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Letter to the Editor 

Emergence of epidemic variants of SARS-CoV-2  
by acquiring combinations of new highly  
mutable nucleotides in its genome

Dear editor,
We read with great interest the recent study by Cailard et al.1

who reported the evolution of SARS-CoV-2 Omicron BA.2 variants in 
kidney transplant recipients (KTRs). They found that some KTRs 
could shed SARS-CoV-2 for a prolonged time and the viruses in these 
KTRs accumulated rare mutations which were associated with im-
mune escape and symptom deterioration. Here, we describe a po-
tential mechanism for the emergence of SARS-CoV-2 variants of 
concern (VOCs) that can rapidly spread globally, change clinical 
presentations, or decrease effectiveness of vaccines. Some of these 
VOCs, such as Alpha, Delta and Omicron, rapidly outcompeted pre-
vious variants with increased transmissibility.2–4

There was one epidemic spike of SARS-CoV-2 infection in 
Guangzhou city in China between May 21 and June 19 in 2021 (Fig. 
S1). Whole genome sequence analysis showed that these viruses 
were highly homogenous, with the majority of them (66%) identical 
to each other, suggesting that they were derived from a single 
source. Since these sequences formed a distinct cluster within the 
large Delta variant group, they were named Delta-x (Figs. S2-S3). 
Delta-x acquired 12 new signature mutations not commonly found 
in other variants (Fig. 1A). The mutations were randomly scattered 
across the whole viral genome (Fig. 1B). We analyzed all available 
1,698,654 good quality sequences available in the Global Initiative on 
Sharing All Influenza Data (GISAID) database by May 21, 2021. All 12 
mutations were at the high variable sites (Fig. 1B). These Delta-x 
signature mutations were among the top 12% of mutations that 
occurred more than 1,000 times except one at position 25,562 
(Fig. 1B).

At each site, there are three possible mutations. Interestingly, the 
frequencies of all 12 mutations were the highest among them 
(Fig. 1C). This suggests that Delta-x signature mutations are a unique 
combination of 12 highly mutable nucleotides. Examining the fre-
quencies of all possible combinations of mutations showed that the 
vast majority (91.40%) of the sequences did not contain any of the 
Delta-x unique mutations. Among the 145,929 sequences carrying 
any Delta-x mutations, the sequences with one mutation were 
predominant (92.15%), while the sequences with 2, 5, or 6 mutations 
were more frequent than others (Fig. 1D). No sequences with more 
than nine signature mutations were detected.

All predominant haplotypes for the sequences with the same 
number of mutations accounted for at least 35% of the population 
(Fig. 1E). The predominant haplotypes for the combinations of higher 

numbers of mutations (5−9) were nearly exclusive (93%−100%). 
These results suggest that the predominant haplotypes present at 
high frequency or exclusively are more viable than others. Interest-
ingly, each predominant haplotype generally differed from that with 
one fewer mutation by gaining an additional mutation (Fig. 1E). The 
predominant haplotypes with the most detectable mutations (8 or 
9) were rare, but each was the only haplotype detected in that po-
pulation. The sequences containing eight or nine Delta-x mutations 
were found in different countries in four continents (Fig. S4), sug-
gesting that the ancestors of Delta-x had been widely presented in 
different human populations.

When compared to Delta and Alpha in cell culture, the Delta-x 
replicated at a delayed rate (Fig. 1F, S5). To more accurately compare 
their fitness, both Delta and Delta-x were cultured together. The 
Delta virus quickly outcompeted (88.2%) the Delta-x virus, demon-
strating that Delta-x was less fit than Delta (Fig. 1G). When tested 
with the sera from the donors infected with original and Delta-x 
strains, all three viruses were similarly neutralized (Fig. 1H), in-
dicating that both Delta-x and Delta have a similar neutralization 
profile.

To investigate if signature mutations in other VOCs were also 
generated through the similar mechanism, we obtained good quality 
SARS-CoV-2 whole genome sequences (8,846,680) from GISAID by 
March 5, 2022. As seen with Delta-x, the majority of VOC signature 
mutations in all five VOCs (Alpha, Beta, Delta, Gamma, and Omicron) 
were also those with the highest mutation rates at their positions 
(Fig. 2). Thus, they were all generated through acquiring a set of the 
highest mutable nucleotides at the majority of signature mutation 
sites. For the earlier VOCs, combinations of signature mutations in 
the same viral genome were either not found (Beta and Alpha) or 
very rare (Delta and Gamma). However, many sequences with 9 or 
fewer Omicron signature mutations were found among 473,719 se-
quences. Examination of the predominant haplotypes for sequences 
with 2–9 mutations showed that those with higher numbers of 
mutations were also generated by gaining additional mutations, as 
observed for Delta-x (Fig. S6).

Among 12 Delta-x mutations, 5 were synonymous mutations and 
only 1 (V1176F) was found in the end of the S gene (Table S1). 
Therefore, all those mutations should not be driven by neutralizing 
antibodies. This was in good agreement with the observation that no 
significant differences were observed between Delta and Delta-x. 
However, four mutations (Y1920H, V1176F, Q57R and L116F) in NSP3, 
S, ORF3a, and ORF7a, respectively, were found in the known CD8 
restricted T cell epitopes.5 Thus, escaping from T cell immune re-
sponses may play a critical role in the generation of the Delta-x 
variant.
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Fig. 1. Genetic and biological characterization of the new Delta-x variant. (A) Delta-x signature mutations (red) were the highest among all three possible mutations (black) at 
each position. (B) Frequencies of all mutations in the SARS-CoV-2 genomes. All mutations and Delta-x signature mutations are shown in blue squares and red dots, respectively, 
while all others are shown as gray open circles. (C) Percentage of the highly mutable Delta-x signature mutations is shown in red, while other two mutations are shown in blue 
and green, respectively. A total of 1,698,654 sequences (collected before May 21, 2021) were used for analysis. (D) Sequences with different numbers of the combined Delta-x 
signature mutations. (E) Analysis of the predominant haplotypes with different numbers of mutations among total sequences with the same number of mutations and total 
sequences with any mutations. (F) Viral replication kinetics was monitored by measuring viral RNA copy numbers in the cell culture supernatants using RT-qPCR. (G) Viral fitness 
was compared between the Delta-x and Delta viruses by determining the proportion of each virus in the same culture using NGS. (H) Neutralization of the Delta-x virus. The 
neutralization susceptibility of the Delta-x to convalescent sera from individuals infected with original viruses (n = 23) or Delta-x (n = 20) was compared to those of the Delta and 
Alpha viruses.
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Fig. 2. Number of all three possible mutations at each signature mutation site. The numbers of the highly mutable signature mutations in each VOC are shown in red, while other 
two mutations are shown in blue and green, respectively. The numbers of sequences used for Beta (A), Alpha (B), Delta (C), Gamma (D), and Omicron (E) are 1152, 6969, 6969, 
73733, and 473719, respectively. An asterisk indicates one sequence at the position.
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The majority of Delta-x signature mutations (11 of 12) were 
transition mutations (A:G or T:C), which are favored by the ExoN 
defective viruses.6,7 Similar results were also observed for other 
VOCs. Therefore, accumulation of these mutable nucleotides is likely 
an intrinsic property of SARS-CoV-2 when the function of the 
proofreading enzyme ExoN is affected. Our study also confirmed that 
the high transmissibility of VOCs is not necessarily associated with 
their replication capacity and pathogenicity.8–10

Understanding of the mechanisms of generation of new VOCs can 
have important implications. Since the accumulation of highly mu-
table nucleotides in the SARS-CoV-2 genome may be the intrinsic 
property of its replication-associated enzymes, the new combina-
tions of these mutable nucleotides are more likely to produce viable 
variants with higher transmissibility. This may explain why new 
VOCs constantly emerge and rapidly replace the previous var-
iants.2–4 Highly mutable nucleotides, especially those at known 
biological function domains or epitopes targeted by immune re-
sponses, should be closely monitored. Furthermore, modeling of 
such highly mutable nucleotides may be used to predict new VOCs in 
the future.
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