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For decades research has centered on identifying the ideal balanced skin microbiome
that prevents disease and on developing therapeutics to foster this balance. However,
this single idealized balance may not exist. The skin microbiome changes across the life-
span. This is reflected in the dynamic shifts of the skin microbiome’s diverse, inter-con-
nected community of microorganisms with age. While there are core skin microbial taxa,
the precise community composition for any individual person is determined by local skin
physiology, genetics, microbe–host interactions, and microbe–microbe interactions. As a
key interface with the environment, the skin surface and its appendages are also con-
stantly exchanging microbes with close personal contacts and the environment.
Hormone fluctuations and immune system maturation also drive age-dependent changes
in skin physiology that support different microbial community structures over time. Here,
we review recent insights into the factors that shape the skin microbiome throughout life.
Collectively, the works summarized within this review highlight how, depending on where
we are in lifespan, our skin supports robust microbial communities, while still maintaining
microbial features unique to us. This review will also highlight how disruptions to this
dynamic microbial balance can influence risk for dermatological diseases as well as
impact lifelong health.

Introduction
The skin harbors complex microecosystems of bacteria, fungi, and viruses, each with distinct adap-
tions to survive on the skin. However, there is no single definition of a balanced skin microbiome. For
any individual the microbial balance is dynamic, maturing with us as we grow and navigate through
the environments around us. Across our lifespan, the stability and function of skin microbial commu-
nities are driven both by interactions with the host and between microorganisms.
Human skin varies in its physical characteristics across body sites [1–4], ranging from oily / seba-

ceous to moist or dry, resulting in distinct microenvironments that promote unique microbial popula-
tions. Sebaceous sites (e.g. face, chest, and back) have a high density of hair follicles and sebaceous
glands. The lipid rich sebum produced by these glands promotes colonization by lipophilic taxa, pri-
marily Cutibacterium bacteria and Malassezia fungi [4–6]. Moist sites (e.g. elbow crease, axilla, and
groin) have high concentrations of apocrine sweat glands and are dominated by Staphylococcus spp.
and Corynebacterium spp.[4]. In contrast with other sites, dry sites (e.g. forearm, abdomen, and
palms) have the lowest abundance yet greatest microbial diversity, with significant populations of
Cutibacterium, Corynebacterium, and Streptococcus species [2]. Thus, at a microenvironmental level,
the balance of skin microbial communities is partially dictated by these physiologic and abiotic fea-
tures of the skin niche.
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The skin is an immunologically rich organ. To maintain the skin barrier tissue-resident immune cells collect-
ively sample and respond to microbial products [4], produce antimicrobial peptides (AMPs) [7], and ultimately
prevent penetration of skin microbes into deeper skin layers or open wounds. A hallmark of a healthy equilib-
rium among skin microbial communities is the maintenance of skin barrier integrity. This is accomplished by
promoting skin cell maturation [8,9], training the immune system [10–12], and preventing pathogen over-
growth through niche exclusion and competitive interactions such as the production of antimicrobials [13–16].
Disruption of this equilibrium is characterized by the overgrowth of some bacterial species, such as
Staphylococcus aureus, and an overall loss of community diversity [2]. This dysbiosis can lead to impaired
wound healing, increased inflammation, and greater risk for infection [2,17–19].
Finally, microbe–microbe interactions within the skin microbiome can drive overall community structure.

The three prominent skin taxa, Cutibacterium acnes, Corynebacterium spp., and coagulase-negative staphylo-
cocci (CoNS) are known to mediate other microbial taxa in the microenvironment and have been extensively
reviewed elsewhere [5,20]. Key interactions and recent studies are summarized in Table 1.

Changes with age
Homeostatic skin microbial community structures shift as we age and navigate the environment (Figure 1).
Throughout a lifetime the skin’s physiology changes as the cutaneous immune systems matures and hormones
drive sweat and sebum gland development, which impacts the availability of key nutrients. As a direct interface
with the environment, the skin also continuously shares microbes with the places and people around us. Below
we summarize the shifts in the skin microbiome over the human lifespan and highlight where disruptions to
the skin microbiome at critical age-associated stages influence the risk for disease development.

Birth
The skin’s first substantial introduction to microbes occurs at birth, where the skin is quickly colonized from
the immediate environment. Mode of delivery has been shown to influence the initial community composition
[21–23]. For example, the skin microbiome of vaginally delivered newborns is dominated by vaginal-associated
flora, primarily Lactobacillus and Prevotella, and contains a higher abundance of Candida albicans [21,22,24].
Newborns delivered via cesarean section have microbiomes containing maternal skin-associated microbes,
including Staphylococcus, Streptococcus, Corynebacterium, and Cutibacterium. Cesarian-delivered newborns
intentionally exposed to their mother’s vaginal flora at birth have microbiomes containing both skin- and
vaginal-associated flora [25]. Although these initial communities are transient [22], the order and timing of
species colonization influences how strains subsequently interact with one another [26,27]. These priority
effects can shape future community structures and have long term implications for the skin, its microbiome,
and overall health.

Infancy and childhood: initial microbial exposures
Skin microbial compositions gradually shift throughout infancy and childhood [22]. These communities are
shaped by the skin’s functional maturation, the microbiomes of close care givers, and their environment [28–
30]. Particularly in infancy initial microbial exposures prime immune development [26,31] and strengthen the
skin barrier through promoting proper keratinocyte differentiation and epidermal repair [8].
Newborn and infant skin has a greater water content, higher pH, suppressed sebum production, faster epi-

dermal turnover, and greater antimicrobial properties [32,33]. Within hours after birth the skin surface begins
to acidify [29] and initially homogenous microbial communities begin to diverge into body site-specific com-
munities [26,34]. Continued site-specific skin maturation promotes reorganization of the infant microbiota
across body habitats over the first few months [22]. Within 3–6 months, associations between microbial taxa
and skin metabolic function (e.g. lipid production and pH) are established [35]. Compared with adults,
reduced sebum production in early life is associated with lower Corynebacterium, Cutibacterium and
Malassezia abundance, increased staphylococci and streptococci, and a mycobiome dominated by Candida
species [22,24,34,36–39]. As children age, skin further acidifies and produces more sebum lipids, which pro-
motes a gradual decline in acid-sensitive streptococci and increase in overall community diversity [32,33,40].
Commensal colonization also stimulates immune cell maturation, particularly regulatory T-cell (Treg) local-

ization to developing hair follicles shortly after birth [41–43]. Specific training of commensal antigen-specific
Tregs is required for establishing immune tolerance [41] that prevents inflammation against this commensal
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Table 1 Key microbe–microbe interactions on the skin Part 1 of 2

Microbe Producing
the Molecule

Anti-microbial molecule
(Type) Inhibited Microbes Proposed Mechanism Source

Cutibacterium acnes Acnecin (peptide) non-anecin
producing C. acnes

Exact mechanism Unknown. Proposed
to help C. acnes phylotypes maintain
dominance within a pore.

[105,164]

Corynebacterium
Cutimycin (thiopeptide) MRSA Unknown [14]

Staphylococcus
epidermidis

Propionic acid (SCFA) MRSA Lowers local pH. This can limit the
growth of several pathogens while not
significantly affecting growth of skin
commensals.

[165-168]
Escherichia coli
Candida albicans

Propionic acid (SCFA) Staphylococcus
epidermidis

Inhibit bacterial biofilm formation. These
SCFA also influence melanocyte,
keratinocyte, and sebocyte gene
expression, and modulate host
inflammation.

[114,
169-173]Isobutyric acid (SCFA)

Isovaleric acid (SCFA)

Corynebacterium
accolens

Unidentified protein Staphylococcus
aureus

Inhibits biofilm formation [13]

MRSA
LipS1 (lipase) Streptococcus

pneumoniae
Metabolizes host lipids into free fatty
acids that inhibit bacterial growth

[174,175]

Unidentified secreted protein(s) Staphylococcus
aureus

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[176]

Corynebacterium
amycolatum

Unidentified secreted protein(s) Staphylococcus
aureus

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[176]

Corynebacterium
striatum

Unidentified secreted protein(s) Staphylococcus
aureus

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[176]

Corynebacterium
pseudodiptheriticum

Unidentified secreted protein(s) Staphylococcus
aureus

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[176]

Unidentified secreted factor Staphylococcus
aureus

Bactericidal against S. aureus when it
expresses agr-dependent virulence
factors

[177]

MRSA

Staphylococcus
capitus

Capidermicin (AMP) Lactococcus lactis Forms pores in membranes [178]
Micrococcus leuteus
Staphylococcus
aureus
Staphylococcus
intermedius
Staphylococcus
pseudointermedis

Unidentified bacteriocin(s) Listeria
monocytogenes

Unknown [16]

Staphylococcus
aureus
MRSA
Streptococcus
alagactiae
Streptococcus Bovis

PSM-beta 1 to PSM-beta 6 Micrococcus leuteus Induces cell lysis [179]
PSM 1 to PSM 4 Cutibacterium acnes Act synergistically for targeted killing [180]

Continued
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later in life [10]. However early exposure does not guarantee future tolerance. The simultaneous recognition of
multiple pathogen-associated molecules and toxins (e.g. S. aureus alpha-toxin) during early colonization events
limits pathogen-specific Treg formation [44]. Without microbial-specific Tregs, S. aureus exposures in later life
leads to inflammation.

Table 1 Key microbe–microbe interactions on the skin Part 2 of 2

Microbe Producing
the Molecule

Anti-microbial molecule
(Type) Inhibited Microbes Proposed Mechanism Source

Staphylococcus caprae Unidentified autoinducing
peptide

Staphylococcus
aureus

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[181]

MRSA

Staphylococcus
epidermidis

Esp (serine protease) Staphylococcus
aureus

Inhibits biofilm formation and destructs
biofilms

[182]

Unidentified AMP Staphylococcus
aureus

Targeted killing [183]

Staphylococcus
hominis

Unidentified AMP Staphylococcus
aureus

Targeted killing [183]

Hominicin (AMP) VRSA Unknown [184]
Unidentified bacteriocin(s) Listeria

monocytogenes
Unknown [16]

Streptococcus
alagactiae
Streptococcus Bovis

Staphylococcus
mutans

Mutacin 1140 (AMP) VRSA Unknown [184]

Staphylococcus
lugdunensis

Lugdunin
(thiazolidine-containing cyclic
peptide, AMP)

VRSA Unknown [184]

Lugdunin
(thiazolidine-containing cyclic
peptide, AMP)

Enterococcus
faecium

Direct killing [185]

Enterococcus
faecalis
Listeria
Monocytogenes
Staphylococcus
aureus
MRSA
Streptococcus
pneumoniae

Lugdunin
(thiazolidine-containing cyclic
peptide, AMP)

Staphylococcus
aureus

Direct killing and amplification of innate
immune responses

[186]

Staphylococcus
simulans

AIP-I to AIP-III Staphylococcus
aureus & MRSA

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[187]

Staphylococcus
warneri

AIP-I to AIP-II Staphylococcus
aureus & MRSA

Inhibits the agr quorum sensing system
and prevents agr-dependent virulence
factor expression

[188]

Unidentified bacteriocin(s) Staphylococcus
aureus

Unknown [16]

Streptococcus
alagactiae

Summary table of prominent and recently identified antimicrobial molecules produced by major skin bacterial taxa to inhibit other microbial community members and/or
potential pathogens. The table is organized by the taxa that produces the antimicrobial molecule(s). Where possible the molecule’s proposed mechanism of action is included.
Abbreviations: AIP, Autoinducing peptide; AMP, Antimicrobial peptide; MRSA, Methicillin resistant Staphylococcus aureus; MSSA, Methicillin sensitive Staphylococcus aureus;
PSM, phenol-soluble modulins; SCFA, Short chain fatty acids; VRSA, Vancomycin resistant Staphylococcus aureus.
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In early infancy, the skin microbiome of close caregivers further contributes to shaping the infant skin
microbiome. At 6 weeks of age, infant and maternal skin microbiomes display very similar community struc-
tures [22], and throughout childhood the skin will continue to harbor distinct microbial taxa from caregivers
[22,40,45]. However with age, older infants have greater skin microbial diversity and more microbes derived
from their rural or urban environments [30] and the similarity between a mother and infant microbiome grad-
ually declines [30,45]. Cutaneous fungal populations are also more diverse in childhood with greater interper-
sonal variation [37,46,47]. These early life variations and interventions in environmental microbial exposures
influence the establishment of the skin microbiome and can modulate lifelong immune responses [48–51].
Disruption to the establishment of this equilibrium [26,52] is associated with greater inflammation and can
increase a child’s risk for atopic dermatitis and allergy development.

Figure 1. The dynamic balance of the skin and its microbiome over the lifespan.

Over a lifetime the skin’s physiology changes as an individual’s cutaneous immune systems matures and hormones drive sweat and sebum gland

development. These changes are associated with shifts in the relative abundance of prominent skin microbial taxa and shifts in the overall microbial

community diversity. Microbiome data displays the average relative abundance of the top ten microbial taxa for each group as assessed by

high-throughput sequencing of the bacterial 16S ribosomal RNA gene. Taxa with a relative abundance >20% in at least one group are bolded.

Groups include newborns born either through vaginal delivery or cesarian section [22] as well as dry, moist, and sebaceous sites for infants (1 year

old) [40], children (5 years old) [40], adolescents (Tanner Stage III) [46], adults (20–40 years old) [3], and the elderly (60 and older) [137]. Since sexual

differences in skin microbial composition become more pronounced over the course of puberty [46], relative abundance plots for adolescent, adult,

and elderly males and females are displayed. Inner circles represent relative microbial diversity, sebum production, sweat production, surface pH,

skin integrity, and immune function throughout life [33,46,87,144,152,153].
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Microbial imbalance in pediatric atopic dermatitis
Atopic dermatitis (eczema; AD) is an inflammatory skin disorder, characterized by dry, inflamed, itchy skin
patches. The typical age of onset is between 3–6 months old and it affects roughly 20% of infants and children,
15% of adolescents, and 10% of adults [53,54]. This early age of onset and evidence of skin microbiome dysbio-
sis preceding AD onset [52], underscore how early life microbial exposures may influence AD risk.
Additionally, many children grow out of AD and experience partial or full resolution of symptoms as they
enter adolescence or adulthood [54]. This showcases the important influence of the maturation of skin micro-
biome in AD’s natural course.
Skin barrier dysfunction and immune imbalance contribute to AD’s pathogenesis. In AD patients, both

affected and non-affected areas of skin display increased permeability [55], reduced water retention, high pH
[56], and altered lipid composition [57–59]. Subsequently external microorganisms, particularly
Staphylococcus aureus, can penetrate deeper skin layers. Stressed keratinocytes and microbial antigens trigger
type-2 helper T-cell-driven immune responses [60,61], which further exacerbates barrier defects through
down-regulation of filaggrin [62,63], disruption of tight junctions, and reduction in stratum corneum lipids [59].
High levels of type-2 cytokines also reduce antimicrobial peptide production, further increasing the skin’s suscep-
tivity to S. aureus colonization [63]. Thus, a perpetual cycle of poor barrier function, increased microbial and irri-
tant penetration into deeper skin layers, and increased inflammation then itching and further skin damage is
developed.
Elevated S. aureus abundance can precede AD development [26,52] and several S. aureus virulence factors

propagate AD related epidermal damage and inflammation [64–66]. Additional microbiome changes in AD
include a reduction in Cutibacterium acnes, Corynebacterium, Dermacoccus, Micrococcus, and CoNS and an
increase in Streptococcus and some Malassezia species [58,61,67–72]. These microbial shifts appear to be temporal,
with a loss of community diversity and greater S. aureus dominance preceding and during AD flares followed by a
gradual return to baseline following resolution [73,74]. Finally, early colonization with commensal CoNS (e.g. S.
epidermidis and S. hominis) [26] and Gram-negative bacteria reduces the risk of developing AD [75].
Current AD treatment revolves around eliminating exacerbating factors (e.g. contact with allergens and

strong soaps), maintaining skin moisture with emollients and reducing skin inflammation through topical corti-
costeroids or calcineurin inhibiters [54,76]. Many of these interventions effectively resolve the skin dysbiosis
[68,73,74,77–79]. Investigations into potential therapies are increasingly centered around modulating the micro-
biome with oral prebiotics, probiotics and symbiotics [80,81], topical emollients containing probiotics [82], or
microbial transplantation with commensal skin bacteria [75,83–85]. One promising avenue is harnessing CoNS
anti-S. aureus activity. The transplantation of S. epidermidis and S. hominis can diminish S. aureus virulence,
prevent epithelial damage, and reduce inflammation in murine models and clinical trials of atopic dermatitis
(AD) patients [84,86].

Adolescence and puberty: hormonally driven changes
Puberty marks the next major shift in our skin microbial communities. The hormones that drive physical and
sexual development also directly promote structural and functional changes in the skin such as sebum and
apocrine sweat production. This leads to subsequent shifts in microbial composition (Figure 2) [87]. Due to
interpersonal variability in puberty onset and progression, the Tanner staging system measures the degree of
sexual maturation [88,89]. Tanner stage I corresponds to the pre-pubertal stage and stage V corresponds to
adult sexual characteristics. Both cross-sectional and longitudinal studies demonstrate clear shifts in skin
microbiome composition across Tanner stages [36,37,46]. Children at stage I have higher relative abundances
of Streptococcus, Bacteroidota and Pseudomonadota, as well as higher bacterial and fungal diversity compared
with young adults at stage V [36,46]. Furthermore, the young adult skin microbiome is dominated by lipo-
philic microbes, including Corynebacterium, Cutibacterium acnes, and Malassezia [36,37,46], a composition
associated with higher sebum production and serum concentrations of hormones that promote sebum produc-
tion [46].
Puberty is driven by androgens (e.g. dehydroepiandrosterone and testosterone), estrogen, and progesterone

[87]. On the skin androgens promote pubic and axillary hair growth and sex specific hair patterns [87], sebaceous
gland development and increased sebum production [90,91], and apocrine sweat gland development with a subse-
quent increase in body odor [92,93]. Estrogen and progesterone enhance the skin barrier and promote wound
healing through encouraging collagen synthesis and stimulating keratinocyte proliferation [94–96].
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Puberty-driving hormones also modulate immune function in both pro- and anti-inflammatory ways [96]. These
hormonally driven changes in skin physiology lead to changes in the skin microbial communities [46]. For
instance, androgen-driven sebaceous gland development [91] and estrogen modification of the lipid types at the
skin surface [97] promote the survival of lipophilic species, particularly C. acnes and Malassezia restricta [46].
Although apocrine gland secretions are initially odorless, microbial metabolism of their components (e.g.

branched chain amino acids, fatty acids, and glycerol) produces odoriferous compounds (Figure 2) [92,98].
Body odor in children and young-teens is associated with microbial production of isovaleric and acetic acid
(sour odor) and sulfur (rotten-egg odor) [92]. In young adults body odor, particularly from the axilla
[92,98,99], is associated with corynebacterial breakdown of sebum into volatile fatty acids (cheesy odor) and
sulfanylalkanols (oniony odors) [99–101].
While all puberty-driving hormones surge in both sexes, the heightened role of androgens in males and estro-

gens plus progesterone in females foster sexual differences in maturation. As such, sexual differences in skin
microbial composition become more pronounced as puberty advances [46]. Microbial communities of females
become less diverse and have greater prevalence of Cutibacterium with increasing Tanner stage [46]. Skin micro-
biomes of males display more inter-individual differences and greater diversity, with higher relative abundance of
Corynebacterium, Staphylococcus, Streptococcus, and Haemophilus [46]. Other hormonally dependent skin physio-
logical (lower pH, increased skin thickness) and immunological changes during puberty likely also account for
many maturation-associated skin microbial shifts, but their influence is less defined [36,46].

Figure 2. Differences in the skin, microbiome, and body odor production in early and late puberty.

In childhood and early puberty (Tanner Stages I to II) the skin microbiome is highly diverse and body odor is associated with CoNS (e.g.,

S. epidermidis and S. hominis) production of volatile fatty acids (e.g., propionic, acetic, and isovaleric acid; sour odors) and sulfur (rotten-egg odor)

[92]. As puberty advances, steroid hormones promote sebaceous and apocrine sweat gland development [90,91], modify the types of lipids present

in sebum [90,97], and enhance the skin barrier [94–96]. In later puberty (Tanner Stages IV to V), increased lipid production and altered lipid content

is associated with a skin microbiome dominated by lipophilic taxa [46]. While breakdown of sweat and sebum components into volatile fatty acids

still occurs, body odor in young adults becomes more associated with Corynebacterium spp. metabolism of sebum and sweat components into

sulfanylalkanols (e.g., 3SH and 3M3SH; oniony odors), and volatile organic compounds (e.g., 3H3MHA; cumin like odors) [92,98–101]. BCAA:

Branched chain amino acids; CGSC: Cystine-Glycine-S-conjugate; CoNS: Coagulase negative Staphylococcus spp.; GC: Glutaminyl-conjugate;

3H3MHA: 3-hydroxy-3-methylhexanoic acid; 3M3SH: 3-methyl-3-sullanylhexanol; 3SH: 3-sulfanylhexanol.
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Collectively, puberty marks major shifts in the skin microbial community structure, metabolic complexity,
and function. Microbiome imbalance during this process can promote several microbe-associated skin disorders
including acne vulgaris.

Cutibacterium acnes phylotype imbalance in acne vulgaris
Several microbe-associated skin disorders often begin during puberty, including acne vulgaris hidradenitis sup-
purativa, and psoriasis, highlighting the influence of puberty-driven skin and microbial shifts in disease patho-
genesis [46]. Here we highlight acne vulgaris (acne), due to the strong support for a microbiome-driven
association. Although there are microbial disturbances associated with hidradenitis suppurativa and psoriasis,
no single microbe or consistent pattern of dysbiosis has been implicated [61,102,103]. Further research into the
roles of the microbiome in these conditions are needed.
Acne affects ∼85% of adolescents and young adults (12–25 years old) [104]. Mild acne is characterized by

clogged hair follicles while severe cases present with inflammatory, painful papules, pustules, nodules or cysts.
Like how individuals experience resolution of AD as they enter adolescence, acne tends to resolve as individuals
mature out of adolescence and enter adulthood. This further highlights how the natural age associated evolu-
tion of microbial community structures influence the course of a disease.
Our understanding of acne’s pathogenesis recently underwent a drastic shift. Cutibacterium acnes is a lipo-

philic bacteria that dominates sebaceous skin sites [3,105]. Each pore is dominated by a single, nearly clonal
lineage [105] and individuals have their own unique mix of C. acnes strains [3]. Earlier research suggested that
increased sebum production and C. acnes over-proliferation triggered inflammation, abnormal keratinocyte pro-
liferation, and pore duct obstruction [106]. However, healthy individuals have similar to slightly higher C.
acnes bioburden [107–110]. Recent works support a dogma where hyper-proliferation of particular C. acnes
phylotypes (phylotypes IA1, IA2, 1B1, and IC), reduced C. acnes phylotype diversity, and collective skin micro-
bial dysbiosis triggers the cutaneous inflammation underlying acne development [105,108,111,112]. These acne
associated phylotypes tend to induce more inflammation, display elevated porphyrin production [113], and
exhibit excessive lipase activity [114]. The fatty acids produced by lipase metabolism of sebum subsequently
attract neutrophils and promote hyperkeratosis [114].
Mild acne is generally treated with topical benzoyl peroxide and/or a topical retinoid [115]. Topical then oral

antibiotics followed by oral isotretinoin is the mainstay for moderate-severe or refractory acne treatment [115].
Concerns for rising antibiotic resistance and isotretinoin’s side effects have driven efforts to identify new ther-
apies designed to prevent or reverse the hyperproliferation of C. acnes strains and equilibrate the microbiome.
One promising avenue is selective augmentation of S. epidermidis over C. acnes [116,117] through sucrose sup-
plementation [116] or a probiotic containing encapsulated S. epidermidis and glycerol [118]. Supplementing
the skin microbiome with topical probiotics derived from Lactobacillus is another promising avenue [119].
Additional future therapeutics include; i) topical application of anti-microbial peptides [72,120], ii) bacterio-
phages that strategically infect C. acnes [121], and iii) using oral antibiotics to modulate the gut microbiome
and indirectly alter the skin microbiome [122–124].

Homeostasis throughout adulthood
The adult skin microbiome is stable over the span of years [125]. Collectively, established microbial-microbial
interaction networks (Table 1), lasting adult skin physiology, and resilient skin immunity maintain balanced
adult skin microbial communities. Adult skin microbiomes are dominated by Cutibacterium, Corynebacterium,
Staphylococcus and Malassezia species [4]. Each body site has a unique microenvironment and particular sweat
and sebaceous gland density that dictates the prevailing microbial composition [4]. Once adulthood is reached,
matured and enduring skin physiology promotes consistent sebum production, sweat composition, and surface
pH, which collectively provide reliable body site microenvironments and nutrient pools [126,127]. The immune
system also reaches full maturation in our early twenties [128]. Unwavering immune function [129,130] further
encourages appropriate, reliable responses to our established commensal microbiome and infectious insults.
These intrinsic features enable large portions of microbial communities on the skin to persist, despite daily
environmental changes [125]. Microbial community stability is evidenced by the longitudinal fixation of highly
abundant species (e.g. C. acnes) [125] along with the persistence of several low abundant taxa, which contribute
to our unique microbial signature [125,131].
A portion of the taxa within the skin microbiome are also influenced by environmental surroundings. For

example, individuals living in Egypt often have a greater abundance of bacteria within the Pseudomonadota
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phyla [132]; individuals in Cameroon have greater Staphylococcus and Micrococcus [133], those in South Asia
tend to have greater abundance of Corynebacterium and Streptococcus [134]; while individuals in Japan have
high abundance of Cutibacterium [133]; and Americans and Europeans have greater Corynebacterium species
abundance [135]. Collectively this illustrates how individuals living in different geographic locations maintain
slightly different skin microbial patterns. Individuals living or working in rural communities also contain more
soil and agriculture associated microbes within their skin microbiome [136–138]. We also share more microbial
taxa with those living in the same residence [131,139,140] and skin microbiomes become more similar the
longer individuals cohabitate [141,142]. In short, the people in our lives, local environment, and geography,
partially influence our skin microbial balance. The degree to which a portion of your microbiome shifts with
environment changes also appears to be person and situation specific [140–142].

Advancing age
Intriguingly, of the prominent human microbiomes, the skin microbiome is the best predictor of age [143].
With advancing age, distinct skin changes occur including the decline of collagen synthesis, extracellular matrix
fragmentation, and a reduction in skin cell regeneration [144]. These changes can manifest as skin wrinkles
and more consequently impaired wound healing. Furthermore, these aging related changes shape microbiome
composition.
As the skin barrier changes it can lose its ability to retain water, resulting in a compensatory increase in

natural moisturizing factor (NFM) production [145]. NMFs both absorb water and can promote bacterial pro-
liferation and adherence to the skin [146]. Subsequently, increased NMFs is associated with greater abundance
of numerous taxa, such as Corynebacterium, Micrococcus, Streptococcus, Anaerococcus [127], and a reduction in
Cutibacterium [127,144]. Skin microbial diversity also broadly increases [127,137,144,147]. Decreasing sebocyte
area and sebum production after menopause in females correlates with loss of Cutibacterium and an increase
in Corynebacterium, Streptococcus, Acinetobacter, and Corynebacterium abundance [127,144,148–150]. In
males, sebum secretion declines significantly slower so they maintain greater Cutibacterium abundance as they
age [137,151].
With age, immune system function also slowly declines [128,130,152,153]. Elderly individuals sustain a low-

grade inflammatory state with increased systemic concentrations of pro-inflammatory cytokines [152]. Within
the skin Langerhans cells are gradually lost from the epidermis [154]. Cutaneous dendritic cells and the
remaining Langerhans also display impaired ability to migrate to lymph nodes and present antigens to T-cells
[155,156]. Subsequently, this disrupted antigen presentation along with systemic and local defects in immune
signaling ultimately lead to slower immune responses, reduced antimicrobial activity, and impaired wound
healing [153,157]. Collectively, impaired immune defenses and increased prevalence of potentially pathogenic
bacteria (e.g. beta-hemolytic Streptococci) contribute to the substantial increased risk for skin infection in the
elderly and difficulty clearing the infection [153,158,159].
A myriad of dermatologic diseases are associated with advancing age, including dry skin, seborrheic derma-

titis, rosacea, disrupted wound healing, and chronic wound infections. Although all these conditions are asso-
ciated with skin microbiome dysbiosis, specific underlying bacterial and fungal changes remain elusive
[18,160,161]. One key exception is seborrheic dermatitis, where recent works find increased abundance of
Malassezia and Staphylococcus species to be potential fungal and bacterial biomarkers [162,163]. In tandem
with the numerous works seeking to identify avenues that support a balanced, ‘youthful,’ microbiome through-
out adulthood and later life [144,150,151], greater research into the active role of the microbiome as we age
and in the development of age-associated diseases are needed.

Conclusion
There is no single definition of a balanced skin microbiome. While there are core skin microbial members, for
any individual, the precise microbial composition is dynamic and unique. This dynamic is influenced by the
continuous exchange of microbes with the people we are close to and the world around us. The specific com-
munity structure in a particular skin microenvironment is also partially determined by local skin physiology,
the microbe–immune interface, and complex microbe–microbe interactions. However, on the human micro-
biome scale, the largest and somewhat predictable shifts in our skin microbial community compositions occur
as we, and our skin, age. Future investigations will continue to elucidate the active role of our dynamic skin
microbiome across the lifespan, its implications for dermatologic disease risk and overall health, as well as tar-
geted, microbiome centered therapeutic approaches.
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Perspectives
• The skin and its microbiome are primary interfaces with the environment. The balance of this

microbial community influences our risk for various diseases and lifelong health.

• There is no single definition of a balanced skin microbiome. At a microenvironment level,
balance is dictated by the skin niche along with complex host immune-microbe and microbe–
microbe interactions. For any individual this balance is also dynamic, shifting with us as we
age and navigate the environments around us.

• Future works in the field of skin microbiology will likely continue to explore i) the active role of
our skin microbiome as we age, ii) the complex immune-microbe and microbe–microbe inter-
actions and how they shift over the lifespan, iii) the cutaneous microbiomes of diverse popula-
tion demographics, iv) the microbiome’s influence in protection from and/or disease
pathogenesis, and v) the development of novel therapeutic approaches to strategically modu-
late the microbial balance.
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