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Abstract

Artificial intelligence (Al) and machine learning describe a broad range of algorithm types that can be trained

based on datasets to make predictions. The increasing sophistication of Al has created new opportunities to apply
these algorithms within within trauma care. Our paper overviews the current uses of Al along the continuum of
trauma care, including injury prediction, triage, emergency department volume, assessment, and outcomes. Starting
at the point of injury, algorithms are being used to predict severity of motor vehicle crashes, which can help inform
emergency responses. Once on the scene, Al can be used to help emergency services triage patients remotely in
order to inform transfer location and urgency. For the receiving hospital, these tools can be used to predict trauma
volumes in the emergency department to help allocate appropriate staffing. After patient arrival to hospital, these
algorithms not only can help to predict injury severity, which can inform decision-making, but also predict patient
outcomes to help trauma teams anticipate patient trajectory. Overall, these tools have the capability to transform
trauma care. Al is still nascent within the trauma surgery sphere, but this body of the literature shows that this tech-
nology has vast potential. Al-based predictive tools in trauma need to be explored further through prospective trials
and clinical validation of algorithms.

Keywords Trauma, Artificial intelligence, Machine learning

Background

The term artificial intelligence (AI) was first conceived in
1955 by John McCarthy as “the science and engineering
of making intelligent machines” [1]. More colloquially,
Al can be thought of as a broad term describing an algo-
rithm that performs tasks that would normally require
human intervention. Machine learning (ML) is a subtype
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of Al whereby these algorithms can improve their per-
formance over time with additional experience [2]. There
are many ways to classify ML algorithms, but one of the
most popular ways is to group them into three main cat-
egories: supervised, unsupervised, and reinforced learn-
ing (Fig. 1). Supervised learning uses labeled inputs to
produce a defined set of outputs of discrete values [2].
Examples of supervised learning includes decision trees,
support vector machines (SVMs), regressions, and arti-
ficial neural networks (ANNSs). Unsupervised learning
creates groups from data whereby elements within each
group are like each other but dissimilar to other groups;
popular unsupervised algorithms include k-means clus-
tering, singular value decomposition, and DBSCAN [2].
Finally, reinforcement learning is a technique that uses
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Fig. 1 Overview of major types of machine learning. Overview of different types of machine learning (ML): ML is shown as a subset of artificial
intelligence (Al). Within ML, there are three subtypes: supervised learning, unsupervised learning, and reinforced learning. Supervised learning is
task-driven and uses labeled data to predict a predefined outcome. Unsupervised learning is data-driven and is used to find trends/outputs in
unlabeled data. Reinforced learning is environment-driven and uses interaction with the environment to learn
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Fig. 2 Overview of major types of supervised learning. Continuum of complexity of supervised learning algorithms: While not all types of
supervised learning algorithms are shown here, four major illustrative examples—Ilogistic regression, decision tree, random forest, and artificial
neural network—are shown along a qualitative continuum from least to most complex. The diagrams are meant to provide a visualization of the
algorithm processes whereby the blue circles and the orange squares represent different outcomes
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interactions with its environment to learn how to behave
through trial and error; these include k-armed bandit,
Markov decision processes, and SARSA [2].

For the purposes of trauma medicine, supervised learn-
ing algorithms have been studied the most, and therefore
are the focus of this review. Supervised learning algo-
rithms vary significantly in complexity (Fig. 2). More
basic supervised ML algorithms are logistic regressions
and decision trees [3]. These algorithms are interpretable
(and, for decision trees, familiar clinically) but are lower
in accuracy due to their relatively low flexibility. Algo-
rithms capable of producing a range of forms include ran-
dom forests and ANNSs. These systems are complex and,
while highly accurate, are less transparent to the user.
Random forests are effectively an average of many per-
mutations of decision trees made from a data set. ANNs
emulate the connections within a brain, with inputs “syn-
apsing” with multiple hidden layers (“interneurons”) via
complex equations to deliver predictions [4]. Using Al in
trauma requires balancing a model’s sophistication and
complexity with transparency and usability.

The purpose of this review is to critically appraise and
highlight the different applications of AI/ML that have
been studied in trauma care in order to provide clini-
cians, hospital administrators, and other non-computer
scientist/non-technical audiences a basic understand-
ing of AI/ML, the capabilities of these algorithms, and
the potential ways that these may transform trauma
care in the future. As injuries cause the greatest reduc-
tion in active life years globally and are the leading cause
of death in people under 40 [5], ML has the potential
to impact global public health through the optimiza-
tion of processes and improvement of outcomes. With
large-scale electronic health record implementation, an
unprecedented volume of trauma data are available to
train and validate new ML systems [6]. As such, trauma
care is primed for Al-based transformation. This arti-
cle follows the trauma patient’s journey—starting from
the point of injury, through triage and arrival at the
emergency department, to treatment and outcome pre-
diction—to outline the utility of AI along the entire con-
tinuum of trauma care (Table 1) [7-53].

Injury prediction
Al applications in trauma begin before injury. While
trauma and emergency physicians use heuristics and pat-
terns to predict when injuries are most likely to happen
(e.g., date, time of day, weather [54]), these approaches
lack sensitivity and adaptability. Al can help refine injury
prediction.

Within injury prediction, motor vehicle crashes
(MVCs) are the most studied. MVC studies can be fur-
ther subdivided into crash occurrence and crash severity
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prediction studies. Crash occurrence models are complex
and appear to be earlier in development. MVC occur-
rence prediction has been modeled using simulators that
predict crash occurrence or non-occurrence based on
car movement (e.g., gravity, drift angle) and environment
(e.g., weather) [14]. Elamrani Abou Assad et al. were able
to achieve prediction accuracies of 92.00% for an SVM
and 93.34% for a multilayer perceptron (MLP), which is
a type of ANN [14]. While these accuracy levels are very
high, simulator studies have limited utility in healthcare
as every road, car, and driver cannot be tracked for up-
to-date predictions, and limited research has been done
to apply this principle to populations due to the spatial
and temporal complexities of this process. Bao et al. [12]
is one of the few who has approached this task by using
a spatiotemporal convolutional long short-term memory
network to predict short-term crash risk at a weekly,
daily, and hourly level within Manhattan using historical
crashes, taxi GPS, road networks, land use, weather, and
population. This model achieved a 71.02-99.21% predic-
tion accuracy based on the spatial and temporal resolu-
tion used (with increasing accuracy at lower resolutions);
however, tools like this may be impractical for prospec-
tive use due to the processing power and volume of data
required [12].

Crash severity studies are more established and pre-
dict injury acuity from easily identifiable crash scene
characteristics [7-11, 13, 15-17]. Inputs often include
road (e.g., speed limit, surface type), vehicle/driver (e.g.,
driver/vehicle age, vehicle type), and environmental char-
acteristics (e.g., weather, time) [7-11, 13, 15-17]. These
algorithms are trained to predict injury level based on
predefined categories; these are usually either basic, such
as severe/not severe, or more complex, such as no injury/
possible injury/non-incapacitating injury/incapacitat-
ing injury/fatality [7-11, 13, 15-17]. The vast majority
of studies have focused on different types of ANNSs, such
as MLPs or deep neural networks due to their capability
to handle highly complex data inputs, and have found Al
can predict severity with an accuracy of 0-96% depend-
ing on the study [7-11, 13, 15-17]. This enormous vari-
ability is due to several factors, including differences in
data input (such as geography and quantity/quality of
crash data) but also the output type. Of the MVC crash
severity studies examined, those that tried to predict a
greater number of output categories tended to decrease
their accuracy [7-11, 13, 15-17], as there was fewer
representative data per category to train the algorithm.
These studies suggest that MVC severity prediction could
help prepare first responders and hospitals on likelihood
of injury severity if the appropriate input, output, and
algorithm type is selected. Other mechanisms of injury,
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such as interpersonal violence and self-harm are less
developed in current injury prediction research.

Building and validating these predictive algorithms has
clinical and public health applications. Clinically, an AI-
based application could be used by 911 dispatchers based
on caller information to predict injury severity and more
accurately inform EMS prioritization and response. Sys-
temically, understanding the variables associated with
injury severity can support harm-reduction and injury
prevention public health strategies [12, 14, 55].

Pre-hospital triage

Once injury occurs, Al can help triage patients before
hospital arrival. Currently, remote triage takes time and
relies on (1) EMS to contact hospitals when high-acuity
patients are en route and (2) effective communication
between the EMS team and the receiving physician. Al
has been shown to predict the need for critical care/life-
saving interventions to help stratify incoming trauma
patients pre-hospital both generally [17, 19-21] and in
specific trauma subtypes, such as gunshot wounds and
after resuscitation [22, 33]. The ability to predict the
need for life-saving interventions can help inform hospi-
tal selection, allowing EMS to route to hospitals with the
capacity to handle the necessary care for their patient.
This could be especially useful in rural and remote set-
tings where decisions must be made about air evacuation.
Further, more detailed information and predictions about
patients en route to hospital could help receiving cent-
ers prepare for the upcoming trauma activation, such as
through allocating appropriate resource/operating rooms
or ensuring available staff.

Algorithm inputs range in complexity from 6—8 inputs
mostly comprising vitals, such as in the case of Liu et al.
and Kim et al. [20, 21], to more complex analyses that
consider time to dispatch, basic laboratories, and injury
characteristics [18, 19, 22]. Almost all the studies that
were examined for this paper employed types of ANNs to
elucidate this relationship, and studies that used a greater
number of variables often (but not always) had greater
accuracy (AUC 0.82-0.912) as compared to those with
fewer input variables (AUC 0.71-0.88) [18-22].

Remote triage systems may be efficient if they require
minimal data input by the EMS team and can be used
to ensure appropriate resources available for patients
on arrival to the hospital. However, remote triage appli-
cability may be limited as there is a trade-off between
increased accuracy and necessary data volume. There
may be a threshold where the inconvenience to EMS of
managing high data volume surpasses the relative accu-
racy increase in triage. Kim et al. [20] used data that
could be collected on wearable devices—including sys-
tolic blood pressure, heart rate, respiratory rate, and a
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modified consciousness score—in addition to patient age
to predict patient likelihood of death. Using an ANN, they
were able to achieve an AUC of 0.89 with this method,
showing highly accurate prediction with minimal human
intervention [20]. The clinical meaning of a difference
between an AUC of 0.89 based on this minimal-input
wearable and 0.912 based on an intensive high-input
algorithm would need to be elucidated in future study;
however, the use of wearable sensors appears promising
and may allow for dynamic prediction.

Emergency department volumes

Al has been shown to predict trauma volumes within
the emergency department (ED) [23-26]. Inputs reflect-
ing human activity and environmental conditions such
as date, traffic, special events, precipitation, tempera-
ture, and air quality, are the basis of these algorithms
have been used in previous studies [23-26]. Like algo-
rithms predicting crash occurrence in MVCs, predicting
ED volumes relies on ANNs to capture the complexity of
the relationship between large-scale patterns of human
behavior and individual center-level outputs. Further,
unlike in previously discussed algorithms in this paper
that use Al to predict categorical variables, these algo-
rithms are tasked with continuous outputs.

Unfortunately, differences in data reporting/statistical
analysis in the current literature makes cross-comparison
between studies difficult. Stonko et al. [26] and Den-
nis et al. [23] used correlation coefficients to show that
ANNSs could be used to predict mean ISS, total number
of traumas, and number of penetrating traumas in a given
day with a correlation of 0.87-0.89. Menke et al. [24] and
Rauch et al. [25] used deviations from the true value/
average error to show efficacy, showing the predicted
ED volume falling within 20 visits of the true volume
95% of the time and a mean average error of 2.32-3.25
patients, respectively. Overall, these systems show lower
accuracy at extreme ends of the spectrum (very low- and
high-volume days). Each study requires more robust sta-
tistical analysis to show accuracy, and thus, the ability to
draw conclusions about the future applications in trauma
is limited; however, based on information available, they
appear to be able to predict volume and acuity on aver-
age, which has important implications for trauma care
optimization.

Better prediction of trauma volumes can not only
improve resourcing for cost savings to the healthcare sys-
tem but can also lead to better patient outcomes when
there is appropriate capacity available to treat each case.
However, more investigation will be needed about the
adaptability of these algorithms to shifting patterns in
human behavior in the wake of the COVID-19 pandemic.
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Initial assessment

Once a patient arrives at the hospital, Al can support ini-
tial diagnostic and therapeutic decision-making through
patient severity assessments. Predicting patient sever-
ity at presentation is a broad category of algorithms that
includes prediction of prognosis and decision support.

Predictive analytics

Prediction of prognosis can help differentiate patients
who are critically ill versus those who are not and identify
those who will need life-saving interventions. In practice,
an Al-based tool in this setting would use easily assessed
variables (e.g., vitals, GCS) inputted by the receiving
trauma team to initially determine patient prognosis and
need for interventions. Studies have taken dramatically
different approaches to addressing this task. Liu et al.
[32] developed an MLP that used vitals, demographics,
and GCS to determine the need for life-saving interven-
tions at ED presentation with an achieved AUC of 0.99.
Although limited by small sample size, the algorithm’s
performance is promising for further development.
Batchinksy et al. [27] used ECG data alone to determine
the need for life-saving intervention with an AUC of 0.86.
Importantly, in both cases, these variables are readily
available in the ED, making these algorithms amenable to
use in high-stakes presentations.

Diagnostics and clinical decision support

Concomitant with determining need for life-saving inter-
vention, clinicians in the ED often need to investigate
and rule out injuries on CT, such as cervical spine injury
(CSI). Extensive work has gone into creating guidelines to
aid physicians in determining when imaging is needed as
part of CSI workup, [56]. Despite evidence-based guide-
lines, imaging is often inappropriately used, with clini-
cally relevant injury found in just 2% of imaged patients
[56]. Bektas et al. [28] compared a logistic regression with
an ANN to supplement CT in detecting CSI. The ANN
had a significantly better negative predictive value than
the logistic model at 97.3% versus 87.9%, respectively [28].
The ANN also had a positive predictive value of 100% and
detected 2 CSIs that were missed on CT alone [28]. Fur-
thermore, Al can support decision-making in pediatrics
where imaging over-use is of greater concern due to car-
cinogenic irradiation [29]. Using GCS, age, gender, and
injury mechanics, an optimal classification tree algorithm
predicted CSI in patients <3 years old with a 93.38% sen-
sitivity and 82.34% specificity [29]. Other studies have
demonstrated that Al can assess pelvic hematoma on CT
imaging [31]. Volume of pelvic free fluid is used clinically
to predict the need for transfusion and angioemboliza-
tion yet is challenging and time-consuming to quantify
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on CT [31]. Dreizin et al. [31] developed AI capable of
segmenting these CTs to produce reliable volume meas-
urements; this algorithm had results on par to physician
judgment with much less time and effort investment,
with AUC of 0.81 as compared to an AUC of 0.80 when
manually done by radiologists.

Al can supplement other imaging in trauma workup
[30, 31, 52]. Ultrasound, while indispensable in trauma
evaluation, is limited by its wide sensitivity range (28—
100%) [30]. Cheng et al. [30] designed a model that inter-
prets free fluid in Morison’s pouch during FAST exams
after torso trauma. The model was trained to not only to
detect free fluid, which it did with 96.7% accuracy, but to
also determine if the image captured on ultrasound was
qualified to make such predictions, which it could deter-
mine with 94.1% accuracy. Further studies have used ML
to accelerate workup, improve diagnostic accuracy [31],
and reduce unnecessary imaging [28, 29].

AT has a potential role in imaging workup in situations
where clinicians must rapidly interpret imaging to inform
patient management. In high-acuity settings where time
is of the essence, these algorithms could evaluate images
faster than and with equal or superior accuracy to human
review, allowing for the identification of pathology more
rapidly and precisely.

Outcomes

Trauma patients are a heterogeneous group at high risk
of complications, including but not limited to organ fail-
ure, cardiac arrest, infection, respiratory distress, shock,
stroke, and death [40, 45]. Owing to their heterogenicity
and rapidly changing status, it remains challenging for
physicians to predict a clinical course for these patients in
hospital. Numerous non-Al-based risk prediction tools
exist for these complications and outcomes, but these
tools lack the ability to intelligently adjust the weight of
input variables and instead are linear and additive [40].
As such, it is unsurprising that much of the body of the
literature around Al in trauma is centered on interven-
tion and outcome prediction. Within intervention and
outcome prediction, there are three main types of algo-
rithms: complication prediction, survival prediction, and
discharge prediction.

Complication prediction

ML has been studied to assess its ability to perform risk
prediction and accurate prognostication of clinical out-
comes in trauma patients [37, 40, 45, 48]. An ideal Al-
based tool for complication prediction would either (1)
use variables that are readily available to the trauma team
after a brief workup (i.e., vitals, comorbidities, injury
factors/TRISS scores & laboratory results) to help iden-
tify which complications a patient is most at risk of and
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which interventions have the greatest possibility of miti-
gating these complications or (2) use variables that are
collected post-intervention (i.e., using all the same vari-
ables above but with invention-related inputs) to iden-
tify likely downstream postsurgical complications. While
complication prediction would have high clinical util-
ity, this type of prediction is technically challenging due
to the many potential complications these patients can
encounter. To predict an output, there needs to be suf-
ficient examples of that output in the training dataset to
determine the relationship between the inputs and the
output. With a perfect dataset and infinite computing
power, all outputs could be predicted with equal accu-
racy; however, in practice, data limitations can result in
wildly variable capabilities to predict individual outputs
within a single algorithm. Christie et al. [37], for exam-
ple, looked at 7 complications and was able to predict
their occurrence with an AUC 0.45-0.74. Maurer et al.
[45] looked at 11 complications and achieved c-statistics
of 0.689-0.835. As such, individual algorithms that have
been developed may be able to accurately predict certain
complications but may not be reliable at predicting the
full suite of complications that may befall a patient.

Further, with the ever-changing condition of trauma
patients, the ideal risk calculator could dynamically alter
predictions in real time and identify modifiable factors
to change outcomes [37]. Christie et al. [37] designed
the “SuperLearner;” an algorithm that incorporates data
across time and re-evaluates mortality and complication
risk. Although, SuperLearner’s variability in prediction
by complication means it may not yet be ready for clinical
application, tools that can dynamically adjust predictions
over time would have exciting applications in trauma
care [37]. In the future, machine learning merged with
causal inference methods may be able to predict which
treatment would provide the best outcome and could be
the basis of precision medicine in trauma.

Survival prediction

Within outcome prediction, survival prediction is by far
the most studied. As such, there is diversity in algorithm
choice, input variables, and prediction accuracies within
this space. The most basic of these algorithms use inputs
such as comorbidities, demographics, GCS, vitals, and
injury data [36, 41, 50, 53]. While studies use several dif-
ferent algorithms, they are able to consistently achieve
accuracy levels of >89% with some as high as 97% [36, 41,
50, 53]. As these algorithms become more complicated,
they also incorporate laboratory results, imaging find-
ings, currently available scoring systems (e.g., TRISS),
and interventions [35, 38, 39, 44, 49, 51]. However,
increasing the input complexity does not always increase
accuracy. These models are consistently able to predict at
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accuracies of >82% and as high as 98% [35, 38, 39, 44, 49,
51]. The small gains in accuracy (and in some studies, a
drop in accuracy) relative to simpler models may be due
to overfitting, whereby increasing the number and speci-
ficity of input variables creates an algorithm that is per-
fectly trained to predict based on the training dataset but
is unable to generalize to new datasets.

The trauma outcome predictor (TOP) is one such algo-
rithm that has been validated to predict mortality, as well
as 9 other complications [45, 57]. It uses data such as
demographics, vital signs, mental status, comorbidities,
and injury characteristics to feed an optimal classification
tree algorithm, which can predict mortality and morbid-
ity with c-statistics up to 0.941 [45]. TOP is an excellent
example of what a survival prediction tool would look
like in clinical practice, adjusting the necessary input
questions based on previous answers in order to predict
mortality and morbidity (Fig. 3) [57]. Tools such as TOP
could be used by clinicians to assess survival risk in order
to plan the intervention and management of patients, as
well as inform palliation and end of life discussions.

Discharge prediction

Understanding discharge disposition and length of stay
can help health systems prioritize bed allocation, begin
discharge planning in advance, and set realistic expecta-
tions for patients and families post-injury. This is espe-
cially important post-traumatic brain injury (TBI) where
long-term effects can be unpredictable. Pang et al. [47]
and Nourelahi et al. [46] compared the efficacy of several
algorithm types to predict Glasgow Outcome Scoring for
patients’ post-TBI. Both used demographics, GCS, and
pupillary responses (with some additional unique inputs
per study) and were able to achieve accuracy of 63-78%
[46, 47]. Compared to other clinical applications of Al
in trauma discussed in this paper, TBI outcome appears
to be of lower accuracy, likely due to the high variabil-
ity in patient recovery post-injury. Length of stay is also
a burgeoning area of discharge prediction studies. Sta-
ziaki et al. [52] and Ji et al. [43] used several algorithms,
including SVM and ANN, to predict duration of hospi-
talization. Both papers tested a variety of combinations of
input variables, including but not limited to demograph-
ics, GCS, vitals, and injury scoring, to achieve accuracy
levels of 58—79% for SVM and 65-79% for ANN [43, 52].

Speech interpretation: supporting the trauma care
continuum

Narrative clinical documentation in trauma is often diffi-
cult to analyze in real time as it is not entered as discrete
and time stamped data elements, which is critical for
clinically relevant algorithms. Natural language process-
ing (NLP) and automatic speech recognition (ASR) are
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Optimal Trees Prediction Tool Optimal Trees Prediction Tool

N = 676259 PREDICT 1; P = 4.82% N = 676259 PREDICT 1; P = 4.82%
GCS on ED presentation GCS on ED presentation
15 10
N 490203 PREDICTIO; P11 9843% N = 31206 PREDICT 1; P = 11.88%
Does the patient have Heart Failure? Age
Yes 70
N =20168 PREDICT 1; P = 5.63% N = 10287 PREDICT 1: P = 24.38%
Temperature on ED presentation (°C : 5 y
i P (9 AIS Severity of Head Injury (if any)
371 > 3 -
N = 11308 PREDICT 0; P = 95.40%
N = 3542

AlIS Severity of Head Injury (if any) Final Predicti
inal Prediction

2 v

Outcome Probability

66.88%

N = 2777

33.12%

Final Prediction

Mortality Probability

No 93.30%

Yes 6.70%

Fig. 3 Trauma outcome predictor (TOP) example screen shot. This screenshot of the TOP interface shows how clinicians can input variables based
on clinical assessment to predict mortality after blunt injury. The differences between the left and right panels are due to the algorithm’s ability to
adjust the questions asked based on answers to previous questions; in this case, the differences in GCS answers prompt the algorithm to diverge in
its input variable requirements. Reprinted from Surgery, Vol 171/6, El Hechi M, Gebran A, Bouardi HT, Maurer LR, El Moheb M, Zhou D et al. Validation
of the artificial intelligence-based trauma outcomes predictor (TOP) in patients 65 years and older, Page 1689., Copyright (2022) with permission
from Elsevier and the original authors
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two fields of Al that can relieve the burden and time of
converting speech notes to text and provide higher-qual-
ity data input. Research by Blackley et al. [58] found that
speech recognition saves time, increases efficiency, and
allows for quicker and more relevant documentation. Al
related to speech/audio can also help diagnose pneumo-
nia, asthma, and other infections. For example, investiga-
tors using cough data [59] achieved 100% asymptomatic
COVID-19 detection rate and 88% accuracy on all sub-
jects. Converting narrative data to structured data using
NLP/ASR would be potentially transformative in fast-
paced and data-rich trauma resuscitation environments,
where critical decisions are often made without integra-
tion of all available information.

Conclusions

Al in trauma surgery has numerous applications and
proven efficacy. As more studies validate new or existing
algorithms, trauma analytics are likely to shift away from
rudimentary scoring methods toward more dynamic
and accurate Al decision support tools. These tools are
applicable from the point of injury through to surgical
follow-up.

In order to begin to fulfill the potential of Al
trauma systems must adapt compatible electronic health
records and reporting systems to support real-time data
collection and integration. Existing Al systems must be
evaluated prospectively to demonstrate replicability as
compared to algorithms trained on retrospective data.
More ML systems must be able to dynamically adjust
their predictions as patient status changes. Algorithms
need to be paired with interpretable graphical user inter-
faces so that they can be used by clinicians and not just
computer scientists.

Al has a promising role within trauma surgery prac-
tice and is worth the time and investment needed to
prove and establish its specific uses. Given the techni-
cal expertise required to design, evaluate, and validate
these algorithms, this endeavor will require interdiscipli-
nary collaboration between physicians, computer scien-
tists, statisticians, and administrators. These tools have
the promise of changing clinical practice and improving
patient outcomes and population health.

Abbreviations
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ASR Automatic speech recognition
AUC Area under the curve

cT Computerized tomography
(@] Cervical spine injury

ECG Electrocardiogram

ED Emergency department
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GCS Glasgow Coma Score
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