1 – 17,274) 0.084 1.53 75.52 0.926

verbs 796,976 3,978 (1 – 46,170) 0.037 1.74 9.93 0.992

adjectives 226,907 1,987 (1 – 19,925) 0.083 1.6 7.13 0.962

prepositions 341,910 74 (2 – 58,821) 0.75 8.59 33.97 0.985

German nouns 116,944 10,951 (1 – 13,086) 0.098 0.9 −0.41 0.934

verbs 56,399 2,660 (1 – 2,986) 0.136 1.54 8.09 0.992

adjectives 28,388 1,259 (1 – 2,628) 0.36 1.58 8.81 0.962

prepositions 31,724 38 (1 – 5,817) 0.957 49.77 265.13 0.986

French nouns 169,214 7,305 (1 – 3,347) 0.102 1.35 37.54 0.947

verbs 189,203 3,844 (1 – 18,234) 0.034 1.46 4.33 0.995

adjectives 28,517 1,349 (1 – 4,240) 0.017 1.42 3.62 0.927

prepositions 69,489 46 (1 – 15,717) 0.92 115.07 476.04 –

Spanish nouns 39,155 3,446 (1 – 1,099) 0.075 1.15 11.85 0.974

verbs 42,059 2,556 (1 – 1,514) 0.006 1.32 8.56 0.991

adjectives 6,320 716 (1 – 426) 0.0491 1.39 12.06 0.946

prepositions 12,672 17 (1 – 4552) 0.77 129.8 235.1 –

Hebrew nouns 43,294 2,543 (1 – 2,309) 0.25 1.17 9.47 0.921

verbs 27,161 2,705 (1 – 1,038) 0.067 1.19 11.89 0.966

adjectives 6,915 671 (1 – 281) 0.203 1.54 16.32 0.995

prepositions 23,537 172 (1 – 3,519) 0.687 4.2 18.74 0.986

Summary nouns Mean (SD) 1.22 (0.24) 26.8 (30.6) 0.94 (0.02)

verbs Mean (SD) 1.45 (0.21) 8.56 (2.79) 0.99 (0.01)

adjectives Mean (SD) 1.5 (0.1) 9.59 (4.84) 0.96 (0.025)

prepositions Mean (SD) 61.5 (58.6)
20.9 (25.1)*

205.8 (188.4)
105.9 (138.1)*

0.99 (0.002)*

* Measured only on English, German and Hebrew.
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Figure 9. The observed distributions for four parts of speech across five languages. Note that Spanish prepositions had to little types to be
analyzed further, but still shows a highly skewed distribution.
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with the observed one. For Spanish and French prepositions, the estimated α was very high
(115 and 129.8 respectively) compared to all other estimated α (Table 5). As mentioned, α is
the exponent of the distribution, with higher α for more skewed distributions. In this case, the
high value of α leads to a binary expected distribution: The most frequent word was assigned a
probability of one while the rest of the words were assigned a probability of zero. Therefore,
we could not correlate the observed and the expected distributions for Spanish and French
prepositions (so they are absent from Table 5).

Beside these two datasets, all tested parts of speech, in all languages, showed a very good fit
to the Zipfian distribution, as indicated by the high Pearson’s-r scores (Figures S11 in the
Supplementary shows results on a log-log scale). Importantly, prepositions in English, German
and Hebrew also showed a very good fit to the Zipfian distribution (mean = 0.99). Across parts
of speech, α is relatively similar across languages (nouns: mean = 1.22, SD = 0.24; verbs:
mean = 1.45, SD = 0.21; adjectives: mean = 1.5, SD = 0.09, Table 5). However, prepositions
seem to have a higher α and larger SD compared to nouns, verbs and adjectives (mean = 61.4,
SD = 58.6, for only English, German and Hebrew: mean = 20.9, SD = 25.1). This finding may
be related to several unique properties of prepositions: prepositions have the smallest number
of types. At the same time, high frequency prepositions are of the most frequent words in the
language (looking only at the four categories used here, the most frequent word in each lan-
guage was a preposition), while the minimum frequency for this group is the same as for the
others (1–2 appearances). This means that frequency must decrease rapidly for prepositions,
resulting in a higher α. However, it is important to note that the small number of preposition
types might impair the reliability of the calculation of α: Our results clearly show that the dis-
tribution of prepositions is indeed skewed (see Figure 9), but whether they follow a Zipfian
distribution and what are its parameters need to be further examined.

In sum, the examination of the distribution of word frequencies across four POS categories
and in five languages shows a strong recurrence of near-Zipfian distributions, and highlights
the prevalence of this kind of skew in children’s linguistic environment.

DISCUSSION

We set out to ask whether words in child-directed speech (CDS) follow a Zipfian distribution
(Zipf, 1949). This distribution, where word frequencies follow a power law distribution, is one
of the striking commonalities between languages, and has been found across languages
(Piantadosi, 2014). However, almost all previous documentation of this phenomenon has
focused on adult-to-adult speech, most often written language (Lestrade, 2017; Mehri &
Jamaati, 2017; Moreno-Sánchez et al., 2016; Petersen et al., 2012; Piantadosi, 2014; Ramscar,
2020). If this distribution is a hallmark of language, and in particular, if it is driven, at least
partially, by learnability pressures (Bentz, Alikaniotis, Cysouw, et al., 2017; Lavi-Rotbain &
Arnon, 2022), it should also be found in the input children hear. At the same time, CDS
has several unique lexical and structural characteristics, which could lead to a less skewed
distribution. Importantly, no study to date has systematically examined word distributions in
CDS across languages and parts of speech (but see: Dale & Spivey, 2006; Hendrickson &
Perfors, 2019; Lavi-Rotbain & Arnon, 2022; Montag et al., 2018). Here, we expand on current
findings to ask whether words follow a Zipfian distribution in CDS across languages, across
development, and for different parts of speech. We assessed how Zipfian a distribution is by
evaluating the parameters of the power law equation using the maximum-likelihood estimator,
and computing the Pearson correlation between the observed and the expected frequency
distribution. We find that words follow a Zipfian distribution in CDS across 15 languages from
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seven language families (Study 1); that they are Zipfian across development, even in speech
directed to infants under the age of one (Study 2); and across different parts of speech (Study 3).

What is the importance of these findings? First, these results support the generality of Zipfian
distributions in language, showing it is found in another speech register besides adult-to-adult
speech. Second, finding that different parts of speech, and specifically prepositions4, also
follow a Zipfian distribution indicates that Zipfian distributions are not driven only by
semantics. Finally, these results highlight the skewed nature of infants’ early learning environ-
ments. Our findings join others in showing the skewness of infant’s environment (Clerkin et al.,
2017; Lavi-Rotbain & Arnon, 2021, 2022). This skewness might have implications for learning,
as suggested by recent studies showing improved learning in such distributions (e.g.,
Hendrickson & Perfors, 2019; Kurumada et al., 2013; Lavi-Rotbain & Arnon, 2020, 2021,
2022). This learnability advantage is also supported by findings showing that speakers turn
uniform distributions into skewed ones in the process of cultural transmission, a pattern con-
sistent with the presence of a cognitive bias for them (Shufaniya & Arnon, 2022). It has been
shown that word segmentation is facilitated in language-like distributions. Since segmentation
is one of the first challenges infants face when breaking into the speech stream, finding that
these distributions are present when infants are segmenting speech strengthens their poten-
tially facilitative role in the process.

The results also show that α – which determines the slope of the distribution - spans a rel-
atively narrow range (1.16–1.57) across languages, highlighting the similarity between them.
This relatively narrow range of values raises the possibility that these values of α are more
optimal than others for learning, and are therefore preserved across languages. The slope of
the distribution dictates how fast frequency will decrease with rank: Steeper slopes will lead to
a faster decrease resulting in a larger contrast between high and low frequencies. This might
have implications for learning: It has been suggested that the slope found in natural languages
is uniquely beneficial for language learning tasks, compared to more moderate slopes (Lavi-
Rotbain & Arnon, 2022). At the same time, there is still consistent variation in α across and
within language families. Previous studies examining bible translations also found variation
across languages (Mehri & Jamaati, 2017; Piantadosi, 2014). Interestingly, it seems that α varies
in a similar way across languages in CDS and in the bible translations (Figure 4), suggesting
that some of the variation may reflect structural/linguistic differences between the languages.
Further research is needed to know which linguistic properties affect α, and in what way.

Methodologically, our findings highlight the importance of using learning environments
similar to those of the real world. Despite the prevalence of Zipfian distributions in the wild,
most lab-based explorations of word segmentation and learning use experimental paradigms
where participants are exposed to uniform distributions, where each novel item appears the
same number of times. For example, in the auditory statistical learning task used to assess word
segmentation in the lab (Saffran et al., 1996), learners are exposed to novel words in a uniform
distribution. While the use of uniform distributions allows researcher to control for frequency
effects, they differ drastically from natural input and may lead to difficulties in learning. Inter-
estingly, the presence and utility of skewed distributions is not limited to language: the objects
infants see follow a Zipfian distribution (Clerkin et al., 2017), as do object combinations (Lavi-
Rotbain & Arnon, 2021). Accordingly, children and adults are better at learning relations

4 While prepositions clearly follow a skewed distribution, the small number of types in the corpora we looked
at makes our parameter estimations less reliable than the ones for nouns, verbs and adjectives. More data is
needed to establish the fit to a Zipfian distribution.
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between objects (better visual statistical learning) when they are presented in a Zipfian distri-
bution (Lavi-Rotbain & Arnon, 2021). These findings point to the importance of using learning
environments that provide a more ecological reflection of children’s learning environment,
and the need to further explore the impact of skewed distributions on learning.

One of the limitations of the current study is how we defined what a word is. We defined a
word by its orthographic form as is commonly done in investigations of word distributions
(Cohen Priva & Gleason, 2016; Petersen et al., 2012; Piantadosi et al., 2011). This means that
we treated words such as ‘walk’ and ‘walks’ as two unrelated items. In morphologically rich
languages, such as German and Hebrew, this will result in a larger lexicon compared to less
morphologically rich languages. For example, while English only has around five verb forms
for each verb, Hebrew can have up to twenty separate items for a given verb. That is, defining
words orthographically means increasing the number of types more for morphologically rich
languages compared to less morphologically rich ones. Defining words in this way also
doesn’t account for the semantic relatedness between word forms. The ecological validity
of using orthographic form to define a word is supported by evidence that speakers do repre-
sent inflected forms, and not only stems and morphemes, and that they are sensitive to whole-
form frequency (Baayen et al., 1997). However, further work is needed to see whether the
distribution shape or slope change across languages when a different word definition is used.
Of particular interest is looking at lemmas to see whether this changes the distribution more for
languages with rich morphology.

The results presented here are limited to speech produced by adults: We did not look at the
productions of the children themselves for both methodological and theoretical reasons. From
a methodological perspective, children at the ages we examined simply do not provide
enough linguistic output to reliably estimate the parameters of the distribution. This is espe-
cially true for the younger ages where infants often produce only single words. Moreover, care-
givers who speak the same language share much of their lexicon, making it is reasonable to
combine different conversations into one larger database. However, this may not hold for the
younger ages: children who have just begun to speak produce only few words, and these do
not always overlap between different infants, making it problematic to collapse frequency
counts over different infants. There are also theoretical reasons not to collapse the speech
of children at different ages: The kind of language produced by a two-year old (mostly content
words: Caselli et al., 1995; Goodman et al., 2008) is very different from that produced by a
five-year-old making it hard to understand the patterns of an aggregated distribution. To under-
stand whether the language produced by individual learners is Zipfian and when it becomes
so, two interesting and open questions, would require conducting longitudinal analyses of
dense individual corpora.

In sum, we showed in this paper that word distributions in CDS are Zipfian across lan-
guages, across parts of speech, and from early on. These findings support the generality of
Zipf’s law in language and highlight the skewed nature of infant’s early linguistic environment.
While many questions remain open, these results strengthen the suggestion that such skewed
distribution may be relevant for learning.
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APPENDIX A: COMPARING PARAMETERS ESTIMATED USING THE ENTIRE CORPUS
AND THE HALF-SPLIT METHOD FOR TEN LANGUAGES

To ensure that our use of the entire corpus to estimate the parameters did not impact the
results, we applied the half-split method (Piantadosi, 2014) to the ten languages where we
had enough data. We first used a binomial split to cut the data into half: the first half was used
to estimate word frequency and the second half was used to estimate its rank, to reduce the
dependency between the two measures. The binomial split works as follows: For each word,
we sample from a binomial the same number of times as its frequency (with a probability for
success – p – equals to 0.5) and receive a number (close to half of the overall frequency but not
equal to it) that will now be used as the word’s frequency. The difference between the original
frequency and the new one is used to assign each word its rank. For example, the word “up” in
British English appeared 23,251 times. If we would assign it a rank based on this frequency, it
would receive r = 55. However, the frequency after the binomial split was 11,731. The fre-
quency for the rank estimation is the difference between the two (23251 − 11731= 11520),
which gave it rank 57.

The ten languages we analysed are the ones with at least 200,000 tokens so that each half
of the sample has approximately more than 100,000 tokens (depends on the way the data was
split). These were: North-American and British English, German, French, Dutch, Japanese,
Spanish, Swedish, Portuguese and Hebrew. Table A1 shows the estimated parameters for each
language using the full corpus and the split-half method. Importantly, the parameters estimated
by the two methods – with and without binomial split – are highly correlated (Pearson’s-r for
α = 0.999; Pearson’s-r for β = 0.999) with α values almost identical between the two
methods. β values also show high similarity. This analysis validates our use of the entire
corpus to estimate the parameters.

Table A1. Summary of corpora measures across languages with and without binomial split.

Language
With binomial split Without binomial split (taken from Study 1)

α β Pearson’s-r α β Pearson’s-r
British English 1.56 19.21 0.97 1.57 19.48 0.97

North-American English 1.52 18.04 0.965 1.52 18.34 0.965

German 1.41 11.61 0.997 1.42 12.69 0.998

French 1.52 17.47 0.99 1.53 17.98 0.99

Dutch 1.47 11.98 0.998 1.48 12.63 0.998

Japanese 1.29 6.73 0.993 1.30 7.12 0.993

Spanish 1.37 9.34 0.994 1.39 9.96 0.994

Swedish 1.38 7.17 0.997 1.40 7.58 0.998

Portuguese 1.35 5.01 0.983 1.37 5.44 0.981

Hebrew 1.17 3.27 0.996 1.19 3.69 0.996
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APPENDIX B: EXAMINING THE STABILITY OF THE CLAUSET METHOD

We used the ‘poweRlaw’ library (Gillespie, 2015) in R (R Core Team, 2021) to assess the fit of
our child-directed corpora and of several adult corpora (ADS) to a true power law. We found
that the p-value determining if the data was taken from a power-law distribution was not con-
sistent across analyses in ways that do not seem to reflect meaningful variation in the data. In a
nutshell, using 100 or 1000 bootstrap iterations, about half of the languages in our sample had
a p < .05, meaning they deviate from a power-law distribution but whether they deviated did
not correspond to our other estimates of the fit to a Zipfian distribution and was not consistent
even within the same language (e.g., British English deviated but North-American English
did not).

To see if the presence of deviating languages reflects a true difference in word distributions
between CDS and ADS, and to further explore the seeming inconsistencies the method gen-
erates, we also analyzed two American-English adult speech corpora using the Clauset method
(The Santa Barbra corpus; Du Bois et al., 2000) and CABank English CallFriend Northern US
Corpus from CHILDES (MacWhinney, 2000), see details below). Applying this method to two
comparable adult speech corpora of the same language also led to inconsistent results with
one corpus drawn from a power-law (CallFriend from CHILDES, p = 0.55) while the second
corpus not (Santa Barbara, p = 0.07). In contrast, using the method we used, where the param-
eters are estimated and the fit between the expected and observed frequency distribution is
calculated, all three American-English corpora (the child-directed one and the two adult ones)
were found to show a very good fit to a Zipfian distribution (CDS: alpha = 1.52; beta = 18.34;
r = 0.965; Santa Barbara: alpha = 1.36; beta = 9.23; r = 0.99; CallFriend: alpha = 1.35, beta =
11.5, r = 0.99).

Finally, to further probe the possible inconsistencies generated by this method, we applied
the Clauset method to the smaller samples we used to assess alpha for each language (100,000
tokens each, nine languages, see Study 1 in page 18). In Study 1, we used these samples to
investigate the stability of our alpha estimations, and to ensure that this corpus size is sufficient
to obtain a reliable estimate of alpha. We now wanted to see whether different samples of the
same corpus are consistently identified as being drawn (or not drawn) from a power-law dis-
tribution. While the estimated alpha was relatively similar (very small SD) across different

Table B1. Summary of application of Clauset’s method using the poweRlaw package on the full corpora for each language.

Language
Number of sub-samples
receiving p-value > 0.05

Number of sub-samples
receiving p-value =< 0.05

Measures of alpha across
sub-samples (mean (SD))

British English 37 32 1.769 (0.064)

Dutch 3 8 1.703 (0.039)

French 15 4 1.748 (0.052)

German 6 15 1.69 (0.067)

Hebrew 3 0 1.937 (0.04)

Japanese 7 7 1.769 (0.084)

Portuguese 2 1 1.717 (0.059)

Spanish 5 1 1.797 (0.075)

Swedish 3 0 1.793 (0.012)
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samples of the same language, the p-value using the Clauset method was not (it resulted in
different results for different samples from the same language). For example, in British-English
32 samples out of 69 received p <= 0.05, and 37 samples received p > 0.05. A similar pattern
was found for the other languages we looked at (see Table B1).

Future work is needed to understand why the method generates such inconclusive results
for linguistic data (which is beyond the scope of the current paper). Since our results are not
dependent on the distribution being a ‘true’ power law, we did not pursue this method of
estimation further.
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