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Wearable device and smartphone data quantify ALS
progression and may provide novel outcome measures
Stephen A. Johnson 1,5✉, Marta Karas 2,5, Katherine M. Burke 3, Marcin Straczkiewicz 2, Zoe A. Scheier 3, Alison P. Clark3,
Satoshi Iwasaki4, Amir Lahav4, Amrita S. Iyer3, Jukka-Pekka Onnela2 and James D. Berry 3

Amyotrophic lateral sclerosis (ALS) therapeutic development has largely relied on staff-administered functional rating scales to
determine treatment efficacy. We sought to determine if mobile applications (apps) and wearable devices can be used to quantify
ALS disease progression through active (surveys) and passive (sensors) data collection. Forty ambulatory adults with ALS were
followed for 6-months. The Beiwe app was used to administer the self-entry ALS functional rating scale-revised (ALSFRS-RSE) and
the Rasch Overall ALS Disability Scale (ROADS) surveys every 2–4 weeks. Each participant used a wrist-worn activity monitor
(ActiGraph Insight Watch) or an ankle-worn activity monitor (Modus StepWatch) continuously. Wearable device wear and app
survey compliance were adequate. ALSFRS-R highly correlated with ALSFRS-RSE. Several wearable data daily physical activity
measures demonstrated statistically significant change over time and associations with ALSFRS-RSE and ROADS. Active and passive
digital data collection hold promise for novel ALS trial outcome measure development.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) therapeutic development has
largely relied on staff-administered functional rating scales (i.e.
ALS functional rating scale-revised – ALSFRS-R) to gauge inter-
ventional efficacy in large-scale clinical trials with limited success.
Alternative methods of assessing progressive functional decline in
ALS may be valuable, such as using mobile applications (apps) to
collect patient-reported outcome measures (PROMs; e.g. the self-
entry version of the ALSFRS-R – ALSFRS-RSE) and wearable devices
for measurement of physical activity (PA).
Several factors contribute to the difficulty in finding efficacious

ALS treatments. Although ALS fits well into the motor neuron
disease category, it remains a heterogeneous disorder with
respect to onset location, the pattern of progression, degree of
upper motor neuron involvement, underlying genetic architec-
ture, patient experience, and prognosis1,2. It is uncommon in the
general population despite being the most common motor
neuron disease3, has a poorly understood pathobiology4, and
remains a clinically defined syndrome. Traditional ALS outcome
measure limitations may also play a role. Factors outside of ALS
itself and germane to all clinical trial research add to the difficulty
of understanding whether an intervention works. The need for a
substantial research infrastructure, experienced staff, and ade-
quate coordinator support for recruitment and logistical opera-
tions are obstacles5. Trial visit frequency is designed factoring in
staff availability, participant willingness and ability to travel, and
cost. While higher trial outcome sampling frequency is typically
advantageous, it usually requires additional resources. All these
aspects slow progress toward finding a cure.
The ALSFRS-R is a validated, traditionally staff-administered, 12-

item, 0–4 points/item scale used to assess function and disease
progression over time. It has served as the primary longitudinal
ALS clinical trial outcome measure for years;6–9 however, the scale
has limitations. The ALSFRS-R does not meet the criteria for

unidimensionality8,10, it is ordinal meaning point-wise decline is
nonuniform with each score decrease, and it may fail to detect
decline in people with confirmed ALS (PALS) even over the course
of 18-months based on Pooled Resource Open-Access ALS Clinical
Trials Database (PRO-ACT) data. Over the course of 6-months (the
duration of many clinical trials), 25% of participants on placebo or
a non-efficacious intervention did not decline in the PRO-ACT
dataset9.
Though extensive data have been collected to date using

traditional functional rating scales, different assessment
approaches may have advantages, especially PROMs. Self-entry
functional rating scales can reduce the burden of frequent trial
center visits for patients and allow home monitoring of disease
progression11. A self-entry version of the ALSFRS-R, the ALSFRS-
RSE, has been developed and has repeatedly demonstrated
excellent correlation with the ALSFRS-R (staff-administered)11–16.
Other scales are being developed using modern test theory
techniques and for self-entry. One such example is the Rasch-built
Overall ALS Disability Scale (ROADS)10,17. Prior studies have
demonstrated the feasibility of both in-clinic and non-clinic ALS
PROM collection15,18.
Remote, passive data collection offers another avenue for

outcome measure refinement without the need for participants’
concentration or effort. Modern digital wearable monitors allow
for detailed, objective, and near-continuous motor and other
biometric measurements19. Furthermore, they enable the assess-
ment of new and previously challenging to quantify human
functional domains. Digital biomarkers have been used already in
the neuromuscular and neurodegenerative disease sphere, with
significant expansion expected20. Viability of periodic non-clinic
device and sensor-based data collection has been demonstrated
in measuring heart rate variability, accelerometry-based activity,
speech, spirometry, hand-grip strength, and electrical impedance
myography21–24. Few studies have examined continuous
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monitoring of PALS using wearable devices. Some have measured
3-day/month samples of PA and heart rate variability using a
chest-worn and ECG sensor Faros device21,23. Kelly et al. reported
four PA level endpoints showing moderate or strong between-
patient correlations with ALSFRS-R total score and gross motor
domain score23. Van Eijk et al. 22 employed a hip-worn ActiGraph
device for 7 days every 2-3 months for 12 months and reported
four accelerometer-based endpoints of PA levels to be signifi-
cantly associated with the ALSFRS-R.
Mobile devices may also represent a valuable mode of digital

biomarker collection. Smartphones are becoming nearly ubiqui-
tous, with 85% of the United States (US) population owning one
and over 7 billion smartphones worldwide25,26. Smartphone
sensors coupled with mobile apps allow for versatile data
collection of both active (e.g., surveys, audio recordings) and
passive (e.g., global positioning system (GPS), accelerometry)
data27. They have also shown promise collecting these data
longitudinally from PALS28.
We evaluated whether an app and wearable devices might

serve as important tools for monitoring ALS disease progression
through active (app surveys) and passive (wearable device
sensors) data collection.
We aimed to (1) compare (smartphone) ALSFRS-RSE with (staff-

administered) ALSFRS-R at baseline and longitudinally, (2) quantify
the baseline and change over time of wearable daily measures of
PA, and (3) quantify the association between those measures and
both the ALSFRS-RSE and ROADS total scores.

RESULTS
Participants, enrollment, and compliance
From January through December 2021, 46 participants with ALS
were enrolled and followed for 6 months. Of these, 40 met
analysis sample criteria. One participant was unable to download
the Beiwe app. Participants chose their wearable device and did
not favor one over the other (ActiGraph = 20, Modus = 20).
Clinicodemographic characteristics were similar between device
groups (Table 1). Overall, there was a higher proportion of male
(62.5%), white (87.5%), and non-Hispanic participants (87.5%).
Most participants’ smartphones ran iOS (82.5%). Median baseline
ALSFRS-R was 33 (range 11–47). Compliance statistics are
summarized in Table 2 and were robust for both groups.

Correlation between ALSFRS-R and ALSFRS-RSE
Smartphone self-administered ALSFRS-RSE was highly correlated
with staff-administered ALSFRS-R at baseline, 3-, and 6-months
(r ≥ 0.93; Fig. 1). The population mean for ALSFRS-RSE was higher
than that of ALSFRS-R at each time point (by 3.3, 2.2, and 3.7
points, respectively).

Survey baselines and change over time
Mean baseline scores were 31.6 (ALSFRS-R), 34.3 (ALSFRS-RSE) (max
44, higher is better), and 84.9 (ROADS) (max 146, higher is better);
and monthly rates of decline ([95% CI], p-value) were −0.37
([-0.62,−0.11], 0.007), −0.48 ([−0.63,−0.32], 0.001), and −1.26
([−1.71,−0.81], <0.001), respectively (Fig. 2a, b, c; Supplementary
Table 1, models 1–3). The ALSFRS-RSE baseline was 2.86 points
higher than the ALSFRS-R baseline score (95% CI [2.26,3.47];
p < 0.001), but the monthly change in slope between the scales did
not significantly differ (Fig. 2d; Supplementary Table 1, model 4).
Comparing ActiGraph and Modus groups, there was no

significant difference in baseline or monthly change in either
ALSFRS-RSE or ROADS (Supplementary Fig. 1a and b; Supplemen-
tary Table 1, models 5 and 6).

Wearable daily Physical Activity (PA) measures: baseline
values and a change over time
Table 3 summarizes the average baseline and monthly change of
wearable daily PA measures. Estimates are provided for 13
ActiGraph vendor-provided daily (24-hour period) summary
measures (VDMs), 7 ActiGraph investigator-derived daily summary
measures (IDMs), and 12 Modus VDMs. 23 out of 32 measures
demonstrated significant change over time, e.g., total activity
counts (ActiGraph VDM) -56,625/month, sedentary minutes
(ActiGraph IDM)+ 13/month, total steps (Modus VDM) -58/month.

Table 1. Baseline demographic and clinical characteristics.

ActiGraph Modus Combined

N= 20 N= 20 N= 40

Age

Mean (SD) 62.9 (13.4) 60.6 (10.7) 61.8 (12.0)

Median [min, max] 64 [34, 98] 60 [35, 81] 63 [34, 98]

Sex

Males (%) 12 (60.0%) 13 (65.0%) 25 (62.5%)

Females (%) 8 (40.0%) 7 (35.0%) 15 (37.5%)

Ethnicity

Not Hispanic or Latino (%) 18 (90.0%) 17 (85.0%) 35 (87.5%)

Hispanic or Latino (%) 2 (10.0%) 2 (10.0%) 4 (10.0%)

Unknown / Not Reported (%) 0 (0.0%) 1 (5.0%) 1 (2.5%)

Race

White (%) 17 (85.0%) 18 (90.0%) 35 (87.5%)

More Than One Race (%) 2 (10.0%) 1 (5.0%) 3 (7.5%)

Native Hawaiian or Other Pacific
Islander (%)

1 (5.0%) 0 (0.0%) 1 (2.5%)

Other (%) 0 (0.0%) 1 (5.0%) 1 (2.5%)

Phone operating system

iOS (%) 15 (75.0%) 18 (90.0%) 33 (82.5%)

Android (%) 5 (25.0%) 2 (10.0%) 7 (17.5%)

ALSFRS-R

Mean (SD) 31.4 (8.6) 31.4 (7.9) 31.4 (8.1)

Median [min, max] 33 [12, 47] 32 [11, 45] 33 [11, 47]

ALSFRS-R baseline staff-administered Amyotrophic Lateral Sclerosis Func-
tional Rating Scale-Revised, n number, min minimum, max maximum, SD
standard deviation.

Table 2. Phone-survey and wearable device compliance (Aggregate --
median [min, max]).

ActiGraph Modus Combined

ALSFRS-RSE submissions 5 [2, 10] 6 [2, 13] 5 [2, 13]

ROADS submissions 4 [2, 10] 5 [2, 13] 5 [2, 13]

Days in observation period 178 [23, 191] 180
[61, 189]

179 [23, 191]

Valid days in observation
period*

158 [21, 191] 136
[16, 183]

146 [16, 191]

Average number of valid
hours on a valid day*

21 [15, 24] 12 [10, 17] 16 [10, 24]

ALSFRS-RSE smartphone self-entry Amyotrophic Lateral Sclerosis Functional
Rating Scale-Revised, ROADS Rasch-built Overall ALS Disability Scale; valid
hours/day -- hours/day passing the conditions outlined in Methods; * --
different methods used to define valid hour/day between the ActiGraph
and Modus groups (see Methods section).

S.A. Johnson et al.

2

npj Digital Medicine (2023)    34 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



Fig. 1 Correlation of ALSFRS-R (staff-administered) and (smartphone) self-entry ALSFRS-R. Baseline (a), 3-month (b), and 6-month (c)
correlations. The blue dashed line represents the observed linear association. The black dashed line is a 45-degree line.

Fig. 2 Estimated survey baseline and change over time. a Self-entry Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-
RSE). b Rasch-built Overall ALS Disability Scale (ROADS). c Staff-administered Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised
(ALSFRS-R). d Combined ALSFRS-RSE and ALSFRS-R plots. Participants are color coded and the color scheme is maintained across plots: lines
represent participant-specific conditional means, points represent observed values. The thick black lines in a, b, and c represent the
population means. In d, the population baselines and slopes are estimated for both the ALSFRS-R (staff-administered) and ALSFRS-RSE (self-
entry) values in a single regression model.
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All physical activity volume measures declined, except sedentary
minutes (ActiGraph VDM; non-significant effect) and non-
locomotion minutes (ActiGraph VDM; significant effect). Partici-
pants’ individual conditional means and the population mean for
each measure are depicted (Supplementary Figs. 2–12, first
columns). The following measures had a significant and at least
10% relative change from baseline in at least 80% of participants
over 6 months based on conditional means: steps (ActiGraph
VDM), sedentary to active transition probability (ActiGraph IDM),
total steps (Modus VDM), % time with 16-40 steps recorded/
minute (Modus VDM) (Table 1). The following significant measures
had very high (≥ 0.85) conditional coefficient of determination
(R2c) values: log total activity counts (ActiGraph VDM), active to
sedentary transition probability (ActiGraph IDM), and mean steps/
minute (Modus VDM)29,30. Total activity counts (TAC) are the sum
of activity counts (AC) over a period of time (here, 24 hours). AC
are derived from raw accelerometer data and are a unitless
measure that quantifies acceleration signal magnitude within a
time interval (here, 60 seconds).

Wearable daily Physical Activity (PA) measures: association
with both ALSFRS-RSE and ROADS
The mixed-effects models (LMM) associations between each daily
measure (VDMs,IDMs) and each survey (ALSFRS-RSE, ROADS) are
summarized (Supplementary Tables 1-3) and graphically depicted
(Supplementary Figs. 2-12, 2nd and 3rd columns). The daily
measures were the covariates in the LMM and were standardized
to have means equal to 0 and standard deviations equal to 1. 13/
32 daily measures were significantly associated with both ALSFRS-
RSE and ROADS, which included the following ActiGraph VDMs:
total activity counts, moderate activity, moderate and vigorous
physical activity, non-sedentary minutes, locomotion minutes,
steps, calories, as well as the following ActiGraph IDMs: total
activity counts, log total activity counts, active to sedentary
transition probability, sedentary to active transition probability,
sedentary and non-sedentary minutes. None of the Modus
measures were significantly associated with both surveys. Overall,
lower ALSFRS-RSE and ROADS scores were associated with
measures reflecting lower PA volume, and lower sedentary to
active/higher active to sedentary transition probabilities (activity
fragmentation measures).

Sensitivity analysis of wearable device monitoring frequency
Using all weeks’ (6-months) data, the estimated baseline total
activity counts (ActiGraph IDM) were 1,362,438 and the monthly
change was -58,631. Across the 9 different data collection
frequency scenarios examined (Supplementary Table 4), LMM
results did not vary substantially (≤1.5% change) from the baseline
estimate using all available data. The monthly change estimate did
not vary substantially (<4%) for scenarios with 2 weeks of data
collection and up to 6 weeks break but did (9.2-24.5%) for the
others compared to using all weeks’ data. All scenarios detected
significant decline in total activity counts over time.

DISCUSSION
Forty ambulatory adults with ALS were followed for 6 months
during which they continuously wore a wearable device (the wrist-
worn ActiGraph’s Insight Watch or the ankle-worn Modus’
StepWatch) and regularly contributed ALSFRS-RSE and ROADS
surveys via the Beiwe smartphone app. Daily measures of physical
activity (PA) from the wearables allowed quantification of baseline
values, monthly PA volume decline, and other characteristics.
Though ambulatory status was an inclusion criterion, PALS with

a range of functional abilities (baseline ALSFRS-R ranged from 11
to 47) met this criterion, increasing generalizability. Given that
PALS frequently have limb weakness and fatigue affecting activity

levels, 8 hours of activity logged per day was chosen as the daily
device wear compliance threshold. The number of compliant days
and active hours per day differing between the ActiGraph and
Modus groups should not be interpreted as meaningfully different
because the devices collected data differently, thus methodolo-
gies used for valid hour determination differed. Despite the
observational nature of the study, older age group, and use of
multiple technologies, device wear- and survey submission-
compliance were robust in both device groups. Compliance is
often quite variable in many digital health studies, both within and
between studies: levels range from 25-80%31–34. The number of
Beiwe app survey submissions was much higher than the number
of assessments typically obtained in traditional in-person clinical
trials (Table 2)24.
Excellent correlation between staff-administered ALSFRS-R and

smartphone self-administered ALSFRS-R ( ≥ 0.93), along with
higher (2.86 points) self-report baseline scores, are consistent
with prior studies11,15,16, reinforcing that valuable functional
outcome data can be reliably obtained remotely and that the
ALSFRS-R, the mainstay of outcome assessment in ALS trials, can
be reliably obtained in this manner.
The significant difference between ALSFRS-R and ALSFRS-RSE at

baseline but not over time suggests that self-report and staff-
administered scores should be compared separately to avoid
introducing unwanted variability, something to be considered
during trial design.
In general, all three scales (ALSFRS-R, ALSFRS-RSE, ROADS)

declined as expected and performed well in detecting functional
decline despite our participants having a milder rate of decline as
a group compared to those in interventional trials35–38. Observa-
tional studies tend to enroll PALS with more slowly progressing
disease22,24.
Notably, neither ActiGraph nor Modus VDMs explicitly account

for missing data due to non-wear, charging, etc. For example,
ActiGraph’s non-sedentary and sedentary minutes add up to
1440minutes for IDM but do not for VDM. Consequently, PA
volume and performance intensity measures may be biased
downward. To explore what results might show if accounting for
missing data, we created a set of IDMs that imputed missing
minute-level data. As expected, the baseline total activity counts
were lower for VDM compared to IDM (1,292,056 vs 1,362,438).
The IDMs we employed utilize straightforward code (link in
Methods), thus this work can be reproduced, built upon, and
scaled relatively easily. The IDMs also had much stronger
associations and were statistically significant. These findings also
suggest there may be other, even better, measures for detecting
functional decline. Similarly, in a Nuedexta study, the effects of the
drug on speech features were not detected by speech-language
pathologists but were detected using objective measures39.
The model estimation process converged for all LMM discussed.

The marginal coefficient of determination (R2m) represents the
proportion of the variance explained by fixed effects and R2c
represents the proportion of the variance explained by both fixed
and random effects.
The majority of the wearable measures significantly changed

over time. We calculated R2c, the proportion of the variance
explained by both fixed and random effects, to identify measures
with very high R2c ( ≥ 0.85). Measures of PA volume and
fragmentation had very high R2c and were well characterized
with the use of relatively simple LMMs: log total activity counts,
active to sedentary transition probability (ActiGraph IDM), and
mean steps/minute (Modus VDM).
The 13 wearable physical activity (PA) measures with significant

associations with both surveys (ALSFRS-RSE and ROADS) centered
around higher PA volume. This suggests that the specific type of
PA monitoring may not matter as much as the volume of activity
being monitored. There appeared to be a trend towards more
intense activity. ALS, which is progressive, makes it harder for
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participants to achieve vigorous activity levels. This led to less
high-intensity data being available for analysis and may be why
more measures did not meet criteria. Our use of a stringent
definition requiring significant associations with both ALSFRS-RSE
and ROADS also reduced the number of positive measures. It
should be noted that this study was not designed to assess
whether one device more accurately quantifies physical change
over time than the other and such conclusions cannot be drawn
from the results. Further exploration with larger data sets is
needed to determine whether different levels of physical activity
intensity are better suited to detecting functional decline, find the
most sensitive measures, refine derivation methods, establish
clinically meaningful thresholds, and so on.
Results obtained in the sensitivity experiment comparing

different scenarios of data collection protocols indicated that for
total activity counts (ActiGraph IDM; R2c 0.82), as long as 2 weeks
of data were collected, there was no substantial change in the
baseline value or monthly change value with a break in data
collection up to 6 weeks. Change in slope varied substantially in
the less frequent monitoring scenarios (up to 24.5%) but all data
collection frequencies found significant functional decline associa-
tions, even 1 week of data with 8 week breaks in between
(1wD+ 8wB). This is a very important finding, as it (1) points to the
ability to identify thresholds of data collection needed to
accurately track functional decline and (2) shows that days-long
continuous data collection may be an adequate substitute for
months-long data collection in some cases. This analysis highlights
the conceptual challenge of new metrics and the need for
ensuring clinical relevance by evaluating what constitutes
clinically meaningful change. Given that -58,600 total activity
counts/month was the observed rate of decline among the
participants, who were also declining on validated functional
rating scales, this rate of decline is clinically meaningful, though
specific cutoffs have yet to be defined.
These findings affirm the feasibility and utility of remote

monitoring with the use of apps and wearable devices for the
collection of PROMS and daily measures of physical activity
in PALS.
Remote/at-home digital biometric data collection has several

benefits for the field, which make it attractive for outcome
measure development. First, it enables more frequent sampling,
which means that trials need not enroll as many participants to
know whether an intervention is efficacious. This accelerates trial
results and is also important in relatively uncommon diseases
where recruitment may be difficult. Second, remote digital
biometric data collection decreases participant burden, especially
important in a population that experiences mobility challenges.
Third, it may increase access and inclusion, allowing those who are
geographically or socioeconomically isolated to participate.
Fourth, there is likely benefit to assessing characteristics of daily
life activities not captured by, or which have been out of reach, of
functional rating scales, such as measuring one’s step count or any
one of several features by which gait can be quantified and
analyzed (e.g. cadence). Variables that don’t lend well to self-
report or clinical assessment but which may have meaningful
effects on health, such as active to sedentary transition
probability, can now be captured. Fifth, digital data collection
can reduce changes in performance that might occur during an in-
person visit when one knows s/he is being assessed, quantify
function in one’s lived-in environment, and eliminate interrater
differences. Sixth, objectively measured physical function data
could be valuable, especially in a disease that profoundly affects
quality of life and for which we rely on patient responses to
generate metrics. Seventh, digital technology and data can also be
highly accessible to participants, staff, and other researchers.
Depending on the technology and vendors, it can be low-cost and
quite scalable40. Finally, remote outcome assessment can reduce
participants’ exposure risk to pathogens (i.e. COVID-19).

There are challenges with remote, digital data collection, some
of which may be unexpected. For example, we found that one
participant’s partner often carried her phone on his person. One
participant downloaded the Beiwe app onto a tablet rather than a
smartphone, despite instruction. One participant using the Modus
wearable routinely used a stationary desk-cycle. These examples
highlight how isolated metrics in the absence of context can be
difficult to interpret and vigilance is needed to make sure that
measures are meaningful and evaluating as intended. Depending
on the study, managing the high data volumes from passive
monitoring can be logistically difficult for the device, participant,
and/or researchers. Device feature design is of paramount
importance, especially in a population that frequently loses hand
strength and dexterity. Participants can change the side on which
they wear the device. Compliance is frequently an issue, despite
the fact that research participants are likely more adherent than
non-research patients. Technological difficulties, such as how to
use the app (log back in, resolve glitches, etc.) all affect data
collection and can require study coordinator support. In addition,
some participants, experienced high battery drain, which they
found bothersome. Usability factors can be anticipated, such as
designing straps and devices so that PALS with hand weakness
can utilize them without undue burden. The advent of data
sharing and open-source code enables a collaborative, transparent
research environment. Caution is also needed to ensure systems
perform as expected and that participant privacy is protected41.
Until there is a cure for ALS, we must work to better understand

the disease and improve our efficiency at investigating potential
therapeutics. Having the best diagnostic and monitoring biomar-
kers and outcome measures to quantify disease progression are
key. Just as ALS diagnostic research criteria have iteratively
evolved over time42–45, so too, should our outcome measures if
there is room for improvement. The COVID-19 pandemic has
shown us that there are opportunities for enhanced research and
care through technology incorporation46,47.
This work generates many avenues for future directions in trial

application validation, novel outcome measure development, and
existing PROM and digital outcome measure refinement. Under-
standing how data is affected by the use of various assistive
devices is also important. Ultimately, incorporation of digital
outcome measures into interventional clinical trials alongside
standard functional assessments will help clarify their role in
boosting trial efficiency and acting as key outcome measures.
Whether they can enhance versus supplant current outcome
measures and assessment methods remains to be seen, and may
require multidisciplinary development to harness other technol-
ogies such as artificial intelligence.
We did not have a healthy control arm to which to compare

results. There was missing data, resulting from imperfect
compliance, though not enough to substantively affect data
integrity. It is a reminder, however, that digital interface design,
beta testing, and robust support for technical issues are critically
important for ensuring data quality in digital studies. The study
enrolled a more slowly progressing population than interventional
trials, thus testing digital biomarkers in trial populations should be
performed. Our ethnoracial diversity was low, but more inclusive
than most US ALS studies. This may suggest that, properly applied,
digital technology can bridge the gap between underrepresented
populations in ALS research.
This study demonstrated in a non-rapidly progressing, func-

tionally heterogeneous group of PALS that passively collected
sensor data from wearable devices (either wrist-worn or ankle-
worn) can characterize daily physical activity and its change over
time. These measures were also found to be significantly
associated with ALSFRS-RSE and ROADS scores. Evaluation of
digital outcome measures in interventional clinical trials is needed
to understand whether they may have a role as primary outcome
measures and enhance clinical trial efficiency.
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METHODS
Ethics
Massachusetts General Brigham (MGB) Institutional Review Board
(IRB) and Massachusetts General Hospital (MGH) Information
Security Office approvals were obtained prior to study initiation.
All data were collected and maintained in accordance with MGB,
state, and national policies and regulations. Participants provided
written informed consent prior to participation in study proce-
dures, and we complied with all relevant ethical regulations.

Study design and population
This was a single-center, non-interventional, remote study
enrolling ambulatory participants over the age of 18 years with
a diagnosis of ALS by El-Escorial Criteria44 who were able to
provide informed consent, comply with study procedures, and
operate their smartphone without assistance – as determined by
the site investigator’s assessment. The study was advertised on
ALS social media accounts, an institutional research recruitment
website, and to patients attending the ALS multidisciplinary clinic.
Study procedures were performed remotely, with rare exception
(participant on site). Participants were observed for 6-months and
received $50 at 3- and 6-months if still contributing data.

Data collection and devices
Data were collected simultaneously in three ways: (1) staff-
administered ALSFRS-R surveys by phone/televisit, (2) remote
survey completion using the Beiwe app, (3) and wearable device
passive data collection (Fig. 3).
Following consent, study staff screened participants, and, if

eligible, performed baseline visit procedures: demographics,
baseline ALSFRS-R, download of and instruction on the use of
the Beiwe platform (Beiwe) app on his/her smartphone (iOS or
Android), and wearable device selection. Participants were called
after receipt of their chosen device to review proper use and
maintenance.

Beiwe is an open-source digital phenotyping research platform
designed specifically for the collection of research-grade, raw
(unprocessed) data from smartphone sensors, logs and self-entry
measures (surveys, voice recordings)48. Data collected with the
Beiwe app are encrypted and stored on the smartphone until Wi-
Fi transfer to the HIPAA-compliant Amazon Web Services (AWS)
cloud occurs. Data remains encrypted at each stage.
The app was configured to administer the ALSFRS-RSE and

ROADS surveys at baseline and every 2-4 weeks. Contacting
participants was permitted if it seemed they were having technical
difficulties or asked for help, though these calls were not
systematically logged. The app was removed following study
completion.
Two wearable devices were used: a wrist-worn ActiGraph

Insight Watch (ActiGraph) purchased from ActiGraph LLC and an
ankle-worn StepWatch 4 (Modus) from Modus Health LLC.
Participants were instructed to wear their device as much as
possible (preferably 24 h); Modus participants were told they
could remove it during sleep. Participants were not instructed to
wear their device on a specific side. Devices were returned using
prepaid, pre-addressed packaging.
The ActiGraph Insight Watch is an activity monitor equipped

with a triaxial-accelerometer configured to collect raw accelero-
metry data at 32 Hz. The ActiGraph CentrePoint Data Hub securely
transmits de-identified data linked by subject ID using cellular
data transfer to the CentrePoint cloud (Fig. 3).
The Modus StepWatch 4 uses a custom mechanical biaxial

accelerometer measuring acceleration at 128 Hz. A proprietary
algorithm determines if a step was taken and records the
corresponding timestamp. If no step is taken, it records that
epoch as having 0 steps. It has been validated in various patient
populations, including those with impaired gait49. This study used
Modus’ Clinical Research Trials app software. The device securely
transmits de-identified data linked by a subject ID via Bluetooth to
the Modus app on participants’ smartphones, which then
transmits to Modus’ server using cellular data or Wi-Fi.

Fig. 3 Study data flow schematic. Each participant provided three data streams (blue text and white background thin-outline boxes). Thick
blue arrows represent directionality of data. The small icons adjacent to the blue arrows represent the mode of data transfer: vertical oval with
blue background and white lines (Bluetooth); dot with three curved lines (Wi-Fi); phone (study staff-initiated phone call); vertical line with
curved vertical lines on either side (cellular). ALSFRS-R – Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.
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Vendor-provided data for both devices were accessible through
secure, permissions-based Web Portals. Raw data were provided
upon request.

Wearable daily PA measures
The ActiGraph vendor provided the following processed data: (1)
“raw” data -- subsecond-level acceleration measurements; (2)
minute-level data: activity counts (AC) -- derived from “raw” data
with the open-source algorithm50, (x-, y-, and z-) axis counts, steps,
calories, metabolic equivalents (METs), wear status, awake status;
(3) vendor-provided daily summary measures (VDMs) of time
spent: awake and asleep; sedentary and non-sedentary; in
locomotion and non-locomotion; in light (<3 METs), moderate (3
to < 6 METs), vigorous (>6 METs), and moderate-to-vigorous PA
intensity (MVPA); and the sum of each of the minute-level data
measures. VDMs filtered for awake, wear, and awake + wear status
were provided. Wear-filtered VDMs (those calculated from periods
when the device was worn) were used in our analyses. ActiGraph
algorithmically determines wear status from minute-level data,
allowing one to ascertain if a device was being worn51. Published
algorithms are used for calculation of calories and METs52 and
most of the remaining VDMs53. VDMs do not explicitly account for
missing data from sensor non-wear or interruptions of raw
accelerometry data during device charging and/or data upload.
As a result, VDMs may underestimate PA volume54.
Using ActiGraph minute-level AC, we created a set of

investigator-derived daily measures (IDMs). Minute-level missing
AC data was imputed prior to IDM calculation using a participant’s
wear-days’ corresponding minutes’ mean AC54. IDMs included:
total activity counts (24-hour AC sum), log total activity counts
(logarithmic transformation of total activity counts + 1), total log
activity counts (24-hour sum of logarithmic transformation of
AC+ 1)55, minutes spent active (minutes with AC > 1853)56 and
inactive, active to sedentary transition probability (fragmentation
measure representing the conditional probability a given minute
is sedentary given a previously active minute)57, and sedentary to
active transition probability (conditional probability a given
minute is active given a previously sedentary minute)57. These
measures were chosen given that they have been previously
employed in the literature54–57, providing the opportunity for
comparison and building upon prior work. Data imputation was
performed to obtain a data set that more closely represents actual
participant activity than one with data missingness.
The Modus vendor provided the following processed data: (1)

second-level step count data; (2) minute-level step sums; (3) daily-
level (VDM) step counts; percent time in low (1-15 steps/minute),
medium (16-40 steps/minute), and high (41+ steps/minute)
activity; mean, median, 95th percentile, peak performance index,
and max consecutive (60, 20, 5, and 1minute) cadences. Cadence
is defined as steps/minute and does not signify that there was
activity during the entire given minute. Peak performance index is
the mean cadence of the day’s most intensive, non-contiguous
30minutes. Modus vendor data did not have an epoch-based
wear status indicator; however, a day-level wear status indicator
was provided, ascertained through step timestamp examination.

Data analysis sample
The analysis sample consisted of participants with at least two
fully completed ALSFRS-RSE and ROADS surveys, used normed
ROADS scores10, and used only “valid days” for wearable data
(VDMs and IDMs). Valid days were defined as days with at least 8,
not necessarily consecutive, “valid hours.” Due to device
differences, valid hours were defined uniquely for each wearable.
For ActiGraph, a valid hour was defined as 60 consecutive minutes
without missing data and vendor-provided wear status indicating
device wear. For Modus, a valid hour was one with at least one
step logged. This threshold was chosen given that higher

thresholds gave very similar results, people with ALS often are
less mobile and may have long periods of inactivity, Modus has
been shown to have high accuracy in recording observed steps in
gait-impaired individuals49, and because we did not have raw
accelerometry data on which to base minute-increment wear
assessment.

Statistical data analysis
The number of complete ALSFRS-RSE and ROADS submissions
were computed for each participant and then aggregated (median
and range) across participants by device type (ActiGraph, Modus)
and both groups combined. To characterize device wear
compliance, the number of days in the observation period, valid
days, and average valid hours on a valid day were computed and
aggregated.
To quantify ALSFRS-RSE, ALSFRS-R, and their differences at

baseline and longitudinally, four LMMs were fitted. Each model
assumed time as a fixed effect, participant-specific random
intercept and random slope, and differed in outcome (surveys’
total scores): (1) ALSFRS-RSE, (2) ROADS, (3) ALSFRS-R, and (4)
ALSFRS-RSE and ALSFRS-R values. Model 4 included an indicator
term for the ALSFRS-RSE outcome and a term for the indicator’s
interaction with time. To investigate whether differences exist
between the ActiGraph and Modus groups’ survey baselines and
change over time, two additional LMMs were fitted using time as a
fixed effect, participant-specific random intercept and random
slope, an indicator for Modus users, and the interaction between
the Modus indicator and time with outcomes as ALSFRS-RSE (5),
and ROADS (6). In all models (1-6), the time variable was defined
as participant-specific elapsed time (in months) from the
beginning of the observation period (coinciding with the
ALSFRS-R baseline date).
ALSFRS-R and ALSFRS-RSE Pearson’s correlation coefficients (r)

were calculated at each ALSFRS-R administration: baseline, 3-, and
6-months using participants’ closest matching ALSFRS-RSE
within+ /− 28 days.
To estimate the average baseline values and the change over

time of the wearable daily PA measures, LMMs were fitted
separately for each VDM and IDM. Each of the 32 LMM had a daily
measure as the outcome, time as a fixed effect, and participant-
specific random intercept and random slope. Using participant-
specific conditional means, for each measure, we calculated the
percentage of participants for whom we observed at least a 10%
relative change of the measure over 6 months and for whom the
direction of change was consistent with population-level change.
To quantify the association between wearable daily PA

measures and ALSFRS-RSE and ROADS scores, LMMs were fitted
for each VDM and IDM (32 unique measures) to both ALSFRS-RSE
and ROADS separately. The covariates (daily measures) were set as
fixed effects, participant-specific random intercept and random
slopes were used, and the ALSFRS-RSE/ROADS scores were the
outcomes. Covariates were constructed by taking the average of
the daily measure’s values spanning the 7 days before and after
the survey date for a given participant and survey. To facilitate
model comparison, covariates were standardized to have zero
means and unit standard deviations.
R2c and R2m for generalized LMMs are reported29,30.
A sensitivity analysis was performed to understand how less

frequent monitoring might affect the estimated baseline and
change over time for the total activity counts (ActiGraph IDM)
daily measure. A series of models with different monitoring
durations were fitted, each using total activity counts as the
outcome, time as a fixed effect, and participant-specific random
intercepts and random slopes: all wD (weeks data), 2wD+ 2wB
(weeks break), 2wD+ 4wB, 2wD+ 6wB, 2wD+ 8wB, 1wD+ 2wB,
1wD+ 4wB, 1wD+ 6wB, and 1wD+ 8wB.
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All analyses were performed using R software (version 4.2.0; The
R Project). R code for all data preprocessing and data analysis is
publicly available on GitHub repository (https://github.com/
onnela-lab/als-wearables)58.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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