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Abstract: Artificial intelligence (AI) has enormous potential to
support clinical routine workflows and therefore is gaining
increasing popularity among medical professionals. In the field of
gastroenterology, investigations on AI and computer-aided diag-
nosis (CAD) systems have mainly focused on the lower gastro-
intestinal (GI) tract. However, numerous CAD tools have been
tested also in upper GI disorders showing encouraging results. The
main application of AI in the upper GI tract is endoscopy; however,
the need to analyze increasing loads of numerical and categorical
data in short times has pushed researchers to investigate applica-
tions of AI systems in other upper GI settings, including gastro-
esophageal reflux disease, eosinophilic esophagitis, and motility
disorders. AI and CAD systems will be increasingly incorporated
into daily clinical practice in the coming years, thus at least basic
notions will be soon required among physicians. For noninsiders,
the working principles and potential of AI may be as fascinating as
obscure. Accordingly, we reviewed systematic reviews, meta-anal-
yses, randomized controlled trials, and original research articles
regarding the performance of AI in the diagnosis of both malignant
and benign esophageal and gastric diseases, also discussing essential
characteristics of AI.
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WHAT IS ARTIFICIAL INTELLIGENCE (AI) AND
HOW IT WORKS

The term AI generically refers to complex computer
algorithms that mimic human cognitive functions, including

learning and problem-solving.1 Machine learning (ML) is a
field of AI that involves computer-based methods to elab-
orate data through algorithms. Conventional ML is based
on hand-crafted algorithms in which researchers, based on
clinical knowledge, manually indicate features of interest of
an input dataset to train the system to recognize discrim-
inative features, and provides appropriate outputs (ie,
solving the problem of interpreting given data).1 The aim of
ML is to find a generalizable model applicable to new data,
which were not included in the training dataset, so that the
computer can learn to interpret previously unknown infor-
mation and provides reliable outputs.2 Learning techniques
are divided into supervised, unsupervised, and reinforce-
ment methods. A supervised learning model learns from
known patterns,2 and requires the training dataset to con-
tain input-output pairs to map new input to output.3

Unsupervised models are designed to classify subgroups of
data according to commonalities without an a priori
knowledge of groups significance.3 In reinforcement learn-
ing, the computer learns from its previous errors, adjusting
the output over time.2

Recently, a derivative of ML referred to as deep learning
(DL) has enthusiastically broken into the scene (Fig. 1). In
contrast to ML, DL is more powerful as it autonomously
extracts discriminative attributes of input data through an
artificial neural network (ANN), often organized as convolu-
tional neural networks (CNNs), which are constituted of mul-
tiple layers of nonlinear functions (Fig. 2).1,4 AI, ML, and DL
are increasingly being integrated into computer-aided diagnosis
(CAD) systems that can be applied to gastrointestinal (GI)
diseases to improve recognition and characterization of path-
ology. The main application of AI in the upper GI tract is
endoscopy. The ability to recognize endoscopic images depends
on individual expertise, being interobserver and intraobserver
variability a limit of endoscopic procedures. CAD tools have
the potential to successfully assist both trainee and expert
physicians to reduce variability in the detection of upper GI
pathology, thus increasing the diagnostic accuracy regardless of
individual expertise, and virtually overcoming current limi-
tations of esophagogastroduodenoscopies (EGDS).5 Besides
luminal imaging, AI has been applied to numerical and cate-
gorical data describing upper GI pathology to automate and
optimize the assessment of diseases, including gastroesophageal
reflux disease (GERD), eosinophilic esophagitis (EoE), and
primary esophageal motility disorders.

As promising as it is, DL has its own limitations as
models cannot apply reason throughout the decision
process, and this may be counterproductive.5 DL models
are black boxes in which the input data and the output
(diagnosis) are known, but the processes by which the
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diagnosis is achieved are not, thus it is difficult to inves-
tigate the rationale for the diagnosis made by DL. In this
regard, science not only is required to provide answers but
also to explain why those are the answers for academic,
legal, and ethical implications.6 Research is already
heading to understand how DL models make decisions to
solve interpretability gaps, and methods to understand the
process of CNN-based choices are being developed. For
example, an option is the use of “heat maps” that indicate
what parts of an image the CNN has analyzed or altering
model input data to appreciate how the outputs change.7

Of note, these highly sophisticated computational
systems are not cost-effective at present and could lead
physicians to rely on machines more than their clinical
judgment while still retaining responsibility for decisions

nonetheless.4 Despite some limitations, AI ex vivo and
in vivo real-time support in decision-making is a fasci-
nating hot topic in our time. Accordingly, we reviewed
current knowledge regarding the application and per-
formance of AI in the diagnosis of several esophageal and
gastric diseases.

METHODS
We searched MEDLINE (PubMed), EMBASE,

EMBASE Classic, and the Cochrane Library (from incep-
tion to April 2021) to identify systematic reviews, meta-
analyses, randomized controlled trials, and original research
articles reporting the performance of AI systems in the
instrumental or clinical diagnosis of several esophageal and

FIGURE 1. Relationship between artificial intelligence, machine learning, and deep learning. ANN indicates artificial neural
network.

FIGURE 2. Structure of convolutional neural networks.
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gastric diseases. The following terms were searched: AI or
machine learning, deep learning. We combined these using
the set operator AND with studies identified with the fol-
lowing terms: esophageal and gastroduodenal endoscopy,
cancer, carcinoma, neoplasia, Barrett’s esophagus, esoph-
agitis, gastro-esophageal reflux disease, GERD, eosinophilic
esophagitis, EoE, motility disorder, varices, gastric cancer,
atrophic gastritis, Helicobacter pylori infection. All terms
were used as MeSH terms. Restriction to English language
was applied. We screened titles and abstracts of all citations
identified by our search for potential suitability and
retrieved those that appeared relevant to examine them in
more detail. The “snowball strategy” (ie, a manual search of
the references listed in online databases publications) was
performed to increase sources of information.

AI in Barrett’s Esophagus (BE) and Early
Esophageal Adenocarcinoma (EAC)

The replacement of squamous esophageal epithelium
with intestinal metaplasia containing goblet cells defines
BE, which represents a well-known preneoplastic lesion
for the development of EAC. BE has a predictable course
through intermediate stages, namely BE with low-grade
dysplasia, high-grade dysplasia (HGD), intramucosal
carcinoma, and eventually invasive EAC.8 Thus, BE-
derived EAC is preventable and amenable to surveillance
strategies.

In 2018, esophageal cancer (EC) was estimated to
account for 508,000 deaths, being the seventh most common
cancer and the sixth cause of cancer death worldwide. Histo-
logically, EAC accounts for 20% of all ECs, and its main risk
factors include GERD and high body mass index.9 When
diagnosed in advanced stages, EAC has a poor prognosis, with
a 5-year survival rate of < 20%.3,9 However, when early
detection and management are possible, the outcome improves
significantly.10 At present, dysplasia and cancer surveillance in
BE follows the Seattle protocol with random 4-quadrant
biopsies every 2 cm, which is expensive, time-consuming, and
has a sensitivity ranging from 28% to 85% for the detection of
HGD/EAC.11 When in the hands of expert endoscopists,
advanced endoscopic imaging techniques as narrow-band
imaging (NBI) and confocal laser endomicroscopy (CLE) can

meet optical diagnosis performance thresholds required by
the Preservation and Incorporation of Valuable Endoscopic
Innovations (PIVI) initiative by the American Society for
Gastrointestinal Endoscopy12,13 [ie, per-patient sensitivity of
90% or greater, a negative predictive value (NPV)] of 98% or
greater, and a specificity of at least 80% for detecting HGD or
EAC).11 However, improving the diagnostic performance of
EGDS in the detection of EC regardless of individual expertise
is highly desirable, and AI is demonstrating enormous poten-
tial in this matter (Table 1).

A recent meta-analysis21 revealed that AI systems
detected BE-related EC with white-light endoscopy
(WLE)14,15,17,19 or volumetric laser endomicroscopy (VLE)18

with a pooled sensitivity of 88% [95% confidence interval (CI),
82.0%-92.1%], pooled specificity of 90.4% (95% CI, 85.6%-
94.5%), and an area under the curve (AUC) of 0.96 (95% CI,
0.93-0.99). When compared with general endoscopists oper-
ating with standard WLE17,19 or VLE,18 AI performed better
than physicians on the detection of neoplastic lesions in BE.21

Specifically, AI systems had an AUC of 0.96 (95% CI, 0.94-
9.97) versus 0.82, P<0.001; sensitivity 90.7% (95% CI, 89.8%-
91.5%) versus 72.3% (95% CI, 70.2%-74.3%), P<0.001; and
specificity 88.0% (95% CI, 87.1%-88.9%) versus 74.0% (95%
CI, 72.2%-75.7%), P< 0.001. However, AI was tested on
optimal endoscopic images but not during live EGDS. The
retrospective study of Van Riel et al22 showed consistent
results on still endoscopic images. The AI system detected
early BE neoplasms from the public MICCAI 2015 image
dataset with AUC of 0.92. Another study applied image data
augmentation through Generative Adversarial Networks
(GANs) to increase the identification of BE and EAC com-
pared with standard endoscopic images.23 The combination of
CNNs and GANs allowed to achieve 85% accuracy in the
task. Liu et al24 recently tested a DL-SVM combined CAD
tool to automate the classification of esophageal findings on
WLE images. The proposed network achieved accuracy for
the classification of cancer, premalignant lesion, and normal
esophagus of 77.14%, 82.5%, and 94.23%, respectively.
Iwagami et al25 trained a DL model to recognize esophageal
junctional cancers under WLE and compared its performance
with that of expert physicians. The AI system showed a
favorable sensitivity of 94%, and specificity of 42% for

TABLE 1. AI in the Diagnosis of Esophageal Adenocarcinoma

Performance

References AI Model
Study
Type Aim

Endoscopic
Technique Accuracy Sensitivity Specificity

de Groof et al14 ML—SVM Retrospective Detection of early
Barrett’s neoplasia

WLE 92% 95% 85%

de Groof et al15 DL Prospective Detection of early
Barrett’s neoplasia

WLE 90% 91% 89%

Ebigbo et al16 DL Prospective Detection of early
Barrett’s neoplasia

WLE 89.9% 83.7% 100%

de Groof et al17 DL Retrospective AI vs. endoscopists in detection
of early Barrett’s neoplasia

WLE AI EE 88%
73%

93%
72%

83%
74%

Swager et al18 ML—SVM Retrospective AI vs. endoscopists in detection
of early Barrett’s neoplasia

VLE AI EE AUC= 0.95
AUC= 0.81

90%
85%

93%
68%

van der Sommen
et al19

ML—SVM Retrospective AI vs. endoscopists in detection
of early Barrett’s neoplasia

WLE AI Best
endoscopist

—
—

86%
90%

87%
91%

Ebigbo et al20 DL Retrospective AI vs. endoscopists in predicting
invasion in Barrett’s cancer

WLE AI
EE

77%
63%

64%
78%

71%
70%

AI indicates artificial intelligence; AUC, area under the curve; DL, deep learning; EE, expert endoscopists; ML, machine learning; SVM, support vector
machine; VLE, volumetric laser endomicroscopy; WLE: white-light endoscopy.
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noncancerous lesions (esophagitis, polyp), which was com-
parable to that of expert endoscopists (43%). Another DL
algorithm was trained to differentiate EC from BE, inflam-
mation, and normal mucosa.26 The CAD tool classified the
above lesions with overall accuracy of 96%.

AI has shown good performance also in lesion char-
acterization. A pilot study demonstrated that an AI-based
system performed as good as international expert physicians
in the prediction of submucosal invasion (ie, differentiating
stage T1a vs. T1b) in endoscopic images of Barrett’s cancer,
having a sensitivity of 77%, a specificity of 64% and an
accuracy of 71%.20

To enable the integration of CAD systems into clinical
practice, research is now concentrating on the real-time use
of CAD tools that instantly provide feedbacks to the
endoscopist. A preceding to this is the application of AI
diagnosis to video clips. Accordingly, in a recent study, a
DL model was trained on images and tested on NBI zoom
video clips of EAC and NDBE.27 The CAD system showed
good performance with 83% accuracy, 85% sensitivity, and
83% specificity. Further, de Groof et al15 assessed the
accuracy of a CAD system for the detection of Barrett’s
neoplasia within endoscopic images systematically taken
every 2 cm in Barrett’s areas during live endoscopic proce-
dures. The system was tested in real-time on 10 patients with
NDBE and 10 patients with BE-related EAC. Standard
WLE images were obtained and analyzed live by a DL
algorithm that met PIVI threshold with an accuracy of 90%,
a sensitivity of 91%, and a specificity of 89%. A different
real-time approach was designed by Ebigbo et al.16 In their
AI system, endoscopic images were randomly captured from
the camera livestream during endoscopic procedures. The
immediate AI analysis differentiated between NDBE and
EAC with a sensitivity of 83.7%, a specificity of 100%, and
an accuracy of 89.9%.

AI in Squamous Dysplasia and Early Esophageal
Squamous Cell Carcinoma (ESCC)

ESCC accounts for up to 90% of ECs in lower income
countries.9 It has a poor prognosis with an overall 5-year
survival rate of 18%, which decreases to < 5% when distant
metastases are present at diagnosis.28 Early detection may
potentially improve the outcome of the disease. Endoscopic
recognition of early ESCC is challenging, as lesions often pass
unrecognized with standard WLE. Lugol’s dye spray
chromoendoscopy, virtual chromoendoscopy with NBI and
blue-laser imaging (BLI) bright have shown accuracy in the
detection of ESCC,29–31 although nonexpert endoscopists may
not perform as good as experts,31 limiting their applicability.

To fill the gap, AI has been explored (Table 2).
Regarding the diagnosis by NBI or BLI-bright, the per-
formance of AI was compared with that of endoscopy spe-
cialists of the Japan Gastroenterological Endoscopy
Society.35 The sensitivity of the AI system was greater than
that of experienced physicians (100% vs. 92%), and the
specificity for noncancerous lesions was not significantly
lower (63% vs. 69%). DL-based CAD tools have also been
challenged to recognize early ESCC under WLE, proving
higher accuracy than nonexpert endoscopists and com-
parable accuracy to expert endoscopists (97.6% vs. 88.8%,
and 77.2%, respectively).32 Wang et al41 developed a single
shot multibox detector with a CNN algorithm that per-
formed well in the detection of ESCC using WLE and NBI.
The system diagnosed ESCC with 90.9% accuracy. A meta-
analysis confirmed that the accuracy of AI in the detection

of ESCC was significantly higher when images were ana-
lyzed with NBI33,35,42 than WLE,33,42 being the AUC 0.92
(95% CI, 0.86-1.00) versus 0.83 (95% CI, 0.82-0.84).21 When
pooled together, the studies that used AI with NBI, WLE,
endocytoscopy,34 or optical magnifying endoscopy (ME)35

to recognize ESCCs, had an AUC of 0.88 (95% CI, 0.82-
0.96), a specificity of 92.5% (95% CI, 66.8%-99.5%), and a
sensitivity of 75.6% (95% CI, 48.3%-92.5%).21

AI has also been tested on the characterization of
mucosal invasion of ESCC through the analysis of esoph-
ageal intrapapillary capillary loops (IPCLs), which are
microvascular structures on the surface of the esophagus.
IPCLs appear as brown loops on ME with NBI and show
morphologic changes that strictly correlate with neoplastic
invasion depth of ESCC, allowing intraprocedural decisions
for endoscopic resections.43,44 However, optical classi-
fication of IPCL requires experience and is mastered by
experts only. Accordingly, it was developed an AI-based
automated IPCL classification whose accuracy was sig-
nificantly higher than that of endoscopists with <15 years of
experience.40 A CNN-based AI system39 was trained with
sequential high-definition ME-NBI images from 17 patients
(10 ESCN, 7 normal), and distinguished abnormal IPCL
patterns with 93.7% accuracy. The sensitivity and specificity
to classify abnormal IPCL patterns were 89.3% and 98%,
respectively. In another study, AI estimated the invasion
depth of ESCC from NBI/WLE images better than 13
expert endoscopists, showing a sensitivity of 84.1% versus
78.8%, a specificity of 73.3% versus 61.7%, and an accuracy
of 80.9% versus 73.5%.36 Another AI system showed good
performance in differentiating mucosal and submucosal
microinvasive (SM1) cancers from the submucosal deep
invasive (SM2/3) ones with a sensitivity of 90.1%, a specif-
icity of 95.8%, and an accuracy of 91.0%. The performance
of the system was comparable to that of experienced
physicians.37 AI also showed comparable results to expert
clinicians when classifying IPCLs from video clips.45 A
CNN model showed accuracy, sensitivity, and specificity of
91.7%, 93.7%, and 92.4%, respectively, in the recognition of
abnormal IPCLs during the analysis of video frames.

Growing proficiency in AI systems allowed the devel-
opment of real-time operating CAD tools. A CAD video
model33 was capable of processing at least 25 frames/s of
NBI images in < 100 ms with encouraging performance. The
dataset included precancerous lesions, early ESCC, and
nonpathologic findings. When analyzing non-ME videos,
the per-frame and per-lesion sensitivity of the AI system
were 60.8% and 100%, respectively. Notably, the per-frame
sensitivity increased to 96.1%, and the per-lesion sensitivity
remained stable to 100% with ME videos. Another recent
study46 compared the ability of a CAD system to that of 13
expert endoscopists to identify and characterize suspicious
lesions from video clips of NBI esophagoscopies. Regarding
detection performance, AI sensitivity was significantly
higher than that of experts, being 91% versus 79%, whereas
AI specificity and accuracy were lower, being 51% versus
72%, and 63% versus 75%, respectively. As for differ-
entiating cancerous from noncancerous lesions, the AUC
showed that the AI system had significantly better diag-
nostic performance than physicians, being the sensitivity
86% versus 74%, the specificity 89% versus 76%, and the
accuracy 88% versus 75%. Yang et al47 developed a real-
time operating AI system that could detect 100% and 95% of
early ESCC from ME and non-ME WLE video clips,
respectively. Waki et al48 challenged the AI to diagnose
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ESCC from video clips simulating a situation in which the
CAD tool could assist clinicians during routine EGD. The
assistance of AI significantly improved the sensitivity for
ESCC diagnosis by 2.7%. Similarly, Li et al49 compared AI-
aided detection of ESCC under WLE and NBI, and eval-
uated the yield of its support to endoscopists. The accuracy
of the AI system with NBI and WLE was 94.3% and 89.5%,
respectively, whereas the average accuracy of endoscopists
was 81.9%. Remarkably, the assistance of AI allowed
endoscopists to achieve the highest accuracy of 94.9% with
NBI and WLE.

A recently developed CAD system38 achieved a
favorable performance at estimating the invasion depth of
ESCC in video images with nonmagnifying WLE or ME
with NBI/BLI. Accuracy, sensitivity, and specificity of the
AI system with non-ME versus those of endoscopists with
up to 15 years of experience, were 87% versus 85%, 50%
versus 45%, and 99% versus 97%. Good performance was
also achieved when comparing the AI system with ME,
where accuracy, sensitivity, and specificity were 89% versus
84%, 71% versus 42%, and 95% versus 97%, respectively. AI
could potentially help with other endoscopic techniques that
require much experience. Accordingly, a clinical trial aiming
to evaluate the automatic diagnosis of early ESCC with
probe-based CLE is currently recruiting (NCT04136236).
The primary outcome will be to test the real-time diagnostic
performance of the AI system with probe-based CLE
and the secondary to compare AI performance to that of
endoscopists.

AI in Benign Esophageal Diseases:
Gastroesophageal Reflux, Motility Disorders,
Esophagitis, and Varices

The huge computing power of AI facilitates and
optimizes the analysis of large amounts of data at once,
allowing to recognize complex nonlinear interactions

between variables. Accordingly, AI has been applied to
esophageal benign disorders (Table 3) including GERD,
primary motility disorders, EoE, cytomegalovirus (CMV)
and herpes simplex virus (HSV) esophagitis, and esoph-
ageal varices.

GERD is defined as the presence of troublesome
symptoms caused by gastroesophageal reflux and/or esoph-
ageal mucosal lesions.58 It has a spectrum of symptoms (eg,
heartburn, regurgitation, noncardiac chest pain) that overlap
with reflux hypersensitivity and functional heartburn,59–62

which can make clinical distinction difficult.
In 2005, an AI system based on ML was developed to

discriminate, based on symptoms solely, between patients
with a pathologic esophageal acid pH exposure with or
without esophagitis, and normal individuals.50 Patients were
asked to fill in the Gastro-Esophageal Reflux Questionnaire
(GERQ) proposed by the Mayo Clinic,63 and underwent an
EGD and/or a 24-hour esophageal pH-metry. Among
patients, 103 had an objectively confirmed GERD, and 56
were normal. The AI system automatically selected the 45
most relevant variables from the GERQ (collectively refer-
red to as QUID, “QUestionario Italiano Diagnostico”)
(Table 4), and this allowed the CAD tool to reach a pre-
dictive accuracy up to 100%, as it correctly predicted GERD
in all 103 patients. Another study with ML combined AI
and the QUID questionnaire to differentiate between
GERD patients with and without erosive esophagitis (ie,
nonerosive reflux disease).52 The CAD tool successfully
distinguished between GERD and normal patients but
failed to discriminate erosive esophagitis from nonerosive
reflux disease based solely on symptoms evaluation.
Horowitz et al51 developed and validated a shorter ques-
tionnaire of 15 variables (Table 5) aiming to discriminate,
through an ANN-based algorithm, GERD from non-
GERD patients. The sensitivity of the model was 70%
to 75%, the specificity 63% to 78%, and the AUC 0.787.

TABLE 2. AI in the Diagnosis of ESCC

Performance

References AI Model Study Type Aim Endoscopic Technique Accuracy Sensitivity Specificity

Cai et al32 DL Retrospective Detection of ESCC WLE 91.4% 98% 85%
Guo et al33 DL Retrospective Detection of ESCC NBI images

NBI videos
AUC= 0.989

100%
98%
100%

95%
100%

Kumagai et al34 DL Prospective Detection of ESCC ECS AUC= 0.85 39% 98%
Ohmori et al35 DL Retrospective Detection of ESCC WLE

NBI/BLI
ME—BLI/NBI

81%
77%
77%

90%
100%
98%

76%
63%
56%

Tokai et al36 DL Retrospective Detection of ESCC WLE/NBI 96% — —
Estimating invasion
depth of ESCC

WLE SM1= 93%
SM2= 97%

—
—

—
—

NBI SM1= 97%
SM2= 100%

—
—

—
—

Nakagawa et al37 DL Retrospective Estimating invasion
depth of ESCC

WLE/NBI/BLI SM1= 93%
SM2= 90%

95%
94%

79%
75%

ME—WLE/NBI/BLI SM1= 90
SM2= 92

92%
94%

79%
86%

Shimamoto
et al38

DL Retrospective Estimating invasion
depth of ESCC

WLE/NBI/BLI
ME—WLE/NBI/BLI

87%
89%

50%
71%

99%
95%

Everson et al39 DL Retrospective Detection of abnormal
IPCL

ME-NBI 98% 99% 97%

Zhao et al40 DL Retrospective Classification of IPCL ME-NBI 89% — —

AI indicates artificial intelligence; AUC, area under the curve; BLI, blue-laser imaging; DL, deep learning; EAC, esophageal adenocarcinoma; ECS,
endocytoscopic system; ESCC, esophageal squamous cell carcinoma; IPCL, interpapillary capillary loop; ME, magnified endoscopy; NBI, narrow-band imaging;
SM, submucosal; WLE, white-light endoscopy.
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Moving from categorical to numerical data, AI has also
been applied to pH-impedance studies. Twenty-four-hour
pH-impedance monitoring is used to quantify reflux episodes
and acid exposure time (AET) to rule in or out the diagnosis
of GERD.64–68 The mean nocturnal baseline impedance is a
novel metric that demonstrated to increase GERD diagnostic
yield and predict treatment outcome.65,69–74 A recently pub-
lished proof-of-concept study showed that AI has the
potential to automate the extraction and to elaborate useful
novel AI pH-impedance metrics. CNN was considered
inadequate to be applied to impedance tracings, and a
python-based decision tree analysis algorithm was developed
to analyze raw pH-impedance data.53 The AI system
autonomously evaluated 2049 pH-impedance events with an
accuracy of 88.5%, and calculated recumbent and upright
values of baseline impedance (AIBI). The upright AI divided
by recumbent AI ratio (U:R AIBI ratio) segregated res-
ponders to treatment from controls and nonresponders
regardless of treatment status upon pH-impedance recording.
Moreover, the U:R AIBI ratio at 5 cm above the lower
esophageal sphincter outperformed total AET in predicting
response to medical therapy in those with AET > 6% (AUC:
0.766 vs. 0.606, respectively).

In a recent clinical trial (NCT04268719), an image-driven
AI model for the diagnosis of GERD was developed. A
published abstract demonstrated the potential of AI-driven
near-focus NBI endoscopy for the real-time diagnosis of
GERD through the recognition of regions of interests and
IPCLs.54 The CNN-based model could diagnose GERD in
real-time during endoscopic procedures with a sensitivity,
specificity, and AUC up to 67%, 92%, and 0.83, respectively.

The feasibility of applying ANNs in the recognition and
classification of primary esophageal motor disorders has also
been investigated.56 Two different ANN models were trained
to recognize normal and abnormal swallow sequences of
pressure wave patterns of conventional stationary manometry
recordings. The model correctly classified >80% of swallow
sequences, diagnosing 100% of cases of achalasia, 100%, of
nutcracker esophagus, 80% of ineffective esophageal motility,
60% of diffuse esophageal spasm, and 80% of normal motility.
However, the study took place in 2006, when high-resolution
manometry recordings and current highly sophisticated AI
algorithms were not available.

Early encouraging applications of AI to EoE have also
been reported. EoE is a chronic, local, progressive, T-helper
type 2 immune-mediated esophageal disorder.75–78 Clinical
manifestations vary according to the age of diagnosis, and a
timely diagnosis may be difficult.77,79 Accordingly, an AI-
based automated algorithm was developed to assist in the
diagnosis of EoE.55 The AI system elaborated a diagnostic
probability score for eosinophilic esophagitis (pEoE) based
on esophageal mRNA transcripts from biopsies of EoE
patients, including genes encoded by the EoE transcrip-
tome.76 During the process, individual transcripts were
automatically assigned weights by the system. Interestingly,
established EoE markers (eg, eotaxin and periostin)76 were
weighed higher. For validation, the pEoE score was applied
to a set of external patients in a blinded fashion. A pEoE
score ≥ 25 detected EoE patients with a sensitivity of 91%, a
specificity of 93%, and AUC 0.985. Importantly, the pEoE
score improved the diagnosis of equivocal EoE cases with
84.6% accuracy, distinguishing EoE from GERD. In treat-
ment-responsive patients (ie, < 5 eosinophils/HPF), the pEoE
score decreased below the diagnostic cutoff of 25 and
remained ≥ 25 in the 1 patient whose eosinophilia did notTA
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resolve completely (5 <eosinophils/HPF< 15). To date, no
studies or clinical trials combining AI and endoscopic eval-
uation of EoE have been published.

AI has shown to be useful also in the optical endo-
scopic differential diagnosis of CMV versus HSV esoph-
agitis. CMV and HSV esophagitis have overlapping
endoscopic findings and are infrequent in clinical practice,
which makes the diagnosis challenging and hampers the
start of a targeted treatment before the histopathologic
diagnosis. Accordingly, Lee et al57 trained a DL system to
differentiate CMV from HSV esophageal ulcers with
impressive results. The accuracy, sensitivity, and specificity
of the CAD tool were 100%, largely outperforming endo-
scopists, whose accuracy was only 52.7%.

Finally, Guo et al80 trained a DL system to classify
multiple GI lesions. Among these, esophageal varices could
be automatically diagnosed by the system with 90.5%
sensitivity.

AI IN GASTRIC DISEASES

AI in Gastric Cancer (GC) and Chronic Atrophic
Gastritis (CAG)

GC is one of the 5 most common cancer-related diag-
noses globally and the third leading cause of death in cancer
patients. Early recognition of premalignant lesions is the
main goal to reduce the burden of the disease. Endoscopic
evaluation is the standard of care in assessing the gastric
mucosa. A recent systematic review and meta-analysis
evaluated the data regarding AI and GC demonstrating the
expanding role and the favorable impact of this technology

for current and upcoming years.81 Hirasawa et al82 devel-
oped the first AI system for the detection of GC using DL.
Although demonstrating a high sensitivity (92.2% for lesions
of 5 mm or less; 98.6% in lesions of 6 mm or more), its
positive predictive value (PPV) was 30.6%, due to mis-
diagnosis of mild-moderate CAG and intestinal metaplasia
lesions. In this regard, another study showed that a DL
approach had a significantly higher accuracy than experts in
the assessment of CAG.83 Other AI systems have been
developed since (Table 6), such as the one proposed by
Horiuchi et al89 which differentiated GC from gastritis with
85.3% accuracy, 95.4% sensitivity, and 71.0% specificity.
Wu et al,85 tested a DL system in the detection of GC. The
sensitivity, specificity, accuracy, PPV, and NPV were 94.0%,
91.0%, 92.5%, 91.3%, and 93.8%, respectively. Li et al84

developed an AI model based on CNN to differentiate
between noncancerous and early gastric mucosal lesions
under ME. The proposed system showed a sensitivity, spe-
cificity, and accuracy of 91.1%, 90.6%, and 90.9%, respec-
tively, in the diagnosis of early GC, which were significantly
higher than those of nonexpert endoscopists. Lee et al88

combined a residual network with transfer learning to dis-
tinguish between GC, ulcers, and normal gastric mucosa
with almost 90% accuracy. Zhang et al87 used the CNN
DenseNet to identify CAG lesions, with diagnostic accu-
racy, sensitivity, and specificity of 0.94, 0.95, and 0.94. The
classification accuracy between mild, moderate, and severe
CAG was 0.93, 0.95, and 0.99 demonstrating higher detec-
tion rates for moderate and severe cases. Ueyama et al86

tested a DL system on 2300 ME-NBI images (1430 GC
images), achieving 98.7% accuracy, 98% sensitivity, and
100% specificity for the diagnosis of GC. In a multicenter
study,92 the performance of AI with ME-NBI was similar to
that of senior endoscopists and better than that of junior
endoscopists. Interestingly, the diagnostic ability of endo-
scopists improved significantly after referring to the results
provided by the AI system, providing insights into a useful
application of AI in routine practice.

AI has also been applied to the recognition of GC
invasion depth. Importantly, patients with cancers extend-
ing within the mucosa or submucosal layer could benefit
from curative endoscopic resection regardless of lymph node
involvement. However, the prediction of invasion depth is

TABLE 5. Symptoms/Signs Evaluated in the Artificial Neural
Network-based Questionnaire Proposed by Horowitz et al51 to
Primary Care Physicians to Diagnose Gastroesophageal Reflux
Disease

Abdominal Pain Belching Halitosis
Chest pain Heartburn Relief with antacid medications
Bloating Regurgitation Stress
Nausea Dysphagia Bend/lie aggravation
Vomiting Sour taste Heavy meal aggravation

TABLE 4. Variables Included in the QUestionario Italiano Diagnostico Questionnaire52

Heartburn Persistent Gastric/Intestinal
Pain

Prescribed Examinations
for GERD

Relative With
Gastroduodenal Disorder

Medical Visits
for GERD

Hiatus hernia Cough intensity Aspirin, frequency of use Marital status Episodes of
breathlessness

Frequency of chest pain Periodic frequency of
swallowing problems

Antirheumatic drugs,
frequency of use

Cough frequency/year Asthma

Waking at night–
retrosternal pain

Intensity of swallowing
problems

esophageal dilation Slow walk—chest pain Belching

Pneumonia Frequency of medical
check-ups

Variation in weight in
past year

Heart therapy Sibilant rhonchi or
wheezing

Cough Heart disorders Coffee drinker Intensity of chest pain Cough at night
Retrosternal pain Vomiting (frequency) Regular smoker Chest pain in past year Ingestion of beverages

—chest pain
Interference with daily

activities
Acid reflux in mouth Lump in throat Alcohol units/week in past

year
Total acid reflux

Sleeping semisupine Esophageal surgery Health state during
past year

Hiccups Intensity of acid reflux

GERD indicates gastroesophageal reflux disease.
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challenging in clinical practice. Accordingly, a CNN
detection system was developed to determine GC invasion
depth based on WLE images.90 The model reached an
overall accuracy of 89.1%, sensitivity of 76.5%, and specif-
icity of 95.5%. Of note, the system had a significantly higher
accuracy of 17.2% and a higher specificity of 32.2% than
expert endoscopists. Similarly, Nagao et al91 compared AI
with WLE, NBI, and indigo-carmine dye contrast imaging
in characterizing GC invasion depth. The authors calculated
accuracies of 94.5%, 94.2%, and 95.5%, respectively, with-
out significant differences among imaging techniques.

AI in the Detection of Helicobacter pylori (Hp)
Infection

Hp is a gram-negative bacterial pathogen that selec-
tively colonizes the gastric epithelium.93 The infection is a
leading cause of gastroduodenal pathology.94 In 1994, the
International Agency for Research on Cancer labeled Hp as
a definite (group I) carcinogen for GC.95 Indeed, the infec-
tion is the major cause of chronic gastritis that sequentially
causes precancerous modifications, namely atrophic gas-
tritis, intestinal metaplasia, dysplasia and ultimately, GC.
Accordingly, the eradication of Hp has the potential to
prevent the development of preneoplastic lesions of gastric
mucosa.96 More than 50% of the world’s population is
infected with Hp,97 which makes the widest possible diag-
nosis and eradication of the infection a matter of global
health interest. No single endoscopic approach provides
validated accuracy for optical diagnosis of Hp infection at
present, and endoscopic biopsies are required.7 Recently,
several AI models have shown potential to overcome biopsy
sampling, or provide “heat maps” for targeted biopsies, and
allow accurate optical detection of Hp-infected gastric
mucosa to achieve a prompter diagnosis (Table 7).

An early study by Huang et al104 investigated a refined
feature selection with neural network model for prediction of
Hp-related gastric histologic features. The authors trained the
AI system with endoscopic images of 30 prospectively enrolled
dyspeptic patients with and without histologically confirmed
Hp infection, and then tested the performance of the model on
endoscopic images on 74 dyspeptic patients previously
unknown to the system. The refined feature selection with
neural network model showed a sensitivity of 85.4% and a
specificity of 90.9% for the detection of Hp infection, and an

accuracy > 80% in predicting the presence of gastric atrophy,
intestinal metaplasia, and the severity of gastric inflammation.
Another study105 aimed to automate the recognition of his-
tologic parameters proposed by the updated Sydney
system.106 The authors applied a SVM-based AI model to
WLE images, which achieved an accuracy rate of 86% for the
detection of Hp by image analysis for any topographic loca-
tions over the gastric antrum, body, or cardia. More recently,
several CNN models have been engineered to support the
optical diagnosis of Hp. In 2017, Shichijo et al98 developed 2
CNN-based CAD tools. The first was trained with WLE
images classified according to the presence or absence of Hp
infection. The system achieved an accuracy of 83.1%, a sen-
sitivity of 81.9%, and a specificity of 83.4% in 198 seconds for
the detection of Hp infection. The second CNN system was
trained with images classified according to anatomic loca-
tions, achieving an accuracy of 87.7%, a sensitivity of 88.9%,
and a specificity of 87.4% in 194 seconds for the diagnosis of
Hp infection. Notably, the diagnostic performance of the
second CNN model was significantly higher than that of 23
endoscopists, who achieved an accuracy of 82.4% in the
considerably longer time of 230 minutes. A subsequent study
further challenged a CNN model to recognize the gastric
mucosa of Hp-eradicated patients.101 The AI system showed
84% accuracy for the detection of Hp-eradicated gastric
mucosa on WLE images. Itoh et al103 trained a CNN-based
CAD system with WLE images of Hp-positive and negative
patients. The model performed well for detection of Hp
infection on prospectively collected endoscopic images, with
an AUC of 0.956, a sensitivity and a specificity of 86.7%.
Similarly, another study trained and validated a DL model
with 2 different retrospectively collected WLE sets of images
from a total of 1959 patients.100 The system showed high
accuracy, with a per-image AUC of 0.93, sensitivity of 81.4%,
specificity of 90.1%, and accuracy of 84.5%. Per-patient AUC
was 0.97, with sensitivity 91.6%, specificity 98.6%, and accu-
racy 93.8%. Recently, AI has been applied to advanced
endoscopic imaging for the diagnosis of Hp infection,
including linked color imaging (LCI) and BLI-bright. LCI is a
new image-enhanced endoscopy system developed by Fujifilm
Co. (Tokyo, Japan) that enhances even slight mucosal color
differences. The technique has already proven accuracy in the
optical diagnosis of active Hp infection.99,107 Yasuda et al99

developed an SVM-based classification algorithm to detect

TABLE 6. AI in the Diagnosis of Gastric Cancer and CAG

Performance

References AI Model Study type Aim Diagnostic Tool Accuracy Sensitivity Specificity

Li et al84 DL Retrospective Diagnosis of GC ME-NBI 90.9% 91.1% 90.6%
Hirasawa et al82 DL Retrospective Diagnosis of GC WLE, NBI, IC — 92.2%-98.6% —
Wu et al85 DL Retrospective Diagnosis of GC WLE, NBI, BLI 92.5% 94.0% 91.0%
Ueyama et al86 DL Retrospective Diagnosis of GC ME-NBI 98.7% 98.0% 100%
Zhang et al87 DL Retrospective Detection of CAG WLE 94.0% 95.0% 94.0%
Lee et al88 DL Retrospective Differential diagnosis GC

vs. gastric ulcer
WLE 77.1%-90% — —

Horiuchi et al89 DL Retrospective Differential diagnosis GC
vs. gastritis

ME-NBI 85.3% 95.4% 71.0%

Zhu et al90 DL Retrospective Characterization of
GC invasion depth

WLE 89.1% 76.5% 95.5%

Nagao et al91 DL Retrospective Characterization of
GC invasion depth

WLE, NBI, IC 94.5% 84.4 99.4%

AI indicates artificial intelligence; BLI, blue-laser imaging; CAG, chronic atrophic gastritis; DL, deep learning; GC, gastric cancer; IC, indigo-carmine dye
contrast; ME, magnified endoscopy; NBI, narrow-bad imaging; WLE, white-light endoscopy.
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Hp infection on LCI endoscopic images. The authors trained
an AI system by SVM, using LCI images of infected and
uninfected patients, and then compared the performance of
the CAD system to that of an expert in LCI, a gastro-
enterologist specialist, and a senior resident. For the diagnosis
of Hp infection, the AI system proved accuracy of 87.6%,
sensitivity of 90.5%, and specificity of 85.7%. Of note, the
system significantly outperformed the senior resident. The
performance of the LCI expert and the gastroenterology
specialist were comparable to that of AI system, with non-
significant differences. Nakashima et al102 assessed the per-
formance of a CNN-based AI system for the diagnosis of Hp
infection comparing WLE and image-enhanced endoscopy.
Three still images of the lesser curvature of the stomach were
taken with WLE, BLI-bright, and LCI for each of the 222
included patients (105 infected). The images of 162 patients
were used to train the AI system, those of 60 patients were
used for validation. BLI-bright and LCI significantly out-
performed WLE in a comparable amount of time. In detail,
the AUC for BLI-bright and LCI were 0.96 and 0.95, whereas
the AUC for WLE was 0.66. BLI-bright had a sensitivity of
96.7% and a specificity of 86.7%, LCI had a sensitivity of
96.7% and a specificity of 83.3%, and WLE had a sensitivity
of 66.7% and a specificity of 60.0%.

DISCUSSION AND CONCLUSION
AI is attracting increasing attention in diagnostic

imaging and complex medical data analysis. It has been
observed that CAD tools provide an interpretable universal
method for clinical instrumental and endoscopic diagnosis
of GI diseases (Table 8), virtually eliminating interobserver
variability and reducing the rate of blind spots during
EGDS.108 Despite the in vivo application of AI is relatively
recent, exciting results have already been achieved.

A recent meta-analysis confirmed the potential of AI to
increase the diagnostic yield and reduce underdiagnosis of
neoplastic lesions.109 AI systems had a sensitivity of 90%, a
specificity of 89%, a PPV of 87%, and an NPV of 91% without
significant performance differences in the diagnosis of ESCC,
BE-related EAC, or GC. In addition, CAD tools showed good
performance in the characterization of submucosal invasion of
esophageal and gastric cancerous lesions.36–40,43,44,90 This has

relevant therapeutic and prognostic implications as early
lesions are amenable of endoscopic treatment.110

AI also proved utility to support both clinical and
endoscopic diagnosis of benign upper GI pathology. AI
systems helped in the development of questionnaires that
accurately predict GERD and differentiate disease from
normality.50–52 AI models autonomously extracted and ana-
lyzed pH-impedance tracings and also individuated a novel
pH-impedance metric, that is, mean nocturnal baseline impe-
dance, which enables to segregate responders from non-
responders to GERD treatment, thus reducing reporting times
and virtually improving reflux management.53 The possibility
of a real-time endoscopic GERD diagnosis was also shown.54

A CAD tool could recognize stationary manometry motor
patterns with accuracy,56 but the application of novel CAD tools
to high-resolution manometry recordings is yet to be evaluated.

The ability of AI to analyze complex variables inter-
actions allowed the development of a score that could
predict EoE with good accuracy.55 Although NBI can
accurately differentiate EoE from control patients,111 there
are no published studies that combine NBI and AI for the
diagnosis of EoE. It is tempting to speculate that AI could
support the endoscopic diagnosis of EoE when typical
endoscopic findings are absent.77

In addition, AI demonstrated impressive utility in
the real-time endoscopic diagnosis of infrequent forms
of esophagitis (ie, CMV and HSV), which are often mis-
diagnosed even by experts.57

As regards Hp, a recent meta-analysis confirmed that
AI algorithms are reliable predictors of infection with AUC
of 0.92 (95% CI, 0.90-0.94), pooled sensitivity of 0.87 (95%
CI, 0.72-0.94), and specificity of 0.86 (95% CI, 0.77-0.92).112

The world of AI sets the groundwork for the medicine
of the future, and we should brace ourselves for the inte-
gration of CAD tools into clinical practice. However, reli-
ance on AI tools should not replace clinical judgment. This
is because AI has a black-box nature and is currently bur-
dened with high costs. In addition, the high computational
power of AI algorithms carries the risk of overfitting, in
which the model is too tightly fitted to the training data and
does not generalize towards new data.113 More real-time
high-quality studies are needed to expand these early results
that, if confirmed, will represent a revolution of routine
clinical gastroenterological practice.

TABLE 7. AI in the Diagnosis of Helicobacter pylori Infection

Performance

References AI Model Study Type Aim Diagnostic Tool Accuracy Sensitivity Specificity

Shichijo et al98 DL Retrospective Detection Hp infection WLE 87.7% 88.9% 87.4%
Yasuda et al99 DL Retrospective Detection Hp infection LCI 87.6% 90.5% 85.7%
Zheng et al100 DL Retrospective Detection Hp infection WLE Per-image

analysis Per-
patient analysis

84.5%
93.8%

81.4%
91.6%

90.1%
98.6%

Shichijo et al101 DL Prospective Detection of Hp-eradicated
gastric mucosa

WLE 84% — —

Nakashima
et al102

DL Prospective Detection Hp infection WLE
BLI-bright

LCI

AUC= 0.66
AUC= 0.96
AUC= 0.95

66.7%
96.7%
96.7%

60%
86.7%
83.3%

Itoh et al103 DL Prospective Detection Hp infection WLE 0.956 86.7% 86.7%
Huang et al104 RFSNN Prospective Detection Hp infection WLE — 85.4% 90.9%
Huang et al105 SVM Retrospective Detection Hp infection WLE 86% — —

AI indicates artificial intelligence; AUC, area under the curve; BLI, blue-laser imaging; DL; deep learning; Hp, Helicobacter pylori; LCI, linked color
imaging; RFSNN, refined feature selection with neural network; SVM, support vector machine; WLE, white-light endoscopy.
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Esophagus Malignant/
premalignant

Barrett’s
esophagus

Detection Anticipate the diagnosis of cancer and
improve the prognosis of the disease

Adenocarcinoma Detection
Characterization (invasion depth)

Squamous
dysplasia

Detection

Interpapillary
capillary loops

Detection
Characterization (morphology)
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carcinoma
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Characterization (invasion depth)
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Noninvasive diagnosis based on
symptoms

Differential diagnosis NERD vs.
ERD

Automated extraction of metrics from
pH-impedance tracings

Prediction of response to treatment

Automate the diagnosis of NERD during
endoscopy, provide a noninvasive conclusive
diagnosis of GERD, and make quicker the
interpretation of pH-impedance tracings,
which currently require a time-consuming

manual revision

Esophagitis Differential diagnosis between
CMV and HSV esophagitis

Anticipate diagnosis and start treatment
without waiting for the histologic diagnosis

Dysmotility Detection
Characterization of motility pattern

(manometric diagnosis)

Automate and speed-up the diagnosis of
motility disorders

Varices Detection
Diagnosis

Automate the detection and classification of
varices during routine endoscopy

Stomach Malignant/
premalignant

Chronic atrophic
gastritis

Detection Anticipate the diagnosis of cancer and
improve the prognosis of the disease

Gastric cancer Detection
Characterization (invasion depth)

Benign Helicobacter
pylori infection

Detection Automated diagnosis regardless of
confounding factors (eg, PPI therapy), start
treatment without waiting for the histologic

diagnosis
Gastric ulcer Differential diagnosis with cancer Anticipate the diagnosis and start treatment

without waiting for the histologic diagnosis

AI indicates artificial intelligence; CMV, cytomegalovirus; ERD, erosive reflux disease; GERD, gastroesophageal reflux disease; HSV, herpes simplex virus;
NERD, nonerosive reflux disease; PPI, proton-pump inhibitors.
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