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Gene regulatory networks (GRNs) serve as useful abstractions to understand transcrip-
tional dynamics in developmental systems. Computational prediction of GRNs has been
successfully applied to genome-wide gene expression measurements with the advent of
microarrays and RNA-sequencing. However, these inferred networks are inaccurate and
mostly based on correlative rather than causative interactions. In this review, we highlight
three approaches that significantly impact GRN inference: (1) moving from one genome-
wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to
measure cell type-specific signals and predict context-specific GRNs, and (3) neural
networks as flexible models. Together, these experimental and computational develop-
ments have the potential to significantly impact the quality of inferred GRNs. Ultimately,
accurately modeling the regulatory interactions between transcription factors and their
target genes will be essential to understand the role of transcription factors in driving
developmental gene expression programs and to derive testable hypotheses for
validation.

Introduction
Multicellular organisms develop from a single fertilized egg, guided by the genetic information
encoded in the genome. Cell lineages diverge and form tissues and organs, based on the interplay
between signaling pathways, biomechanical forces [1] and the regulation of gene expression programs
[2]. While development is controlled on many levels, transcription regulation is crucial [3]. To better
understand these regulatory principles in development and evolution, it is essential to construct
informative models of gene regulation.
Transcription is regulated by transcription factors (TFs) within the chromatin context [4]. TFs bind

the DNA either directly, mostly in a sequence-specific manner [5], or indirectly via other TFs [6].
They can recruit various other proteins, such as co-activators, RNA polymerase, chromatin remodelers
and histone modifying enzymes, to remodel or stabilize the chromatin or to activate or repress tran-
scription [7,8]. In metazoans, TFs form up to 8% of the known proteome [9,10], with DNA binding
domains and affinities being highly conserved between metazoans [11–13]. They bind specific DNA
motifs that are clustered in relatively short cis-regulatory elements (CREs) that can be categorized as
promoters, enhancers and insulators [14]. The exact function of an element depends on the combin-
ation of bound transcription factors, which is influenced by motif specificity, distance between motifs
and motif directionality [15–19]. Core regulatory modules and pathways involved in germ layer and
axis formation are deeply conserved in metazoans [20].
A useful abstraction to study transcription regulation is a network of transcription factors and their

target genes. This concept of a gene regulatory network (GRN) was introduced in 1969 by Roy Britten
and Eric Davidson and later experimentally demonstrated in sea urchin embryos [21,22]. GRNs serve
to predict the effect of transcription factor expression on gene transcription and to derive testable
hypotheses for validation. More generally, they function to model cell type specification and differenti-
ation in development as well as regulatory perturbations in disease. GRNs have been constructed,
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mostly based on experimental loss-of-function and gain-of-function studies, for a variety of developmental
models. Examples include germ layer formation in echinoderms [23–25] and frogs [26–29], neural crest forma-
tion [30,31], the Drosophila gap gene network [32] and hematopoietic development [33–35]. However, experi-
mental elucidation of a limited number of interactions is hard to scale. Regulatory interactions are highly
context-specific [17,36] and most remain unknown [8,37].
Computational inference of genome-wide GRNs was made possible with the advent of expression microar-

rays. Expression levels between transcription factors and their target genes tend to correlate [38] and genes
with similar mRNA expression patterns are more likely to be regulated by a common transcription factor
[39,40]. This led to the conception of gene co-expression networks, where functional connections between
genes are inferred by expression pattern similarity. WGCNA [41] and ARACNe [42] were among the first gene
co-expression-based tools and remain popular. Presently, a multitude of GRN inference methods exists.
Reviews on the technical details can be found here [14,43–45]. Recent advances in experimental and computa-
tional techniques means that GRN inference has progressed beyond simple co-expression. In this review, we
will highlight three approaches that have the potential to significantly impact GRN modeling: (1) moving from
one modality, gene expression, to multi-omics, (2) single cell sequencing for cell type-specific signal and (3)
neural networks as flexible gene regulatory models (Figure 1).

Multi-omics to capture gene regulation
Gene regulation by TFs is mediated through CREs including promoters and enhancers. By incorporating TF
binding at enhancers, regulatory networks can be constrained by direct, causal relationships. Ideally, binding of
TFs would be determined experimentally with chromatin immunoprecipitation followed by sequencing
(ChIP-seq) [46] or related techniques [47–49]. While large compendia of TF binding profiles in different cell
types have been collected for humans [37], this effort remains unfeasible for less well-studied organisms,
including most developmental model systems. With sufficient training data, TF binding can be computationally
imputed [50–65], however, this does not necessarily generalize across species [66]. As a result, most current
approaches use relatively simple models that combine experimentally measured CRE activity with TF binding
motifs to computationally predict TF binding.
Putative CREs and their activity can be mapped genome-wide using chromatin accessibility assays, such as

DNase I hypersensitive sites sequencing (DNAse-seq) [67] and Assay for Transposase-Accessible Chromatin
using sequencing (ATAC-seq) [68]. The number of reads in an element can then be used as a measure for CRE
activity in the experimental system [69]. ATAC-seq especially has been widely applied in developmental model
systems, as it is experimentally relatively straightforward [31,70–78]. The chromatin environment can supply
additional information on CRE location, function and activity. For instance, the transcriptional co-activator
p300 is a histone acetyltransferase and can acytelate lysine 27 of histone H3 (H3K27ac). ChIP-seq using anti-
bodies specific to p300 or H3K27ac can therefore identify active enhancers and promoters [79,80]. Other
histone modifications that can be linked to CRE activity include H3K4me1 (enhancers) and H3K4me3 (promo-
ters) [81].
CRE activity is determined by (in)direct binding of several TFs [82,83]. Therefore, characterizing TF binding

at enhancers can identify their relative importance to the function of an enhancer. One approach to infer TF
binding from genome-wide DNA accessibility is digital genomic footprinting [84], which has been used to dir-
ectly infer GRNs [85,86]. However, sequence bias of the enzymes needs to be taken into account and TFs with
more dynamic binding kinetics, such as some nuclear receptors, are not detected by footprint analysis [87–89].
Regardless, footprint analysis using cleavage bias correction can still be informative, especially in differential
conditions [90,91]. A more routinely applied approach is to combine TF binding probabilities derived from TF
motif scores with DNA accessibility. In some approaches, these are used as priors or constraints on network
topology, where the network is inferred from gene expression measurements [92–94]. In alternative approaches,
TF motif scores and accessibility are combined with RNA expression using regression models or co-variation of
accessibility and expression [95–100].
Enhancers regulate transcription via context-dependent enhancer-promoter interactions [101], usually within

a transcriptionally active domain [102]. Combined with TF binding data, these interactions allow for the infer-
ence of directed GRNs. Enhancer-promoter interactions can be identified experimentally with Chromatin
Conformation Capture techniques [103–105], although this is still uncommon in non-model systems. Inferring
interaction between enhancers to target genes is an active field of research. The most commonly used heuristic
is to link enhancers to the nearest gene. However, this heuristic is often still incorrect [106,107]. Accuracy can
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be improved by combining enhancer to gene distance with TF-target gene co-expression [108]. Finally,
Activity-by-Contact based models significantly outperform the nearest gene heuristic by using enhancer to
gene distance and enhancer activity [109].
By combining gene expression data with at least one source of enhancer data (e.g. accessibility or interaction

data), directed regulatory networks may be inferred with significantly higher accuracy compared with trad-
itional co-expression approaches [98,110,111]. Not only does the combined approach filter out spurious interac-
tions and add causality, but it also reduces the biases introduced by singular approaches. Therefore, we believe
that the use of multiple omics will become dominant in all modalities of GRN inference approaches.

Figure 1. Schematic overview of different gene regulatory network inference approaches.

(A) Classical approaches, e.g. correlation, regression or mutual information, can be applied on gene expression data to generate undirected

co-expression networks. With prior knowledge about TFs the directionality between TF and target gene can be inferred, however, the directionality

between two TFs cannot be established. (B) More recent approaches combine multiple types of genome-wide functional data (multi-omics), with

either a classical approach or neural networks to identify directed gene regulatory networks. Single cell sequencing allows for the identification of

cell type specific regulatory networks.
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Single cell sequencing for cell type specific regulation
Developmental transcription regulation has mainly been studied by either in situ hybridization [112], which
maps the spatial distribution of gene expression of a small set of genes, or bulk gene expression studies [113].
The latter measures the whole transcriptome as a compound signal of all the different cells present in the
sample. Single cell sequencing is a fast developing technique to measure the gene expression of individual cells
separately, with newer techniques even capable of tagging cells to their spatial coordinates [114,115]. These tech-
niques increase the number of measurements from a handful to several (tens to hundreds of) thousands. This
substantial increase in data allows for interesting new ways of GRN inference, but poses new challenges as well.
The output of a single cell experiment generally consists of count tables containing several thousands of cells

with low coverage, e.g. only a few thousand of measured transcripts per cell. The low coverage makes the detec-
tion of relations between lowly expressed genes difficult. Although it is possible to artificially increase the
sequencing depth by simulation (imputation), this does not seem to improve GRN inference [116,117].
Furthermore, it is important to note that cells are repeated measures [118], meaning that the cells come from
the same environmental and genetic background, which breaks most statistical assumptions. Computationally
clustering related cells, called pseudobulk or meta-cells [119], and using their combined signal solves the issues
of low coverage and repeated measures, and still yields cell-type specific signals.
Since fundamentally there are small differences between bulk and pseudobulk data, it is not uncommon to

apply bulk GRN inference approaches, such as gene co-expression, ARACNE [42] and GENIE3 [120], to pseu-
dobulk data without much adjustment.
The large number of cells, however, allows for specialized single cell GRN approaches. These include mutual

information in combination with partial information decomposition [121], gene coexpression [122], self organ-
izing maps [123], or a combination of single cell RNA-seq and single cell ATAC-seq coexpression and/or bayes-
ian ridge regression [124–126]. Other approaches first order cells by their inferred temporal ordering and then
infer the gene-gene relations on this pseudotime, with the assumption that these orderings, also called trajector-
ies, represent cell lineages [127]. Pseudotime can be estimated by simply following the first principal compo-
nent, or finding the minimal spanning tree between clusters [128], where more advanced methods smoothen
the tree [129,130]. A downside of these techniques is that they can not infer the directionality of the relation-
ships. To computationally obtain this directionality, the ratio between spliced and unspliced transcripts per
gene can be used as a proxy for whether or not a gene is actively transcribed. By applying this logic across all
genes and all cells, one can infer a vector field of velocities of cells which then can be used to get a temporal
cell ordering with a start and end [131,132]. These orderings then allow for inferring ordinary differential equa-
tions [133,134], Granger causality [135–137], boolean networks [138] or autoregressive models [139]. Most of
these methods assume Gaussian noise for gene expression, even though transcription occurs in bursts
[140,141], a phenomenon that can only be captured on a single cell level. These dynamics can be modeled as a
Markov process including transcriptional bursting and degradation [142]. Theoretically these mechanistic
models could be great tools for hypothesis generation, but more work is needed to prove their practical useful-
ness. Even though the aforementioned GRN inference methods were developed for single cell data specifically,
many fail to show consistent improvement over methods that were developed for bulk data, and are seemingly
barely any better than purely random models [117,143,144]. Moreover, the added complexity and number of
cells leads to computational scaling issues, with some methods taking several days to weeks to finish [117].
Single cell sequencing has the advantage that it disentangles the composite signal present in all biological

tissues. The increased number of measurements allows for more complex GRN definitions and inference.
Finally, it allows for the inference of fine grained temporal orderings necessary for GRN inference. Even
though single cell GRN inference methods have not yet brought the improvements over bulk methods we
hoped for, we still expect single cell GRN inference to become the new standard of the field.

Neural networks as flexible gene regulatory models
Computational inference of a GRN depends on a lot of implicit assumptions. For example, a common assump-
tion is that the relationship between genes is additive, which means that the effect on a gene equals the sum of
the effects of two regulators separately, but in reality, gene-gene relationships are more complex and for
example can include multiplicative effects [145]. A type of model that requires little explicit specification about
the possible relationships in the data, but automatically learns these relationships, is an Artificial Neural
Network (ANN). ANNs have been successfully applied in a variety of settings, with famously complex
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problems such as protein folding [146], image recognition [147], and the board game Go [148]. The successes
of ANNs in these unrelated fields shows great promise for application in the field of gene regulatory inference.
Just like GRNs, ANNs consist of nodes and edges. Each edge multiplies the signal from the previous node to

the next, and by applying a function to the sum of all the incoming edges the value in the next node is calcu-
lated. By adding multiple layers of nodes in between the in- and output nodes (this is where the term deep
neural network comes from), a network is formed that is capable of learning more and more complex interac-
tions. Learning happens by giving the model examples of input data and expected output, and based on this
information the model iteratively updates (learns) its edge weights. After training, hypotheses can easily be
tested by systematically querying the model for the predicted effect of certain changes. See [149] for an excel-
lent review on the topic applied to genomics.
ANNs in genomics were first applied to predict the output of a genomic assay, for instance histone modifica-

tions in a certain cell type, by using only the DNA sequence as input. Early models showed that convolutional
neural networks are capable of predicting functional effects of noncoding variants from short (10–1000 bp)
genomic sequences alone [150,151]. These types of models can be used to discover composite motifs and peri-
odic binding [15]. Additionally, these models are capable of learning complex and distal biological relations, as
increasing the input sequence to 131 kb still improves accuracy [152].
Whereas ANNs in genomics have mainly been popularized on sequence data, adoption for GRN inference

has been relatively slow. Different approaches consist of self-organizing maps [123], variational autoencoders
[153], extreme learning machines [154], or graph convolutional neural networks [155,156]. Even though these
networks differ in architectural designs, they all report higher levels of accuracy over non-ANN approaches.
However, without independent benchmark studies it is hard to verify these results.
The main strength of ANNs is that they can approximate any continuous relationship in the data [157,158],

with the downside that large amounts of training data are required. This makes the combination of single cell
sequencing and ANNs promising, as current single cell GRN inference approaches have scaling issues [117] and
ANNs train relatively fast with the use of GPUs (specialized graphics cards). Fundamentally, understanding how
ANNs work is, however, much harder than understanding the classical models typically used for GRN inference.
This causes ANNs to be met with skepticism and the persistent misconception that ANNs only function as a
black box for predictions and its logic can not be interpreted [159]. We expect ANNs to become commonplace
in the field of GRN inference due to their successes in other fields, ease of implementation with high-level pro-
gramming libraries [160,161], and availability of sufficient training data due to single cell sequencing.

Discussion
Traditional GRNs, mostly based on gene co-expression, have so far served as a useful abstraction to understand
regulatory dynamics in developmental systems. However, the way GRNs are currently derived suffers from two
fundamental problems. First, the classic GRN that describes TF to target gene relations remains a simplified
model and, by design, cannot properly reflect the full complexity of gene regulation. In addition, they are
mostly based on mRNA expression as a measure of protein expression, even though this relation is not always
linear [162]. In addition, any other types of regulation between transcript and protein product, such as mRNA
degradation and post-translational modification, are usually ignored. Second, experiments generally have more
features (i.e. genes measured) than samples which is also known as ‘the curse of dimensionality’. In this under-
determined system, many different models can potentially fit to the data, and it is both practically and theoret-
ically impossible to identify the correct model with certainty [163]. It then should not come as a surprise that
benchmarks consistently demonstrate that the quality of the inferred GRNs is low [143,144,164–168]. Based on
these observations it is clear that our current approach to infer GRN is not sustainable and design changes are
needed. Ultimately, we expect the field to move towards GRNs inferred from neural networks trained on single
cell multi-omics data.
Having said that, it is not enough to just naively apply single cell multi-omics ANNs. By adding more

modalities, and making GRNs more complex, networks become even more underdetermined. This is why most
multi-omics approaches use the new modalities to prune the possible TF-target gene relations, which actually
reduces the degrees of freedom [98,122,125,126]. Moreover, one can use time-series data to further prune
TF-target gene interactions [169], although time-series multi-omics GRN inference tools are still relatively
uncommon [170–173]. In addition, computational methods such as regularization [174] and dropout [175]
constrain the problem in such a way that you end up with the simplest fit out of likely possible fits. In addition,
recent developments have made it possible to measure multiple modalities in the same cell, such as combined
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ATAC-seq and RNA-seq [176–178], which offers new, exciting opportunities for combining single cell sequen-
cing with multi-omics data. ANNs, finally, have been made relatively easy to implement, can learn any type of
interaction, and make no assumptions about the data (such as normality), which makes them extremely power-
ful GRN tools. However, it is not yet clear what the optimal architecture is for these networks, and interpreting
the learned network from the ANN remains difficult.
GRN inference has become a data science, and it is time that we start treating it as such. Integrating multiple

omics, several thousands of cells, and training complex machine learning models requires specialized knowl-
edge. Common mistakes, such as treating cells from the same sample as independent [118], double dipping
[179], and data leakage [180], can be avoided by proper data science training, but are unfortunately still
common. Comparing the quality of GRN inference methods requires standardized benchmarks with multiple
datasets, preferably a mix of experimental data and simulated data [181–183]. Simulated data has the advantage
that the ground truth is known which makes benchmarking straightforward, but has the clear disadvantage
that the quality of simulated data depends on its assumptions and may actually not be representative of real
biological data. The DREAM challenges [164,184] and BEELINE platform [144] are great examples, with prede-
fined datasets and quality metrics. Only by measuring network accuracy in equal settings will it be possible to
properly compare methods. It is however important to note that the goal of GRN inference is to gain mechan-
istic insights, as opposed to getting an optimal benchmark score, which makes fair comparison between
approaches hard.
All together, we expect the field of transcription regulation in development to move towards increasingly

multimodal GRN inference techniques to identify causal relations between genes. Single cell sequencing adds a
cell type-specific precision which bulk sequencing can not provide. Finally, we expect the adoption of artificial
neural networks as the field matures in technology and formal training, as these methods are inherently more
powerful as previously used techniques.

Perspectives
• Gene regulatory networks have served as powerful models to understand gene regulatory pro-

grams in development and disease. Amongst others, these networks have been applied to
model developmental patterning, to identify relevant transcription factors for cell fate transi-
tions and to characterize deregulated transcriptional programs in disease.

• We believe three relatively recent developments will impact the computational inference of
GRNs. The combination of multiple data modalities, such as RNA expression and DNA acces-
sibility, help to constrain GRN topology and to predict directed networks. Single cell sequen-
cing will become the de facto standard, as it allows for cell type-specific models and is able
to provide the high number of measurements that are needed. Finally, artificial neural networks
have the capability to create flexible and powerful models of gene regulation, which will
benefit efficient and accurate GRN inference.

• The developments outlined above have the potential to significantly improve GRN inference.
To fully exploit these approaches we have to implement common data science practices, and
develop community-driven benchmarks to consistently measure the performance of different
techniques.
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