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Abstract

Objective: Asthma is a chronic lung disease comprising multiple endotypes, and characterized 

by periodic exacerbations. A diverse array of T cells have been shown to contribute to all 

endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of 

CD4+, CD8+, and unconventional T cells in allergic and non-allergic asthma.

Data Sources: Review of published literature pertaining to conventional and unconventional 

T-cell types in asthma.

Study Selections: Recent peer-reviewed articles pertaining to T cells in asthma, with additional 

peer-reviewed studies for context.

Results: Much research in asthma has focused on the roles of CD4+ Th cells. Roles for Th2 cells 

in promoting allergic asthma pathogenesis have been well-described, and the recent description 

of pathogenic Th2a cells provides additional insight into these responses. Other Th types, notably 

Th1 and Th17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond 

CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area 

for study is unconventional T-cell types, including gd T, iNKT, and MAIT cells. While data in 

asthma remains limited for these cells, their ability to bridge innate and adaptive responses likely 

makes them key players in asthma. A number of asthma therapies target T-cell responses, and, 

although data are limited, appear to modulate T-cell populations.

Conclusion: Given the diversity and heterogeneity of asthma and T-cell responses, there remain 

many rich avenues for research to better understand the pathogenesis of asthma. Despite the 

breadth of T cells in asthma, approved therapeutics remain limited to Th2 networks.
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Introduction

Asthma is a chronic respiratory disease characterized by periods of reversible airway 

hyperreactivity that affects approximately 260 million people worldwide and caused an 

estimated 460,000 deaths in 20191. Asthma is a heterogeneous disease, including both 

allergic and non-allergic endotypes2. Allergic asthma is characterized by the induction of 

IgE antibodies to otherwise innocuous aeroallergens, is the most prevalent form of asthma 

in children, and accounts for approximately 50% of asthma in adults3, whereas non-allergic 

asthma is typically adult-onset. While standard therapies result in disease control for the 

majority of asthma patients, a subset of 5–10% of patients remain refractory to treatment and 

frequently utilize healthcare resources4. A greater understanding of asthma pathogenesis is 

essential in order to effectively treat patients in whom standard care fails.

A diverse array of T-cells contribute to asthma development and exacerbation. These T-cells 

are influenced by a myriad of factors, including allergen and virus exposures, sex hormones, 

and obesity. While early life exposures and infections are important in immune development 

and asthma inception5–7, asthma and immune responses evolve over a lifetime8,9, adding to 

the complexity of T-cell mechanisms underlying asthma. In this review, we will discuss the 

roles of T-cells in asthma, with a major focus on the roles of CD4+ T-cells in allergic asthma 

and the impact of therapeutic intervention on T-cell populations.

Current perspectives on CD4+ T-cells in asthma

CD4+ T helper (Th) cells, can differentiate into a number of subsets with distinct functions, 

and are a major focus of asthma research. These functions encompass promotion of allergic 

inflammation (Th2, Th9), anti-viral and extracellular bacteria immune defense (Th1, Th17), 

immune regulation (Treg), and promotion of antibody responses (Tfh). Furthermore, Th-

subset differentiation is plastic, and can be impacted by local inflammatory cues10. Here, we 

review the roles of diverse Th-subsets in allergic and non-allergic asthma, depicted in Figure 

1.

Th2 cells and pathogenic subsets:

Of the Th-subsets, Th2 cells are the most commonly ascribed to asthma pathogenesis, 

due to their key role in allergen responses. Th2-polarization is induced by dendritic 

cells (DC) that are primed by the innate cytokines IL-25, IL-33, and thymic stromal 

lymphopoietin (TSLP)11, leading to the upregulation of the transcription factor GATA3 in 

T-cells12. Upon allergen exposure, Th2 cells promote IgE production (IL-4, IL-13), mucus 

hypersecretion (IL-13), and eosinophil recruitment to the airways (IL-5), culminating in 

airway hyperreactivity (AHR)11. Th2 cells also express the chemoattractant receptors CCR4 

and CRTH2, which aid in the trafficking of cells to inflamed tissue13,14. Recent work has 

shown that cells in different locations perform distinct functions, with circulating Th2 cells 

trafficking to the lung and promoting eosinophil recruitment, while tissue-resident cells 

promote mucus production and eosinophil activation15, and can induce AHR in the absence 

of peripheral Th2 cells16. Th2 responses have also been associated with BMI and AHR in 

mouse models of high-fat diet-induced obesity and asthma17, and sputum IL-5 is elevated in 
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individuals with obese versus non-obese severe asthma18. This may be mediated via leptin, 

which can promote the proliferation, survival, and cytokine production of Th2 cells19.

Within the Th2 subset, there is a recently-described subpopulation of pathogenic cells 

known as Th2a. These cells are characterized by their co-expression of CRTH2, the tissue-

homing integrin CD49d, and the natural killer (NK)-cell receptor CD161, and their capacity 

to secrete IL-4, IL-5, IL-9, and IL-1320,21. Th2a share features with pathogenic effector Th2 

cells (peTh2), a subpopulation defined by the surface markers CRTH2 and CD161, and high 

expression of IL-5 and IL-1322. Th2a are the predominant phenotype of allergen-specific 

CD4+ T-cells and are present at increased frequencies in allergic individuals and reduced 

frequencies in desensitized individuals after immunotherapy, suggesting a key role for this 

population in allergic responses21,23,24. In addition to canonical and pathogenic Th2 cells, 

there exist “atypical” Th2 cells with mixed phenotypes. One such population is Th2/Th17 

cells which co-express the transcription factors GATA3 and RORγt, and secrete IL-4 and 

IL-17A25, a key driver of neutrophilic inflammation. These cells are enriched in the airways 

of individuals with severe asthma and induce asthma exacerbations in mice25,26. Overall, 

Th2 cells are a key player in the pathogenesis of allergic asthma, but are not the only Th 

subset to play a role.

Th1 cells:

Th1 cells are key mediators of anti-viral responses. Th1-skewing is induced by IL-12, 

resulting in expression of the transcription factor T-bet and signature cytokines (IFN-γ, 

TNF-α). Much discussion of Th1 cells in allergic asthma has focused on Th1/Th2 counter-

regulation27–31, and the notion that Th1 responses are deficient in allergic asthmatics, 

particularly in the context of respiratory viral infections32,33. By contrast, other studies 

have either failed to identify deficient anti-viral responses in allergic asthmatics, or 

observed enhanced responses34–38. It is possible that temporal differences account for these 

differences, with deficient early anti-viral responses giving rise to elevated viral titers and 

inflammation later in infection39,40, although data are conflicting34,37,41,42.

Mouse models are contradictory as to the roles of Th1 cells in asthma. Mice lacking 

Th1 cells spontaneously develop AHR, and Th1-cell adoptive transfer suppresses Th2 

inflammation and AHR, supporting a Th2 counter-regulatory role43,44. Conversely, 

other mouse studies have demonstrated increased airway inflammation and cooperative 

recruitment of Th2 cells into the airways following Th1-cell adoptive transfer45–48, an 

IFN-γ requirement for the induction of AHR49, and a role for IFN-γ in RSV-induced 

exacerbations50. In humans, elevated IFN-γ and Th1 cells have been observed in the 

lungs of asthmatics51–55, including during exacerbation56,57. Th1 cells have also been 

implicated in severe, steroid-resistant58–62 and obesity-associated asthma63–65. There are 

several potential pathogenic effects of Th1-associated cytokines. IFN-γ can activate mast 

cells and induce AHR66,67, and TNF-α is a potent pro-inflammatory mediator with potential 

roles in the recruitment of immune cells and airway remodeling68–71. The complex interplay 

between Th1 and Th2 cells in viral and non-viral asthma exacerbations remains a key 

research topic.
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Th17 cells:

Th17 cells are potent promoters of neutrophilic inflammation, and play a key role in 

host defense against extracellular bacteria. Th17 cells express the transcription factor 

RORγt and differentiate in response to IL-6 and IL-23, as well as neutrophil cytoplasts 

released by NETosis72. Th17 cells produce the signature cytokines IL-17A and IL-17F, 

as well as IL-21 and IL-22. IL-17 exerts pleiotropic effects in the airways, including 

promotion of neutrophilia, mucus production, AHR, and remodeling73,74. Numerous 

studies report increased Th17 cells and IL-17 in the blood and airways of asthmatic 

patients, which links with neutrophilia, AHR, and reduced asthma control75–77. IL-17 

also exerts differential effects on allergic sensitization in mice depending on timing, with 

IL-17 promoting eosinophilic inflammation during asthma development, but suppressing 

eosinophilic inflammation in established disease78. Interestingly, rhinovirus, a major trigger 

of allergic asthma, has been shown to downregulate IL-17A in a mouse model of allergic 

asthma79. Th17 inflammation is also a feature of non-allergic asthma when compared to 

children with allergic asthma80. In mice, adoptive transfer of Th17 confers steroid-resistant 

AHR, which is reduced in mice that lack Th17 cells81,82. Interestingly, increased production 

of IL-17 by Th17 cells has been observed in female versus male severe asthma patients, as 

well as in mouse models in response to estradiol, implicating Th17 cells in sex differences in 

asthma83.

Th9 cells:

First described in 200884,85, Th9 cells are characterized by their production of IL-9 and 

expression of the lineage-defining transcription factor PU.1, which is induced by IL-4 and 

TGF-β84–87. In contrast with Th2a cells, Th9 cells lack expression of IL-4 and IL-1385. 

In mice, adoptive transfer of Th9 cells are sufficient to induce AHR to a similar extent 

as Th2 cells88,89. Importantly, AHR following the adoptive transfer of Th9, but not Th2 

cells, is steroid-resistant in mice90. In humans, circulating Th9 cells are more frequent 

in allergic asthmatic versus healthy controls, and are linked to increased IgE89,91. IL-9+ 

T-cells are also increased in the lungs of asthmatics, with IL-9 levels linked to reduced 

FEV192. IL-9 promotes the survival and proliferation of cells that express IL-9R, including 

its major cellular target, mast cells93. Importantly, IL-9 activates Th2 and Th17 cells and 

promotes Th17 differentiation in mice94–96, while it inhibits IFN-γ production by CD4+ T-

cells97. IL-9 has also been shown to directly promote mucin expression by airway epithelial 

cells98,99, IgE production by B cells in humans97,100,101, and may be a survival factor for 

eosinophils91, indicating a potential key role in asthma pathogenesis.

Tregs:

As their name suggests, regulatory T-cells (Tregs) play a key role in tolerance and the 

control of inflammation in asthma. Tregs express the transcription factor FOXP3, high 

levels of CD25, and the anti-inflammatory cytokines IL-10 and TGF-β. In keeping with 

their suppressive role, reduced frequencies and functional impairment of Tregs, and Treg/

effector cell imbalance have been described in asthma56,102–106, as has loss of Treg function 

following rhinovirus infection107. Reduced circulating Tregs have also been reported for 

non-allergic late-onset asthma61, and Treg-associated genes in the lung are inversely 
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correlated with asthma severity108. In contrast, increased numbers of Tregs have also been 

reported in the asthmatic lung and following allergen exposure, possibly in response to 

increased inflammation and/or due to reduced regulatory capacity109–111.

In mice, the presence of dysfunctional Tregs in early life promote progression to an 

asthmatic phenotype later in life112. Furthermore, Tregs can convert to pathogenic types 

in response to inflammatory signals including IL-4 and viral infection113,114. Accordingly, 

circulating CRTH2+ Tregs that produce IL-4, IL-5, and IL-13 are increased in allergic 

asthmatics, link to poor asthma control, and induce bronchial epithelial barrier dysfunction 

in vitro115,116. Similarly, dysregulated ST2+ Tregs, which produce IL-5 and IL-13, have 

been reported in the airways of mice117,118. IFN-γ+ and IL-17+ Tregs are also associated 

with reduced lung function in allergic asthmatics119. Androgen receptor signaling stabilizes 

Treg function and inhibits ST2+ Treg generation, potentially linking Treg dysfunction to 

increased asthma prevalence in female adults120. Treg dysfunction is also thought to play a 

role in obesity-associated asthma121,122, possibly attributable to inhibition by leptin123.

Tfh cells:

T follicular helper cells (Tfh) play a key role in the establishment of allergic sensitization 

through the promotion of IgE production124. Named for their capacity to enter B-cell 

follicles in secondary lymphoid organs, Tfh are essential in the regulation of germinal center 

reactions, and express the follicle-homing chemokine receptor CXCR5, the transcription 

factor Bcl-6, and IL-21. In keeping with a role in promoting IgE production, increased 

numbers of circulating Tfh have been observed in asthmatics, have been found to 

correlate with elevated IgE, and have been shown to increase IgE production in in 
vitro co-culture assays125,126. Tfh are further subcategorized according to expression of 

cytokines and chemokine receptors broadly analogous to corresponding Th types, and 

link to the production of Ig subclasses127. Accordingly, circulating Tfh2-polarized cells 

have been linked to elevated IgE and FeNO in allergic asthmatic subjects128, whereas 

regulatory B cells and Tfr are decreased in asthma129,130. Recently, IL-13+ IL-4+ IL-5+ 

IL-21− Tfh, termed Tfh13, were linked to high-affinity IgE production in house dust mite 

(HDM)-sensitized mice131. Furthermore, IL-4+ Tfh are required for the development of 

Th2 effectors and can differentiate into lung-homing Th2 effectors upon secondary HDM 

challenge in mice, implicating Tfh in the development of Th2 responses132.

CD8+ T-cells in asthma

The role of CD8+ T-cells in asthma has been less well-studied than CD4+ T-cells. CD8+ 

T cytotoxic (Tc) cells play key roles in host defense against intracellular pathogens and 

cancers, and are named for their capacity to directly kill infected cells. Similar to CD4+ 

cells, CD8+ cells differentiate into diverse subsets, including Tc1, characterized by the 

production of TNF-α and IFN-γ. In certain mouse and rat models of asthma, CD8+ T-cells 

fulfill a protective role through the production of IFN-γ and counter-regulation of Th2 

responses133–138. CD8+ T-cells in adult male mice produce greater quantities of IFN-γ that 

suppress IL-4 production by CD4+ cells139, consistent with reduced asthma prevalence in 

adult males. In contrast, mice lacking CD8+ T-cells do not develop airway inflammation 
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and hyperreactivity in response to HDM sensitization and challenge140. Type 2 cytokine-

producing Tc2 cells have also been described in allergic asthma (reviewed in 141), are linked 

to increased AHR, and provide a steroid-resistant source of type 2 cytokines in both human 

and mouse models of allergic asthma142,143. Tc2 differentiation and activation occurs in 

response to type 2 cytokines, mast cell-derived lipid mediators (LTE4 and PGD2), allergen 

exposure, and hypoxia144–147. In some cases, CD8+ cells are more strongly linked to asthma 

severity than their CD4+ counterparts148, making them an important topic for research.

Defining roles for unconventional T-cells in asthma

Unconventional T cells, including γδT-cells, invariant NKT (iNKT) cells, and mucosal-

associated invariant T (MAIT) cells, are an emerging field of study. In contrast with MHC 

I- and II-restricted conventional T-cells, unconventional T-cells do not recognize peptides 

presented by MHC molecules. Instead, these cells recognize a more limited set of antigens 

presented by MHC-I-like molecules, with a more limited receptor repertoire. These cells 

share features of innate immunity, responding rapidly after antigen encounter149. Their 

features are extensively described in 150–154, and summarized in Table 1. Further research is 

needed to define the role of unconventional T-cell types in asthma.

γδ T-cells:

While conventional T-cells express TCRs composed of α and β chains, a minority of T-cells 

instead express γ and δ chains. These γδT-cells respond to phosphorylated antigens and 

lipoproteins in an MHC-independent manner, and have a number of potential functions, 

including cytotoxic killing, cytokine production, and antigen presentation150,154. Mice that 

lack γδT-cells demonstrate increased AHR upon allergen challenge, suggesting a regulatory 

role155–157. Accordingly, reduced numbers of γδT cells have been reported in the blood 

of asthmatic patients158,159, although others have found no differences in asthmatic versus 

healthy individuals160. In mice and humans, airway γδT-cells are increased in response to 

respiratory viral infection in asthma, and inhibition of γδT-cell responses in mice results 

in increased AHR and eosinophilic inflammation161. In contrast, other mouse studies report 

an essential role for γδT cells in the induction of IgE, production of Th2 cytokines, and 

eosinophil recruitment162,163. In humans, γδT-cells that produce IL-5, IL-13, and reduced 

IFN-γ have been observed in the asthmatic lung after allergen challenge164. In mice, γ-

chain usage appears to be linked to suppressive versus pro-inflammatory roles, with Vγ4+ 

cells suppressing inflammation, and Vγ1+ cells promoting inflammation165,166.

Invariant Natural Killer T-cells and Mucosal-Associated Invariant T-cells:

Invariant natural killer T (iNKT) and MAIT-cells share many similarities and a few key 

differences. Both express invariant chain TCRs that recognize unconventional antigens 

presented by MHC I-like molecules, can be further classified according to single-positive 

and double-negative (DN) expression of CD4 and CD8, and express the NK-cell receptor 

CD161167,168.

Invariant natural killer T-cells recognize glycolipid antigens presented by CD1d 

molecules169. The potential role of iNKTs in asthma is controversial170. In some mouse 
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models of asthma, IL4+ and IL-13+ iNKTs are both necessary and sufficient for the 

induction of AHR171–173. In contrast, similar induction of allergic inflammation in the lung 

was observed in mice that lack CD1d, and therefore iNKTs, as compared to mice with 

normal iNKT populations174. In humans, there are conflicting reports about the presence 

of iNKTs in the asthmatic lung, with some reporting increased numbers in the lungs of 

severe asthmatics as compared with controls175, and others reporting no differences176,177. 

More recently, increased frequencies of circulating iNKTs were observed in children within 

24 hours of an asthma attack178, as well as in severe treatment-refractory asthma, although 

this was independent of atopy179. Furthermore, IL-4 production by iNKTs was elevated 

in children undergoing asthma exacerbation178, and circulating IL-4+ iNKTs in adult 

asthmatics links to reduced FEV1180. Activation of iNKTs has also been linked to obesity 

and asthma in mice181.

MAIT-cells are activated via TCR recognition of microbial vitamin B metabolites presented 

by MR1 molecules182,183, or else in a receptor-independent manner by cytokines184. Little 

is known about MAIT-cells in asthma. In keeping with a potential regulatory function, 

MAIT-cell numbers are reduced in the blood and lungs of patients with asthma185, and 

MAIT-cells regulate ILC2 responses and AHR in mouse models of Alternaria challenge186. 

Furthermore, increased MAIT-cell numbers at 1 year of age has been linked to reduced risk 

of developing asthma by 7 years187, suggesting that MAIT play a protective role in asthma 

development. In contrast, IL-17+ MAIT-cells have been observed in asthmatic children 

and adults with neutrophilic asthma, and are associated with symptoms and an exacerbator 

phenotype188–190.

Impact of therapeutic interventions on T-cell populations

Inhaled and oral steroids, which broadly and non-specifically modulate immune responses 

and are generally considered immunosuppressive, are commonly prescribed for the 

treatment of asthma. Importantly, glucocorticoid receptors are expressed by T-cells, among 

other cell types. Th subsets are thought to exhibit differential sensitivity to both direct 

and indirect steroid effects, with steroids inhibiting Th1 and Th2, but not Th17 cytokine 

production191,192. However, for many individuals the use of steroids does not result in 

asthma control. The development of targeted biologic therapies represent a major advance 

in the treatment of asthma. Here, we will review the potential effects of targeted biologic 

therapies on T-cell responses; however, it is important to note that these cytokines and 

receptors are also expressed by and impact other cell types beyond the scope of this review.

Th2-targeted therapies:

Th2 inflammatory pathways constitute a major target for therapeutic intervention in asthma, 

and data are limited about impacts on T-cell responses. Therapies that directly target Th2-

skewing and activation are expected to enact a pronounced effect on Th2 cell populations. 

The recently approved monoclonal therapy tezepelumab targets TSLP, which plays a key 

role in Th2 cell differentiation193–196. Although tezepelumab decreased serum IL-5 and 

IL-13 in adult asthmatics, no effect was observed on airway submucosal CD3+ or CD4+ T-

cells197. Research in mice suggests that TSLP blockade provides the greatest benefit during 
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the initiation of allergic disease, versus established disease198. Anti-IL-4Ra (dupilumab), 

which targets both IL-4 and IL-13 signaling, is approved for use in eosinophilic asthma. 

Dupilumab disrupts Th2-skewing by IL-4, and blocks effects of Th2 cell-derived IL-4 and 

IL-13. While studies of effects on T-cells in asthma in humans are lacking, studies in atopic 

dermatitis found decreases in Th2 and increases in Th17 cells in the circulation199–201; 

however, no long-term changes in Th-skewing were detectable after 1 year199.

In addition to dupilumab, numerous therapies target T-cells downstream of Th-skewing. 

The CRTH2 antagonist fevipiprant, which blocks activation and chemotaxis of CRTH2+ 

cells, has also been explored as a type 2-targeted therapy. In vitro inhibition studies showed 

effects on human CD4+ and CD8+ T-cell populations, including inhibition of Th2 and 

Tc2 cytokine production, cell survival, migration, and tissue-remodeling networks in Tc2 

cells202,203. Fevipiprant was pulled from development due to insufficient efficacy during 

phase 3 clinical trials204,205. Multiple therapies that target IL-5 are approved for use in 

allergic asthma. While mepolizumab and reslizumab block soluble IL-5, benralizumab 

also promotes antibody-directed cell-mediated cytotoxic killing of IL-5Ra+ cells, including 

eosinophils and basophils206. Increases in Tregs have been reported following mepolizumab 

treatment in patients with severe eosinophilic asthma207. Interestingly, reduced frequencies 

of CD8+ and NKT-like cells were observed following treatment with mepolizumab, but not 

benralizumab208. Anti-IL-13 (lebrikizumab) is also under investigation for use in asthma, 

but T-cell data are lacking. While anti-IgE (omalizumab) is not expected to directly 

affect T-cells, reductions in IgE-facilitated antigen presentation and/or alterations in the 

inflammatory milieu might alter T-cell responses. Some studies have found no difference 

in T-cell numbers or function in the blood of asthmatics treated with omalizumab37,209, 

whereas decreased numbers of lung CD4+, CD8+, and IL-4+ cells, and circulating IL-13+ 

T-cells have been observed following treatment210,211. Further, studies found decreased 

circulating Tfh, Tfh2, and type 2 cytokine production, and/or increased Treg and Tfr cells 

following omalizumab, indicating a shift from a Th2 to a regulatory immune state130,212–214. 

While studies of the immune impacts of long-term treatment with omalizumab are limited, 

CD4+ T-cell activation in the circulation has been observed in asthmatics receiving 

treatment for at least 3 years215.

Th17-targeted therapies:

Th17 cells pose attractive therapeutic targets in allergic asthma, particularly in individuals 

with neutrophilic inflammation. IL-17A disruption by blocking antibodies and IL-17R 

knockout reduces AHR and neutrophil recruitment into the airways in mice, and abolishes 

airway smooth muscle contraction in tracheal rings stimulated in vitro73,216,217, although 

impacts did not extend to Th2 cells216. Similarly, administration of anti-IL-23 in an OVA 

mouse model of asthma results in reduction of AHR and lung-infiltrating Th17 and Tc17 

cells218, supporting the strategy of targeting Th17 inflammation in asthma.

While biologics targeting Th17 pathways are approved for a number of diseases including 

severe plaque psoriasis and psoriatic arthritis, none are currently approved for use in 

asthma. Phase 2 trials for anti-IL-17A and anti-IL-17R in asthmatics (secukinumab and 

brodalumab, respectively) were terminated due to a lack of improvement in asthma control 
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(ClinicalTrials.gov Identifiers: NCT01478360 and NCT01902290), and results are not 

yet available from a phase 2 trial of anti-IL-17A/IL-17AF (NCT03299686). Anti-IL-23 

therapies that target Th17 development are also available (anti-IL-12/23, ustekinumab; 

anti-IL23, guselkumab & risankizumab). A recent phase 2a study of risankizumab for 

severe asthma resulted in worse patient outcomes, with a reduced time to first asthma 

worsening, and increased exacerbation rates in those treated with the drug219. Interestingly, 

risankizumab was found to downregulate a number of T-cell-associated genes in the sputum 

(CD3E, CD8A), including genes encoding RORγt (RORC), T-bet (TBX21), genes involved 

in T-cell anti-viral responses and cytotoxic killing (IFNG, GZMB), indicating impacts 

on Th1, Th17, and CD8+ T cells219. This additional impact on airway immunity might 

contribute to poor outcomes. It is also likely that Th17-focused drugs would have greater 

efficacy if targeted to patients with Th17-high, neutrophilic asthma.

Other Th-targeted therapies:

The use of therapies targeting Th1, Th9, and Tfh pathways have also been proposed. 

Antagonism of the Th1 and pro-inflammatory cytokine TNF-α by etanercept in severe 

asthmatics resulted in improvement of lung function and restoration of steroid sensitivity, 

further supporting a role for Th1 responses in steroid-resistant asthma220,221. However, 

etanercept and another anti-TNF-α therapy, golimumab, did not significantly improve lung 

function or exacerbation rates and, importantly, the golimumab study was terminated early 

due to increased risk for infection and malignancies in the treatment group222,223. The 

Th17-targeting therapy ustekinumab is known to also inhibit Th1-skewing224; however, 

data are lacking in asthma. Although IL-9 blockade has shown promise in mouse models 

of asthma88, the anti-IL-9 monoclonal antibody MEDI-528 failed to significantly improve 

asthma control or lung function in a DBPC trial225. Dupilumab could also affect Th9-

skewing, but data are currently lacking. In mice, administration of anti-ICOS-L, which 

disrupts ICOS/ICOS-L interactions necessary for Tfh phenotype maintenance226, depleted 

lung Tfh, and resulted in reduced IgE production, AHR, and IL-13227. While no anti-

ICOS-L therapies are currently under investigation for asthma, ICOS-L antagonists are in 

development for cancer immunotherapy228. Thus, there remains a need for therapies that 

target non-Th2 pathways.

Conclusion

T cells perform diverse roles in the immunopathogenesis of asthma, from conventional 

CD4+ and CD8+ T-cells, to innate-like unconventional T-cell types. Great strides have 

been made in understanding mechanisms of Th2 responses in allergic asthma, including 

the identification of pathogenic Th2 subsets. Beyond Th2 cells, there is an increasing 

appreciation of the roles of diverse Th-cells in asthma, including Th17-associated 

neutrophilic asthma and Th1-associated severe steroid-resistant asthma. CD8+ T-cells and 

unconventional T-cell types, including γδT, iNKT, and MAIT cells, have also been linked 

to asthma outcomes in both pathogenic and protective capacities. While much remains 

unclear about unconventional T-cell responses, these cells are capable of acting in a manner 

reminiscent of Th2 and Th17 cells, in addition to providing regulatory functions.
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While there are indications that asthma treatment with biologics such as anti-IgE can 

shift T-cell populations away from Th2 types, more research is needed into the effects 

of Th2-targeted biologics on T-cells in asthmatics, including the long-term effects of 

treatment, and persistence beyond the withdrawal of treatment. Although a number of 

Th2-targeted therapeutics are currently approved for use in asthma, there remains a need 

for additional treatments targeting other, non-allergic aspects of the asthmatic immune 

response. It is important to note that, while Th2-targeted drugs are employed in patients with 

Th2 biomarkers including elevated IgE and eosinophil counts, similar screening strategies 

are lacking for non-Th2 therapies. Given the heterogeneity of asthma and the difficulty 

in identifying effective asthma therapeutics across multiple inflammatory pathways, the 

importance of understanding patients’ underlying immune profiles for the appropriate 

selection of therapeutics is clear.
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DC dendritic cell
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iNKT invariant natural killer T
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Tc T cytotoxic

TCR T cell receptor

Tfh T follicular helper

Th T helper

Treg T regulatory

TSLP thymic stromal lymphopoietin
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Key Messages

• Th2 cells, including the recently described pathogenic subsets of Th2a and 

peTh2 cells, play a key role in the establishment and exacerbation of allergic 

asthma.

• Non-Th2 cell subsets provide complex pathogenic (Th1, Th9, Th17, Tfh, 

Treg) and protective (Th1, Treg) roles in allergic asthma, as well as 

neutrophilic, obesity-associated, and steroid-resistant asthma.

• Unconventional T cells (γδ T, iNKT, MAIT) may play key roles in both 

asthma protection and pathogenesis, and have been shown to produce classic 

Th2 and Th17 cytokines.

• Approved biologic therapies that target Th2 pathways both upstream 

(tezepelumab, dupilumab) and downstream (omalizumab, meoplizumab, 

benralizumab, dupilumab) of Th2-skewing have been shown to decrease Th2 

responses in asthmatic patients.

• There is a need for asthma therapies that target non-Th2 pathways, although 

these treatments may only be efficacious in specific disease endotypes.
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Figure 1. Differentiation and therapeutic targeting of Th cells involved in asthma pathogenesis.
(A) Overview of the differentiation of Th subsets, production of key effector cytokines, and 

their downstream effects. (B) Therapeutic targeting of T-cell responses, denoted numerically. 

Treatments approved for use in asthma are denoted in bold font, with faded downstream 

immune pathways; treatments that are no longer in development and/or that lacked efficacy 

in clinical trials for asthma are struck through; treatments requiring further investigation are 

depicted in normal font. Figure created using BioRender.com.
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AHR, airway hyperreactivity; DC, dendritic cell; Eos., eosinophil; Neut., neutrophil, Th, T 

helper
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Table 1.

Comparison of human conventional and unconventional T cells.

Conventional Unconventional

CD4+ (Th) cell CD8+ (Tc) cell γδT cell iNKT cell MAIT cell

TCR chain repertoire αβ (Diverse) γδ (Limited) Invariant αβ (Limited)

Antigen Peptides Peptides Phosphoantigens Glycolipids Microbial metabolites

Restriction MHC II MHC I Butyrophylin-dependent CD1 MR1

CD4+ + − + (rare) +* + (rare)

CD8+ − + + (minor) +* + (major)

DN − − + (major) +* + (minor)

CD161+ +/++ (Th17) + +++ +++ ++++

Initial response 7–10 days Hours-days

*
Reports are contradictory about the relative proportion of these subsets229–231

DN, double negative; Tc, cytotoxic T; Th, T helper; TCR, T cell receptor.
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