
Vol.:(0123456789)1 3

Waste Disposal & Sustainable Energy 
https://doi.org/10.1007/s42768-023-00134-6

REVIEW

Plastic waste management for sustainable environment: techniques 
and approaches

Prashant Pandey1  · Manisha Dhiman2 · Ankur Kansal1 · Sarada Prasannan Subudhi1

Received: 23 August 2022 / Revised: 28 December 2022 / Accepted: 5 January 2023 
© Zhejiang University Press 2023

Abstract
Excessive exploitation, negligence, non-degradable nature, and physical and chemical properties of plastic waste have resulted 
in a massive pollution load into the environment. Consequently, plastic entres the food chain and can cause serious health issues 
in aquatic animals and humans. The present review summarizes currently reported techniques and approaches for the removal of 
plastic waste. Many techniques, such as adsorption, coagulation, photocatalysis, and microbial degradation, and approaches like 
reduction, reuse and recycling are potentially in trend and differ from each other in their efficiency and interaction mechanism. 
Moreover, substantial advantages and challenges associated with these techniques and approaches are highlighted to develop 
an understanding of the selection of possible ways for a sustainable future. Nevertheless, in addition to the reduction of plastic 
waste from the ecosystem, many alternative opportunities have also been explored to cash plastic waste. These fields include 
the synthesis of adsorbents for the removal of pollutants from aqueous and gaseous stream, their utility in clothing, waste to 
energy and fuel and in construction (road making). Substantial evidence can be observed in the reduction of plastic pollution 
from various ecosystems. In addition, it is important to develop an understanding of factors that need to be emphasized while 
considering alternative approaches and opportunities to cash plastic waste (like adsorbent, clothing, waste to energy and fuel). 
The thrust of this review is to provide readers with a comprehensive overview of the development status of techniques and 
approaches to overcome the global issue of plastic pollution and the outlook on the exploitation of this waste as resources.
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Introduction

Nowadays, it is fair to say plastics can be regarded as a 
sweet poison for both humans and the environment. 
Undoubtedly, plastics are important  in day-to-day life 
because of their longevity (mechanical properties, thermal 

properties, stability, and durability), resistance to decom-
position, and low cost, which support their widespread 
applicability [1–3]. The pioneering work done by Belgian-
American chemist Leo Baekeland in 1907 was remarkable, 
leading to the mass production of the first real synthetic 
plastic known as Bakelite [4, 5]. Countless new plastics and 
their groups with desirable properties have been realized 
and synthesized. Plastic materials can be used as an alter-
native in place of materials, glass, wood, and metals, for 
construction, decoration, packaging, coatings, drawing into 
filaments, and weaving. Later, after their commercialization 
in 1964, plastics occupied their place in every home, office, 
factory, and vehicle, and became an intrinsic part of human 
life [6, 7].

The plastic production rate continues to escalate, and global 
production dramatically reached 368 million metric tons in 2019 
from 50 million metric tons in 1976. However, a short down-
turn can be observed in annual production in 2020 (367 mil-
lion metric tons), which was predominantly the result of the 
COVID-19 pandemic. Among the number of plastics cumula-
tively produced, approximately 30% of plastics are still in use. 
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Whereas approximately 55% of the total plastics were discarded, 
around 8% were incinerated, and only about 6% were recycled 
[8]. Before 1980, incineration and recycling methods were least 
prioritized or can say negligible.

After being used in specific applications for a period of 
time, plastics are considered as waste and ultimately dis-
carded. With increasing population and development, the 
amount of discarded plastic increases at an alarming rate, 
and around 381 million tons of plastic polymers have been 
released [8]. Explosive population, industrial revolution, 
mismanagement approach, and physiochemical properties 
have led to an increase in discarded plastic waste [9, 10]. 
Consequently, they enter our nature and have a negative 
impact on the environment and human health with which 
they come in contact [11, 12]. As a result, their advanta-
geous properties have now become a headache for research-
ers worldwide. Therefore, it is imperative to reduce the 
plastic waste load from the environmental ecosystem. The 
main thrust of the present article is to scratch the relevant 
information about the generation of plastic waste, disposal, 
along with the impact on nature, and mitigation. The initial 
desk research was conducted from various published arti-
cles and online sources such as Scopus Index databases and 
Science Citation Index Expanded (SCI-E), Environmental 
Performance Index (EPI), and United Nations Development 
Programme (UNEP) to gather relevant information. Article 
reflects a brief sketch of various techniques (such as adsorp-
tion, coagulation, photocatalysis, and microbial degradation) 
and approaches (such as reduction, reuse and recycling) that 
have withdrawn researchers’ attention to eliminate plas-
tic pollution. Furthermore, their efficiency, interaction 
mechanism, advantages, and challenges are also explored. 
This article also highlights the alternative approaches and 
opportunities to cash plastic waste like adsorbent, clothing, 
waste to energy, and fuel along with prospects.

Synthesis and chemical nature

Depending on the starting materials and reaction involved in 
the synthesis different types of plastic polymers have been 
developed including: polyethylene terephthalate, high-den-
sity polyethylene, polyvinyl chloride, low-density polyethyl-
ene, polypropylene, polystyrene, and others [13–15].

Commercial plastic products take into account intricate 
mixtures of chemicals and probe additives with the aim 
of improving the basic mechanical, physical, or chemical 
properties of the plastic product as per the requirement. 
Table 1 summarizes the types of plastic, their application 
and properties. Additionally, additives shelter the polymer 
from the degrading effects of heat, light, heat, or bacteria 
and provide special characteristics such as improved sur-
face appearance, reduced friction, and flame retardancy 
[16].

Structure of polymers

The plastic structure usually depends on the linkage of 
carbon atoms, either may be homopolymer or copolymer. 
The structures that include the linkage of carbon-to-carbon 
atoms are considered as homogeneous polymers, such as 
PP, polybutylene, PS, and polymethyl pentene [28]. How-
ever, if the linkage of the carbon atoms is interrupted by 
oxygen or nitrogen atoms, the structure known as a hetero-
geneous polymer, such as polyesters, nylons, and polycar-
bonates, is formed. In such structures, different elements 
can be attached to the carbon-to-carbon backbone, such as 
PVC containing attached chlorine atoms, and Teflon con-
taining attached fluorine atoms [23, 29]. The plastics can 
also be altered by the insertion of some additives. In Table 2, 
some additives (used to alter the properties of commercial 
plastic polymers) are discussed along with their application.

Consequences of using plastic

Generation of various pollutants and issues 
associated with plastic waste

The disposed plastic waste materials react with their sur-
roundings and release several degradation products, such as 
additives and polymers (of which they are made), throughout 
their lifetime [37]. Released chemicals (additives), plastic 
type, and their size determine the extent of the impact on 
the environment and human health [38, 39]. Plastic waste 
itself is solid waste that is classified as microplastic and 
microplastic. Waste with a diameter size > 20 mm is consid-
ered macroplastics, whereas, waste with an upper size limit 
of 5 mm in diameter is considered as microplastic. These 
microplastics are further characterized as primary micro-
plastics (manufactured to have a size less than 5 mm) and 
secondary microplastics (resultant of degradation of macro-
plastics, found in textiles, medicines, and personal care prod-
ucts like facial and body scrubs) [40, 41]. Plastic after its 
utility is over is sent to landfills or burning in open or closed 
environments and is vulnerable to human health, air, water, 
and soil. When plastics are disposed over territorial areas, 
they turn out to be a prime source for solid waste problems, 
and as they ingress into water bodies (ultimately travel to 
an ocean), they become a serious threat to aquatic animals, 
as shown in Fig. 1 [42]. This illustration shows the pathway 
of traveling plastic waste from a residential or industrial area 
to their surroundings due to improper disposal. These plastic 
wastes (such as single-use plastics and others) float or move 
in surrounds either by air, water streams, and other activi-
ties (likes by animals), which finally end up in the ocean. 
As a result, this seriously impacts humans and other aquatic 
animals.
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The fumes generated after burning plastic waste contain 
hazardous compounds like halogenated additives, PCBs, 
PVCs, fumes, dioxins, carbon monoxide (CO), arsenic, 
mercury, carbon dioxide  (CO2), methane  (CH4), and volatile 
organic compounds (VOCs) [37, 43, 44]. Some compounds 
like  CO2 and  CH4 are liable to stimulate the greenhouse 
effect, which increase the Earth’s temperature and contribute 
to climate change [45, 46].

Impact on environment and human

The human inhales byproduct of plastic waste burning 
in the atmosphere may include VOCs, dioxins, and CO, 
which may cause health-related issues such as cancer, 
endometriosis, birth defects, and child developmental dis-
orders. These compounds can trigger neurological damage 
[47], reproductive issue [48], immune-related issue [49], 
asthma [50], and endocrine disruption [51, 52], even at low 

concentrations. Table 3 indicates various additives and other 
chemicals released from plastic components and their asso-
ciated health issues.

Substances, such as Arsenic (As), Pb, Cadmium (Cd), 
and Mercury (Hg) are considered heavy metals, are suffi-
cient to degrade water quality, and can reduce soil fertility 
at low concentrations [65, 68]. Moreover, we can frequently 
observe various plastic products (macroplastics or micro-
plastics) in water bodies (rivers, streams, ponds, and oceans). 
These plastics are generated in the terrestrial region, end up in 
the oceans and degrade the health of the ecosystem [69–71]. 
Much evidence has been published that reflects aquatic spe-
cies such as turtles, seabirds, fish, and marine mammals are 
suffering from entanglement, often associated with large ani-
mals when comparing to ingestion (visible in smaller ani-
mals) [72, 73]. In addition, micro-sized plastics also lead to 
inflammation, traverse cellular barriers, and even cross highly 
selective membranes such as the blood–brain barrier or the 

Table 2  Types of additives used to alter the properties of commercial plastic polymers are discussed along with their application

Sample no Additives Application References

1 Antioxidants For plastic processing and outside application where weathering resistance is needed [5]
2 Colorants For colored plastic parts [30]
3 Foaming agents For expanded polystyrene cups and building board and polyurethane carpet underlayment [31]
4 Plasticizers used in wire insulation, flooring, gutters, and some films [32]
5 Lubricants Used for making fibers [33]
6 Anti-stats To reduce dust collection by static electricity attraction [34]
7 Antimicrobials Used for shower curtains and wall coverings [35]
8 Flame retardants To improve the safety of wire and cable coverings and cultured marble [36]

Improper disposal 
and leakage of 
plastic from 
industries & 
residential areas

Plastic after its 
utility is over-
Plastic travels to 
the surroundings 
territorial and 
aquatic region

Different water 
streams, and air 
transport plastic 
waste to the 
oceans

direct 
transport 
to the 
ocean

indirect 
transport 
to the 
ocean

Travelling to the 
land or soil

Impact on 
human

• Impact lungs,
• neurological 

damage 
• reproductive 

damage
• asthma 
• Cancer
• Skin disease
• Cause 

breathing 
problem

Impact on 
Environment

• Reduce 
visibility

• Global 
warming

• Engulf by 
fishes and 
other animals

• Reduce soil 
fertility

• Degrade 
water quality

Plastic waste

Fig. 1  Illustration presents improper disposal and leakage of plastic after its utility is over and their impact
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placenta. Within the cell, they sometimes trigger changes 
in gene expression and biochemical reactions. The signs of 
chemicals released during degradation may cause acute and 
chronic effects on living beings and the ecosystem as well. 
Some of the causes have been investigated as disruptions in 
the hormone system of vertebrates and invertebrates alike 
[74–77].

The presence of plastics or other larger bodies can be 
easily detected and separated from water bodies. Presently, 

microplastic (<  10–6) and nanoplastics (<  10–9) are considered 
as emerging contaminants [78], whose micro/nano size limits 
their detection in water bodies and no standardized method 
has been recognized for their effective identification and quan-
tification. Various studies have documented the presence of 
microplastics in the guts of fishes and the stomachs of many 
terrestrial animals [76, 79–81].

Moreover, we have limited data documented on chemi-
cals associated with plastics. However, our above paragraph 

Table 3  Indicates various additives and other chemicals released from particular plastic burning and their associated health issues

Sample 
no

Plastic/polymer Additives/chemicals 
released after burning

Health effects Environmental effects References

1 PETE Acetaldehyde Erythema, coughing, pulmonary 
edema, and necrosis

Ozone precursors in the atmospheric 
environment

[53]

2 HDPE Acetone Irritation in eyes and respiratory tract Can impact ozone production and 
OH in the upper troposphere

[54]

3 HDPE Benzaldehyde Irritates eyes, skin, and respiratory 
system limit brain functioning

Undergoes autoxidation to form 
benzoic acid upon exposure to air 
at room temperature

[55]

4 PVC Polychlorinated  
dibenzo-dioxin

Carcinogenic irritates the skin, eyes, 
and respiratory system. changes 
in liver function, thyroid hormone 
levels, immune cell levels, and 
decreased performance in tests of 
learning and intelligence

Degradation of air quality [56]

5 LDPE CO2 Shorting in breathing Impact greenhouse gases, global 
warming

[57, 58]

6 PVC Polychlorinated  
dibenzofuran

Irritates the eyes and the respiratory 
system, causes asthma

Degradation of air quality [59]

7 PVC Vinyl chloride Carcinogenic, irritating to eyes, skin, 
and respiratory system. Effect on 
the central nervous system, liver, 
spleen, and blood-forming organs

Detoriate drinking water quality 
and air

[60]

8 PETE Xylene Irritates the eyes. Affect the central 
nervous system, reduce the level of 
consciousness, and impair learning 
ability

Can reduce air quality, especially 
indoor air

[61]

9 LDPE Toluene Irritates the eyes and the respira-
tory tract, sometimes may cause 
depression

Can reduce air quality, especially 
indoor air

[61]

10 LDPE Ethylene Throat, eye irritation, shortening in 
breathing

Emissions of greenhouse gases, 
acidification, and eco-toxicity (air 
and water)

[62]

11 LDPE PP Headache, dizziness, nausea, 
heartbeat irregularities, uncon-
sciousness, and/or suffocation by 
asphyxiation

It has Pb and Cd that contaminate 
drinking water and soil

[63]

12 Low-density 
polyethylene

CH4 Mood changes, slurred speech, 
vision problems, memory loss, 
nausea, vomiting, facial flushing, 
and headache

Effect amount of greenhouse gases 
and cause climate change

[62]

13 Polycarbonates CO Dizziness, headache, and decreased 
consciousness

It affects the amount of greenhouse 
gases

[64]

14 Polyvinyl 
chloride

Lead (Pb) Anemia, weakness, and kidney and 
brain damage

Air becomes dusty [65–67]
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concluded that every human and animal is now the host for 
some concentration of chemicals associated with plastics and 
can also be found in air, water, and soil. Some of them may 
be: Polychlorinated biphenyls (PCBs), organochlorine pesti-
cides (DDTs, HCHs, and HCB), polycyclic aromatic hydro-
carbons (PAHs), brominated flame retardants (PBDE and 
HBCD), phthalates, UV stabilizers, and antioxidants, which 
have been widely detected in microplastic samples from water 
[82–84].

Impact of plastic waste on environmental 
performance index (EPI) of nation

Plastic pollution directly or indirectly affects human health 
and the environment. On the other hand, plastic pollution 
also affects the environmental performance ranking of any 
nation. Environmental ranking indicates the quality of the 
environment and the efforts made to enhance the status 
of the environment of the nation. The considered indica-
tors in EPI collectively depict the status of 10 years of 
the environmental pathway for any nation. Moreover, it 
indicates the best countries addressing the environmental 
challenges that every nation faces. Yale University and 
Columbia University, in collaboration with the World 
Economic Forum, developed a biennial index that was 
first published in 2002. It offers a scorecard, ranking 180 
countries, using 32 performance indicators consider-
ing 11 issues that highlight the leaders and laggards in 
environmental performance. Furthermore, it also pro-
vides practical guidance for countries that aspire to move 
toward a sustainable future [85, 86]. Figure 2 indicates 
all 32 performance indicators considering 11 issues that 
highlight the environmental performance of any nation. 
This EPI reflects the status of the nation in dealing with 
environmental pollution to overcome. Notably, the indica-
tors used to evaluate the EPI are the sectors that can be 
altered by plastic waste. Hence, with the perception of the 
nation, it is imperative to reduce the plastic load from the 
environment.

Different technologies and approaches 
for the removal of plastic

Since  the last decade, efforts have been made to elimi-
nate plastic pollution either by reducing it at their source or 
by removing it after their generation. Various technologies, 
such as adsorption [87, 88], photocatalytic degradation [89, 
90], coagulation [91], and microbial decomposition [92, 
93] have been introduced and investigated to reduce plas-
tic loads [94]. Along with this, approaches such as landfill, 

incineration, and 3R (reduce, reuse, and recycle) have also 
been coped up [95]. In the context, Fig. 3 shows the many 
sources responsible for plastic waste in nature and their seri-
ous impact. Figure 3 also illustrates various techniques and 
approaches to reduce plastic waste.

Adsorption

Adsorption, among the oldest  techniques, has been suc-
cessfully explored for the removal of organic and inorganic 
pollutants from water and wastewater. This is the surface 
phenomenon where pollutants from the water or gaseous 
phase are transferred to the surface of solid materials, called 
adsorbents. In this phenomenon, the adsorbent plays a vital 
role in the adsorption of pollutants [96, 97]. Recently, the 
adsorption technique has gained a lot of attention for the 
removal of microplastics from water.

Yuan et al. used three-dimensional reduced graphene 
oxide for the removal of microplastics from water. Its 
adsorption performance was highly dependent on pH, ion 
concentration, adsorption time, initial concentration, and 
temperature, and its maximum adsorption capacity was 
calculated as 617.28 mg/g at 26 °C. The higher adsorption 
efficiency was the result of strong π–π force with the help of 
electrostatic attraction and physical retention [92].

Wang et al. studied a natural and biodegradable sponge 
material (through chemical cross-linking using plant pro-
tein) with high mechanical properties for the adsorption 
of microplastic. The prepared material shows a removal 
efficiency of up to 81.2% in the pH range of 6–9 with an 
initial microplastic concentration of 1 mg/L. They aim 
to develop good mechanical strength materials with a 
compressive strength of 176 kPa and Young’s modulus 
of 60.1 kPa. The mechanical properties of the sponge 
remained up to 90% even after 100 compression cycles at 
a compressive strain of 70%, which shows commendable 
fatigue-resistance close to that of commercial polyurethane 
sponges. The abundant active side chains on amino acid 
residues provided the protein sponge with a good capacity 
to adsorb microplastics. The adsorption kinetic study sug-
gested that hydrophobic interactions and the intra-particle 
diffusion drove the adsorption process. The sponge pos-
sessed a highly interconnected porous structure (83%), thus 
showing fast adsorption ability to microplastics with 38% 
adsorbed onto the sponge within 10 s. The entrapped water 
can be released from the sponge simply by squeezing for 
cyclic use, and the fast adsorption ability was still main-
tained after 20 cycles [98].

Ye  et al. demonstrated the facile and scalable fab-
rication of two types of bubble-propelled iron oxides-
MnO2  core–shell micromotors  (Fe3O4-MnO2  and 
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 Fe2O3-MnO2) for the removal of suspended microplastics. 
They used micro/nanoscale manipulation (MNM) in various 
environmental remediations, such as microplastic removal, 
via the synergy of catalytic degradation, surface adsorption, 
and adsorptive bubble separation mechanisms. The adsorp-
tive bubbles was found to efficiently separate more than 10% 
of the suspended microplastics from the polluted water in 
2 h [99].

Ye  et al. demonstrated magnetic carbon nanotubes 
(M−CNTs) for the removal of microplastic from an aqueous 
phase. In this approach, M−CNTs were effectively adsorbed 
on microplastic materials such as PE, PET, and polyamide 
(PA). The formed MPs/M− CNTs composites were then sep-
arated by magnetic force from aqueous solutions. The results 
show that the prepared materials were more efficient for PE 
followed by PET and PA (maximum adsorption capacities 
were 1650, 1400, and 1100 M−CNTs mg/g, respectively). 
Furthermore, the recycling of adsorbed M−CNTs via ther-
mal treatment (600 °C) makes them more efficient with the 
same magnetic properties. In the study, they used M-CNTs 
four times and were still able to remove ~ 80% of total MPs 
in the testing solution [100].

Kim et al. investigated the application of granular acti-
vated carbon (GAC) for the removal of plastic (microplastic). 

GAC was found to be effective for PE and PP, including 
20–50 µm microplastics. These compounds are lighter than 
water, which is rarely removed in primary and biological 
treatments. About MP removal efficiency, similar results 
were obtained for the DWTP (drinking water treatment 
plant) equipped with the GAC filtration system (88% cumu-
lative removal) [101]. Moreover, adsorbents prepared from 
plastic waste without the addition of any environmental-
related problematic raw materials or products have gained 
much attention. Carbon nanostructure derived from plastic 
waste embedded with  Co3Fe7/CoFe2O4 magnetic nanopar-
ticles can be effectively used for the removal of pollutants 
such as methyl orange and methylene blue from the aqueous 
phase [102].

The adsorption technique was found to be effective for 
emerging pollutants in water and air stream. The removal 
of microplastics can be easily adsorbed and separated from 
wastewater through various micro, meso, and macropo-
rous nanomaterials. These techniques are limited to plas-
tic size >5 µm. The removal of microplastic from oceans 
is an untouchable field with this technique. Moreover, the 
regeneration of adsorbents is also considered a limitation, 
which allows researchers to look forward to a more effective 
technique.
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Photocatalysis

Photocatalysis is an exciting approach for handling plastic 
waste, especially micro/nano plastics. This technique is a 
light-mediated redox process, in which appropriate light 
energy excites nanostructured semiconductors that lead to 
the creation of exciton pairs, which react with surround-
ing water/moisture to produce highly reactive species like 
superoxides and hydroxyl radicals that can effectively oxi-
dize organic species, including polymers [103]. Various pho-
tocatalysts, such as zinc oxide (ZnO) and titanium oxide 
 (TiO2), have been used to study the degradation of PVC, 
PET, PS, and PE.

Tofa et al. demonstrated the successful degradation of 
LDPE film using ZnO nanorod photocatalysts. The photo-
mediated oxidation process was prevalent over the cracks 
and spots on the LDPE film after 175 h of exposure. As 
a result, under optimum light energy, photocatalyst excite-
ment leads to the formation of hydroxyl radicals, which have 
a high oxidation capacity for degrading organic pollutants 
[104].

Shang et al. [105] investigated the photocatalytic deg-
radation of PS plastic over copper phthalocyanine (CuPc) 
sensitized  TiO2 photocatalyst  (TiO2/CuPc) under fluo-
rescent light irradiation. In their result, UV−VIS spectra 
show that  TiO2/CuPc extends its photoresponse range 
to visible light, contrasting to only UV light absorption 
of pure  TiO2. For PS photodegradation, they observed 
a higher PS weight loss rate, lower PS average molecu-
lar weight, fewer volatile organic compounds, and more 
 CO2 in the PS−(TiO2/CuPc) system than in the PS−TiO2 
system. Their study suggests the potential application 
of dye-sensitized  TiO2 catalysts in the thorough photo-
degradation of PS plastic under fluorescent light. The 
photodegradation over  TiO2/CuPc composite is  more 
competent and efficient than that over pure  TiO2. Zhao 
et al. [106] evaluated the same photocatalyst for the deg-
radation of PE. Their results show that PE-TiO2/CuPc has 
a higher photocatalytic degradation rate than PE-TiO2. 

Furthermore, PS-TiO2/CuPc has slower degradation than 
PE-TiO2/CuPc due to the different molecular structures 
[105].

Fa et al. studied the photocatalytic degradation of polyeth-
ylene-oxidized polyethylene wax-TiO2 (PE-OPW-TiO2). In 
their study to improve the degradation efficiency, they used 
OPW to enhance the interaction between PE and modified 
 TiO2 particles [107].

Wang et  al. [108] prepared magnetic Au@mag@
TiO2 micromotors using  TiO2 particles coated with 10 nm 
nickel and 30 nm gold. The prepared photocatalytic micro-
motor can move efficiently in water and peroxide when irra-
diated with UV light, depending on a photocatalytic chemi-
cal reaction. In the study, they used polystyrene (PS) passive 
particles as a model system for microplastics, and in a mix-
ture of both, the Au@Ni@TiO2 micromotors collectted pol-
ystyrene particles very efficiently through phoretic interac-
tions in 1.67% hydrogen peroxide solution with 315 mW UV 
light. In the study, they used the second method, shoveling 
(pushing method), for the removal of microplastics from a 
0.2% hydrogen peroxide solution [108].

Iqra Nabi investigated the photocatalytic degradation of 
PS and PE microplastic under UV light irradiation over  TiO2 
nanoparticle films. The study shows the complete minerali-
zation (98.40%) of photocatalyst in 12 h made with Triton 
X-100. High photodegradation rates were observed after 
36 h for PE, and  CO2 was found to be the main end product 
[109].

Abdusalam Uheida et al. demonstrated that glass fiber 
substrates could be efficiently used  to trap low-density 
microplastics such as PP from water. They used ZnO 
nanorods (ZnO NRs) immobilized onto glass fiber substrates 
for visible light to degrade the microplastic [110].

Degradation of types of plastic with UV–VIS light 
excited heterogeneous ZnO and  TiO2 photocatalysts lead to 
the formation of such intermediate products that could be 
further exploited as raw materials for the chemical industry 
for the production of new petrochemical products or plas-
tics or in organic synthesis. Our limited knowledge and few 
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publications about the photocatalytic degradation of plastics, 
especially nano plastic is considered as an emerging issue 
of great concern.

Coagulation

Coagulation is the chemical method for the removal of solid 
particles from water by introducing small and highly charged 
molecules into the water to manipulate the electrostatic 
charges of the suspended particles in water [111]. Limited 
data are presented on the application of this technique for 
the removal of microplastics.

Ma et al. [112] investigated the micro-sized PE behavior 
during removal from water with the help of Fe-based salt. 
They observed that the traditional coagulation process can 
have higher removal for smaller PE particles. They evalu-
ated the effect of anionic polyacrylamide on the solution, 
which played a significant role in increasing the removal 
efficiency, especially anionic polyacrylamide at high dos-
ages (with efficiency up to 90.9%). This is because a dense 
floc was formed and had high adsorption ability due to the 
positively charged Fe-based flocs under neutral conditions. 
However, for ultrafiltration, microplastic were completely 
rejected, and slight membrane fouling was caused owing to 
their large particle size. After the coagulation, membrane 
flux was decreased; however, less severe membrane fouling 
was induced by flocs. This is the result of the heterogeneous 
nature of the cake layer caused by PE, even at high dosages 
of Fe-based salts. They concluded that the behavior exhib-
ited during coagulation and ultrafiltration could potentially 
be applied in drinking water treatment [112]. Baiwen Ma 
[112] evaluated the removal efficiency of Al- and Fe-based 
salts for the removal of PE from water which is the main 
constituent of microplastics. They observed that Al-based 
salts dominated over Fe-based salts in PE removal efficiency. 
The smaller the PE particle size was, the higher the removal 
efficiency. However, a low removal efficiency was observed, 
even with a high Al-based salt dosage of 15 mmol/L (below 
40%). Additionally, the removal efficiency was barely influ-
enced by water conditions, such as ionic strength, and tur-
bidity level [112].

Zhou et al. studied the removal of PS and PE microplas-
tics using PAC and ferric chloride coagulation, where PAC 
showed higher removal efficiency than ferric chloride. Their 
work concluded that the removal efficiency of microplastics 
under alkaline conditions was higher than that under acidic 
conditions. Chlorine ion  Cl− had little effect on the removal 
efficiency of microplastics, while  SO4

2− and  CO3
2− had 

inhibitory and promoting effects, respectively [113].
Horn [114] investigated the removal of the model micro-

plastic spheres and microfibers in their study using alum as 
the coagulant. They used the coagulant, alum at concentra-
tions between 5 mg/L and 10 mg/L Al to produce water 

with turbidity less than 1.0 NTU from solutions containing 
5 mg/L microspheres with an initial turbidity of 16 NTU. 
The occurrence of surfactant at 20 mg/L in solution does not 
negatively impact the performance of coagulations of micro-
spheres at low alum. However, they may have a small detri-
mental effect at high particle loading and high alum doses. 
They predicted that the stability of polyethylene microfibers 
in water was strongly influenced by surfactants. The small-
est polyethylene fibers could be dispersed in solution by a 
surfactant and effectively removed via coagulation [115].

Darabi et al. [116] investigated the removal efficiency 
of micro-and nano plastics (180–125 μm) during drink-
ing water treatment, particularly coagulation/flocculation 
combined with sedimentation (CFS) and granular filtra-
tion under ordinary working conditions at water treatment 
plants (WTPs). It also studied the interactions between 
biofilms and microplastics and the consequential impact 
on treatment efficiency. Generally, CFS was not sufficient 
to remove micro and nano plastics. The sedimentation rate 
of clean plastics was lower than 2.0% for all different sizes 
of plastic particles with the coagulant  Al2(SO4)3. Even 
with the addition of coagulant aid (PolyDADMAC), the 
highest removal was only 13.6% for 45–53 μm particles. 
In contrast, granular filtration was much more effective at 
filtering out micro and nano plastics, from 86.9% to nearly 
complete removal (99.9% for particles larger than 100 μm). 
However, there existed a critical size (10–20 μm) where a 
significantly lower removal (86.9%) was observed. Biofilms 
were easily formed on microplastics. In addition, biofilm 
formation significantly increased the removal efficiency of 
CFS treatment from <2.0% to 16.5%. This work provides 
new knowledge to better understand the fate and transport 
of emerging micro-and nano plastic pollutants during drink-
ing water treatment, which is of increasing concern due to 
the potential human exposure to micro-and nano plastics in 
drinking water [117].

Microorganism

Nowadays, researchers and scientists have  shifted their 
effort to develop strains that could potentially help elimi-
nate plastic waste. Various microorganisms, such as bacteria, 
and fungus, have been reported to potentially degrade plas-
tic waste, especially microplastics [118, 119]. In microbial 
degradation, plastics decompose and end up as biomass, 
methane, carbon dioxide, water, and other inorganic com-
pounds [120]. In a recent report, a fungus was examined 
that breaks down the plastic sponge and assimilates it like 
any other food. Such studies are in progress evaluating their 
efficiency on PET and polyurethane.

Paço et al. examined the naturally occurring fungus Zale-
rion Maritimum, that potentially biodegrade polyethylene 
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plastics [121]. Other lab-engineered versions bacteria like 
E. coli are under investigation to transform terephthalic acid, 
a molecule derived from PET, into the culinary flavouring 
vanillin, via a series of chemical reactions. However, this 
study is still at a very early stage, and need to do more to 
find ways to make the process more efficient and economi-
cally viable. Bacterial strain Pseudomonas sp. TDA1 is 
under investigation and was originally found in a local rub-
bish dump to break down polyurethane using the enzyme. 
This bacterium multiplies its biomass, consumes around half 
the plastic, and releases the rest as carbon dioxide [122]. 
This method  is the slowest among all removal methods 
and takes ample days for degradation, which depends on the 
characteristics of plastic waste, and its physical and chemical 
nature. In addition, environmental factors such as tempera-
ture, sunlight, ultraviolet rays, and atmospheric humidity, 
can influence their degradation rate [92, 93].

Tournier [123] prepared an improved PET hydrolase that 
depolymerizes 90& PET into monomers with a productiv-
ity of 16.7 g of terephthalate per liter per hour (200 g/kg of 
PET suspension, with an enzyme concentration of 3 mg/g 
of PET) in 10 h. The optimized PET hydrolases reported 
thus far, including an enzyme from the bacterium Ideonella 
sakaiensis strain 201-F6 (even assisted by a secondary 
enzyme) and this variant, attracted recent interest [123].

Enzyme or microbial conversion of PET to its constitu-
ent building blocks is interesting science and needs to be 
explored. In this context, French company Carbios produces 
engineered enzymes that could break down PET. Carbios 
teamed up with L'Oreal and Nestle to produce enzymati-
cally recycled the world's first food-grade PET plastic. The 
study confirms that these enzymes do not cause contamina-
tion if the packaging is still dirty. Moreover, they are very 
specific and energy-efficient (they do not use much energy). 
However, this technology is limited to two polyesters, signi-
fying around 75 million tonnes of annual production, com-
pared to a global plastics production of around 350 million 
tonnes.

Kim et al. [101] investigated worms that can consume 
polystyrene to a strain of bacteria that lives in the larvae’s 
gut. They placed polystyrene as the only carbon source with 
50 superworms in a chamber and observed that the worms 
had consumed around 70% of the plastic in the first 21 days. 
Furthermore, a strain of Pseudomonas aeruginosa bacteria 
was isolated from the gut of the worms and showed that 
is can grow directly on the surface of polystyrene and break 
it down. Finally, an enzyme called serine hydrolase was 
identified from the bacteria as a responsible candidate for 
most of the biodegradation [124]. Currently, studies are 
more concentrated on exploring enzymes and microorgan-
isms that use plastics as their source of energy, as a result, 
they can degrade plastic waste completely.

Landfill and incineration

A few years before, the landfill has been the preferred 
approach for plastic waste management in which capital 
includes low investment, easy construction, easy disposal, 
convenience, and approachability [125, 126]. Communities 
generally dispose of their waste at a particular place near 
residence or segregate in different dustbins that are finally 
dumped at particular sites (city outskirt). Decades to decades 
of  practice have now resulted in release of the plastic waste 
into the ocean, in which landfill practices have played a key 
role in their travel [52, 70]. A study conducted estimates that 
before 2015, more than 8.3 billion metric tonnes of plastics 
were produced worldwide, of which only 9% was recycled 
and the rest ended up in landfills or the environment [8, 127]. 
In 2018 and 2019, more than 7.2 million tons of plastic were 
sent to landfills, and various valuable elements were also 
thrown away. The amount of plastic in landfills increases 
with the increase in plastic every year (as we produce around 
300 million tonnes of plastic waste every year and that is 
equivalent to the weight of the entire human population) 
[128–130]. Consequently, some of the associated toxic 
chemicals leach out from the landfill site to the soil and 
groundwater, causing severe health issues. Therefore, due to 
environmental and health concerns, and the loss of valuable 
substances, they are now the least preferred management 
option [131, 132]. Many countries have imposed restrictions 
on landfills and put extra effort to recover value substances 
that reduce the amount of plastic waste at landfill sites. This 
approach adopted by European state members reduced the 
plastic waste sent to landfills, which hoard approximately 
5.7 million tons of resources, by 44% between 2006 and 
2018 [133, 134].

Developing and underdeveloped countries still prefer 
landfills because of low investment, ease of construction, 
and approachability. On the other hand, low literacy, lack 
of awareness of the environment, and plastic and casual 
approaches could be reasons [135–138]. It is estimated that 
an astounding 6500 tonnes of plastic waste are going to land-
fills per day. Some developed countries, such as the USA and 
Canada, export their plastic wastes to developing countries 
for processing due to low-wage workers and cheap process-
ing charges [139]. The exported plastic waste is turned into 
a useful product, and the rest is either sent to a landfill or 
disposed to the ocean. As a result, the volume of plastic 
waste becomes a nuisance for everyone.

To reduce the volume of waste, researchers have tried 
to capitalize on  the incineration approach. Incineration 
is always practiced as an alternative to landfills in which 
waste is thermally treated under a controlled combustion 
process (rapid oxidation) to reduce the volume of waste and 
to recover energy [140, 141]. However, incineration could 
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be considered an the efficient approach to reduce plastic, but 
a disadvantage associated with it is noxious fumes, which 
are more dangerous. The fumes release VOCs, polychlorin-
ated biphenyls (PCBs), polyvinyl chloride, dioxins, furans, 
CO, and  CO2 from the incinerator depending on the type of 
waste [142–146]. Among some of the gages are considered 
greenhouse gages that lead to climate change [46, 147]. In 
addition, the incineration approach requires high installa-
tion investment, operation, and maintenance that restrict 
its application for plastic waste removal [148, 149]. These 
conditions insist on the 3R approach, i.e., Reduce, Reuse 
and Recycle.

Reduce, reuse and recycle (3R approach)

Alongside the application of the above-discussed tech-
niques, other approaches (such as Reduction, Reuse, and 
Recycle) to lower plastic waste have importance. In this 
context, an individual’s behavior and consciousness play 
a key role in controlling the plastic load in the environ-
ment. For any country, awareness and education are the 
two pillars on which the 3R approach stands and are sup-
ported by other factors, like population restriction, atti-
tude, knowledge, and practices. Reduction is always con-
sidered the best way to manage any waste [150, 151]. 
The key factor is reducing the purchasing amount or 
restricting only to buying what we need. This approach 
is not only limited to saving resources and energy but 
also reduces the number of pollutant emissions and sub-
sequently improves the environment. Unfortunately, due 
to the limited availability of alternatives to plastic, the 
topmost priority approach shifted to the least priority. 
In the reference, Table 4 summarizes the comparison 
of various techniques and approaches, which highlights 
their advantages and disadvantages. However, various 
governmental and non-government efforts have been 
made to avoid the utilization of plastic products. In 
some European countries like Germany, in 2016, the 
step forward is to curb plastic bags or to apply a fee of 
€0.05 to €0.50 (about $0.06 to $0.60) on purchase. The 
agreement was made by the Ministry, the German Retail 
Federation, and participating companies to restrict the 
use of plastic bags. In 2016, Switzerland government 
and the Canadian government charged consumers some 
taxes to ban plastic bags, (around $0.04 per single-use 
plastic bag and $0.02 per reusable bag). As a result, the 
demand for plastic bags drastically decreased by 80%. 
Some commendable efforts were made by Asian coun-
tries like Indonesia, in 2017 to completely phase out 
plastic bags by 2018 [152].

Reuse is another approach that may reduce the demand 
for the new plastic product. However, many people prefer 
the recycling or refuse approach over reuse but the reuse 

approach saves money, and conserves energy and resources 
[153–156]. It is observed that the reuse approach has been 
maximumly capitalized in developing countries like India, 
Pakistan, and Bangladesh, where one can reuse sandwiches, 
plastic grocery bags for small trash bags, and re-use plastic 
silverware [157–159]. Reuse is an efficient approach for the 
reduction of plastic waste load but recycling is considered 
more effective methodology to restrict the utilization of 
virgin materials in the manufacturing of plastic products. 
Further, recycling could save 40–100 MJ/kg (depending on 
the polymer) energy and reduce the depletion of fossil fuels 
[160]. However, many countries have debated the prefer-
ences among reuse or recycle, but it is observed that recy-
cling generally takes less energy than making plastic from 
raw materials. Reusing is preferred to using plastic waste, 
which consumes less energy and fewer resources. In recy-
cling, the formation of different products depends on the 
type of chemical used, and this approach opens new path-
ways for road construction, toilet making and information 
on pavement blocks. Plastic waste materials are used for 
making Plastone, which is used as a binder aggregating solid 
that can be used in the construction of the structure of toilet 
blocks and construction of pavement blocks. It is interest-
ing to mention that for making a single Plastone block, 300 
plastic carry bags and 4 to 6 PET bottles are used [161]. 
Their high transverse strength results in providing long life 
which can be used for flooring especially outdoors, in raising 
compound walls and lining of the canal [162, 163].

Conversion of plastics into carbon nanostructures 
for energy and environmental application

Beyond the removal of plastic waste and restrictions on 
its generation, the conversion of plastic waste into useful 
resources like carbon-based material is a growing field. In 
this context, plastic wastes can be thermally treated to obtain 
carbon materials using methods such as anoxic pyrolysis, 
catalytic carbonization, pressure carbonization, flash Joule 
heating, microwave treatment, molten salt methods [164, 
165], and hydrothermal methods [166, 167]. These treat-
ments are often applied to achieve the desired products, such 
as carbon-based solids, which may include carbon nanotubes 
(CNT) [168], graphene [96, 169], hierarchically porous car-
bon (HPC) [117, 170], and carbon nanosheets [171, 172]. 
Plastic-derived carbon nanostructures can be used in energy 
storage devices such as supercapacitors and batteries, which 
promote sustainable green energy systems.

The materials with distinctive features like high surface 
area, high conductivity, and porosity can be used as hydro-
gen evolution reaction (HER) catalysts and oxygen evolution 
reaction (OER) catalysts in the water-splitting process.

In recent years, there has been growing interest in mak-
ing adsorbents from waste, especially using waste plastics. 
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Many methodologies have been documented to prepare the 
activated carbons and their potential application as adsor-
bents for the removal of dyes, heavy metals, and pharma-
ceuticals from wastewater. Generally, PET and polyurethane 
foam (PUF) waste has been exploited for the synthesis of 
activated carbon and graphene. The synthesized adsorbents 
have been investigated for the adsorptive removal of various 
emerging pollutants, such as methylene blue, acid blue 25, 
p-nitrophenol (PNP), Fe, cephalexin (CEX), and  CO2, from 
wastewater and air [173, 174]. This effort helps in manag-
ing plastic waste and releases pressure by removing various 
organic and inorganic pollutants from wastewater. However, 
in this approach, making adsorbents from plastic waste at a 
large scale has many constraints. Combustion is one of the 
major causes of air pollution, generating pollutants such as 
alkanes, PAHs (including triphenylbenzenes), acids (e.g., 
terephthalic and 4-hydroxybenzoic), and phthalates [175, 
176]. In addition, the capital cost is another factor restrict-
ing plastic incineration [156].

However, in the search for alternative fuels and energy, 
the higher calorific value of plastics than wood-based oil, 
which is comparable to conventional diesel, has drawn 
attention over their exploitation [177]. Many researchers 

exploit this opportunity to better utilize plastic waste. In 
this pyrolysis, the methodology is used to derive a useful 
product in absence of oxygen. Shafferina Dayana Anuar 
Sharuddin [178] applied this method (at 500 °C in pres-
ence of nitrogen gas) to investigate the potential produc-
tion of liquid fuel based on their different compositions of 
plastic mainly derived from non-recycled plastics (NRPs) 
[178]. Many studies have shown the application of ther-
mochemical pyrolysis technology for the conversion of 
municipal mixed plastic waste (MMPW) into high-quality 
hydrocarbon fuel. To enhance their efficiency and fuel 
productivity, a low-cost catalyst, i.e., CAT-1 of 10% (in 
weight), was used. These catalysts, however, were more 
efficient for the conversion of municipal virgin plastic 
than MMPW.

Future aspects and suggestions

The industries involved in manufacturing any plastic product 
either at any stage of manufacturing (raw material collection, 
processing, and packaging) should reserve 25% surface area 
of the plastic product to advertise against the use of plastic 

Table 4  The comparison of the available techniques and approaches for the removal of plastic wastes

Sample 
no

Techniques/Approaches Advantages Disadvantages

1 Adsorption Low cost and low maintenance technique low, less 
energy consumption

Effective for the micro plastic present in aqueous 
medium;

Not effective for reducing high volume of plastic 
waste

2 Photocatalytic degradation Complete degradation of plastics like LDPE, PS;
Effective for microplastics and nanoplastics

High energy consumption;
Not effective for reducing high volume of plastic 

waste
3 Coagulation Effective for microplastics present in aqueous 

medium
Not effective for reducing high volume of plastic 

waste
4 Micro-organism Breakdown the plastic sponge and assimilate it like 

any other food
Produce GHGs like methane, carbon dioxide in 

decomposition;
Decomposition may take ample days

5 Landfill Deals with high volume of plastic waste;
Low cost;
Reduced transportation distance;
No energy consumption

Leaching of chemicals to soil and ground water;
Occupy large space

6 Incineration Reduce high volume of plastic waste;
Energy recovery;
Require minimum land area

Require high capital cost;
High energy consumption;
Causes air pollution

7 3 R- reduce/reuse/recycle Reduces the requirement of new plastic;
Save money;
Consumption of less energy in recycling rather than 

production of new plastics

Unconsciousness can affect reuse of plastic waste

8 Conversion of plastic waste 
in carbon based materials

Reduce volume of plastic waste;
Availability of new materials at low cost

Needs energy consumption;
Limited to small group of population;
Needs skilled and well trained personal for the 

conversion of plastic waste
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products, employing at least 25% surface area of the product 
(Fig. 4).

Even we can make alternations in clothing fashion. 
Here we suggest one more zip lock pocket in front of the 
jeans or pants to collect the wraps of chocolate, biscuits, 
chewing gums, etc. Daily collected plastic waste will be 
disposed of in the evening in proper waste collection dust-
bins. This approach avoids throwing waste plastic into our 
surroundings.

Implementation and consideration of plastic pollution 
as an indicator under the parameter of solid waste indi-
cator in the environmental performance index will rank 
the countries based on their production and mitigation 
approaches. The best-ranked countries will be the path 
makers for lower-ranked countries. It is important to issue 
directions for the restricted utility of plastic at different 
shops which may include restaurants, confectionaries, 
hotels, vegetable shops, and especially unauthorized shops 
in developing countries. Customer and shop owner pay 
penalty schemes should be incorporated in the offence.

The implementation of a circular plastic economy could 
increase the reusability and recycling of plastic waste. It is 
observed that the linear plastic economy adopted sees 90% 
of products used once and then discarded. In a circular 
economy, plastic waste can be exploited as raw materials 
to develop and design various products such as pots, key 
rings, and decorative items. This concept helps to reduce 
the high volume of plastic and could be a source of income 
[96].

Unfortunately, an increase in pollution increases the prod-
uct demand that ultimately directly or indirectly increases 
the utilization of plastic products and the high probability of 
plastic mismanagement. Hence, the population is the largest 
source of pollution; therefore, strategies should be developed 
and implemented to overcome such issues.

Traditional means of bleaching and screening are an 
effective approach for the removal of large plastic plastics. 
However, fabric nets of different sizes are applied at the 
source and exit in houses, industry, hospitals, and drainage 
to collect the entered plastic waste in the water stream.

In the chemical approach for plastic removal, different 
types of adsorbents such as pillared clays (PILCs), Porous 
Clay Hetersostructures (PCHs), MOFS, and activated car-
bon from different sources, could be potential candidates 
for microplastic removal.

Coupling different approaches, such as activated bio-
logical treatment followed by filtration and membrane fil-
tration, may offer promising benefits.

Conclusions

The present review article provides an overview of the 
status of plastics and their waste, which are considered as 
one of the biggest threats to territorial life, aquatic life, 
and humans. Mishandling plastic waste releases toxic 
chemicals such as  CO2,  CH4, arsenic, and VOCs that may 
cause neurological damage, reproductive damage, immune 
damage, asthma, and endocrine disruption to humans even 
at low concentrations and contribute to climate change. 
Additionally, some by-products from plastic waste are 
considered hazardous to human health and can cause can-
cer, endometriosis, birth defects, and child developmental 
disorders. The plastic waste and its handling can affect the 
environmental performance ranking of any nation. Various 
technologies and approaches have been implemented to 
overcome plastic pollution. Adsorption technology, coagu-
lation, photocatalysis, and microbial decomposition may 
remove plastics from the environment, although they are 
effective for microplastics. Understanding the interaction 

Fig. 4  Use 25% area to show 
the minimum usage of plastic 
products and their negative 
impact on human health and the 
environment

Avoid Using Me! I Create Waste!

Zip Lock Pocket

To collect daily discarded plas�c 
packets of chocolates, biscuits, 

toffees etc

Dispose me 
properly!

I can impact 
nega�vely on health
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mechanism between plastic chemicals over adsorbents, 
coagulants, and photocatalyst. Nevertheless, landfill is 
always considered and prioritized for plastic waste man-
agement. Increasing volume of waste at landfills and 
adverse effects on soil, water, air, humans, territorial ani-
mals, and aquatic animals insist on incineration although 
it has a huge impact on the environment. Cause and effect 
pressurized to look after these approaches. Reduction, 
reuse, and recycling could be more effective in eliminat-
ing plastic waste, and coping with advanced technology 
offers enhanced efficiency. Reduction is considered the 
worth option but is an unavoidable approach, whereas the 
recycling approach is considered a better alternative in 
exploiting plastic waste in an alternate manner, such as 
adsorbents, fuels, energy, bricks, roads, and pavement, 
opening a new pathway to reduce their amount in nature 
as a waste. The implementation of a circular economy can 
play an effective role in reducing the volume of plastic 
waste which can be turned into many useful products. This 
concept can boost the economy of a nation and provide 
an alternative source of income. It is also important to 
couple technologies such as adsorption, coagulation, and 
photochemical degradation with the 3R approach to under-
stand and develop better opportunities to save resources.
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