Skip to main content
. 2021 Nov 4;56(1):23–35. doi: 10.1097/MCG.0000000000001629

TABLE 6.

AI in the Diagnosis of Gastric Cancer and CAG

Performance
References AI Model Study type Aim Diagnostic Tool Accuracy Sensitivity Specificity
Li et al84 DL Retrospective Diagnosis of GC ME-NBI 90.9% 91.1% 90.6%
Hirasawa et al82 DL Retrospective Diagnosis of GC WLE, NBI, IC 92.2%-98.6%
Wu et al85 DL Retrospective Diagnosis of GC WLE, NBI, BLI 92.5% 94.0% 91.0%
Ueyama et al86 DL Retrospective Diagnosis of GC ME-NBI 98.7% 98.0% 100%
Zhang et al87 DL Retrospective Detection of CAG WLE 94.0% 95.0% 94.0%
Lee et al88 DL Retrospective Differential diagnosis GC vs. gastric ulcer WLE 77.1%-90%
Horiuchi et al89 DL Retrospective Differential diagnosis GC vs. gastritis ME-NBI 85.3% 95.4% 71.0%
Zhu et al90 DL Retrospective Characterization of GC invasion depth WLE 89.1% 76.5% 95.5%
Nagao et al91 DL Retrospective Characterization of GC invasion depth WLE, NBI, IC 94.5% 84.4 99.4%

AI indicates artificial intelligence; BLI, blue-laser imaging; CAG, chronic atrophic gastritis; DL, deep learning; GC, gastric cancer; IC, indigo-carmine dye contrast; ME, magnified endoscopy; NBI, narrow-bad imaging; WLE, white-light endoscopy.