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Circulating fatty acid–binding protein 3 (FABP3) is an
effective biomarker of myocardial injury and peripheral artery
disease (PAD). The endothelium, which forms the inner most
layer of every blood vessel, is exposed to higher levels of FABP3
in PAD or following myocardial injury, but the pathophysio-
logical role of endothelial FABP3, the effect of FABP3 exposure
on endothelial cells, and related mechanisms are unknown.
Here, we aimed to evaluate the pathophysiological role of
endothelial FABP3 and related mechanisms in vitro. Our mo-
lecular and functional in vitro analyses show that (1) FABP3 is
basally expressed in endothelial cells; (2) inflammatory stress in
the form of lipopolysaccharide (LPS) upregulated endothelial
FABP3 expression; (3) loss of endogenous FABP3 protected
endothelial cells against LPS-induced endothelial dysfunction;
however, exogenous FABP3 exposure exacerbated LPS-induced
inflammation; (4) loss of endogenous FABP3 protected against
LPS-induced endothelial dysfunction by promoting cell sur-
vival and anti-inflammatory and pro-angiogenic signaling
pathways. Together, these findings suggest that gain-of endo-
thelial FABP3 exacerbates, whereas loss-of endothelial FABP3
inhibits LPS-induced endothelial dysfunction by promoting
cell survival and anti-inflammatory and pro-angiogenic
signaling. We propose that an increased circulating FABP3 in
myocardial injury or PAD patients may be detrimental to
endothelial function, and therefore, therapies aimed at inhib-
iting FABP3 may improve endothelial function in diseased
states.

The fatty acid–binding proteins (FABPs) are a family of
transport proteins for fatty acids and other lipophilic sub-
stances between extracellular and intracellular membranes and
receptors and play an important role in the regulation of lipid
homeostasis (1). FABPs are also involved in the production of
the cell membrane in the endoplasmic reticulum and various
enzymatic activities in the cytosol (2). The FABP protein
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superfamily is encoded by nine different genes, and different
FABPs have usually been named according to their dominant
expression in certain tissues (3), of which FABP4 and FABP5
are reported to be expressed in the endothelial cells (1, 4),
where they play overlapping and nonredundant roles. They are
pro-angiogenic proteins and modulate important signaling
pathways, including p38, eNOS, and peroxisome proliferator-
activated receptor (PPAR) δ signaling (1, 4).

The myocardial isoform, heart-type fatty acid–binding
protein, is encoded by the FABP3 gene. Besides its abundant
expression in the cardiomyocytes, FABP3 is also expressed
significantly in other cell types (5). Their lipid-trafficking
mechanism is essential for the metabolic homeostasis of car-
diac function (6). For their unique cardiac-expression profile,
FABP3 has been proposed as an effective biomarker of
myocardial injury (7) as FABP3 is readily released from heart
muscles into the blood following a heart attack (8–10). The
release of FABP3 from the injured myocardium has been
observed in both animal models (11) and myocardial infarction
patients (12). Aside from the general lipid-trafficking mecha-
nism and its feature as a cardiac biomarker, the unique func-
tion of FABP3 remains largely unknown, particularly its roles
in cardiovascular diseases (CVDs). Systemic infections, or
sepsis, have been reported to exacerbate cardiac injuries in
atherosclerotic patients (13). Physiologically, the body’s lipids
contribute not only as an efficient source of energy but also as
a source of regulatory signals maintaining proper systemic
functions or homeostasis, such as hormonal balance (14) and
inflammation (15). Pathologically, lipids bioavailability and
their interacting factors are the driving agents of the metabolic
syndrome (16). Moreover, the bioavailability of lipids and their
interacting factors have been employed as biomarkers for
cardiovascular-related complications (17).

Accordingly, recently we identified increased circulating
levels of FABP3 in peripheral arterial disease (PAD) patients
with severe inflammation and particularly undergoing critical
limb ischemia, who were negative for any signs of cardiac
damage (18). The endothelium lines the inner walls of all
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Role of FABP3 in endothelial function and dysfunction
blood vessels and is in direct contact with blood and regulates
tissue–blood metabolic and signaling exchanges, vascular ho-
meostasis, and inflammation; impaired endothelial function or
endothelial dysfunction is a key mechanism behind CVDs
(14, 19, 20). It is important to note that in both myocardial
ischemia and PAD patients, endothelial cells are directly
exposed to higher levels of FABP3 (8–10). However, the source
of FABP3 and its effect on the endothelium remains largely
unknown, and the role of endothelial FABP3 has not been fully
characterized at baseline and under stress conditions.
Accordingly, our objective is to evaluate (1) the endothelium as
a potential source of FABP3, (2) the role of endothelial FABP3
in endothelial function and survival, and (3) the effect of
increased FABP3 exposure on endothelial cell function and
inflammation at baseline and after stress and (4) related
mechanisms.

Chronic inflammation is the central driving mechanism
between endothelial dysfunction and CVDs (21, 22). Inflam-
mation is also a common factor between myocardial ischemia/
heart failure (23) and PADs (24), which are associated with
increased circulatory FABP3 and thereby increased FABP3
exposure to endothelial cells. Lipopolysaccharide (LPS), a
Gram-negative bacterial endotoxin, is known to induce severe
inflammation and endothelial dysfunction (25); accordingly,
LPS is extensively used in experimental models to study
inflammation and associated endothelial dysfunction in vitro
and in vivo (25–28).

Our data demonstrate that endothelial cells basally express
FABP3; inflammation, in the form of LPS treatment, signifi-
cantly upregulates endothelial FABP3 expression. Further-
more, loss-of-endothelial FABP3 inhibits LPS-induced
endothelial dysfunction by promoting cell survival and anti-
inflammatory and pro-angiogenic pathways. In contrast,
gain-of-endothelial FABP3 appears to exacerbate inflamma-
tion and endothelial function. Our results suggest that elevated
FABP3 in myocardial injury or PAD may be detrimental to the
endothelium; therefore, therapies aimed at inhibiting serum
FABP3 may improve endothelial function in diseased states.
Results

LPS upregulates FABP3 expression in endothelial cells

Our FABP3 quantitative polymerase chain reaction (qPCR)
data on vehicle-treated (control) endothelial cells confirmed
the basal expression of FABP3 in human umbilical vein
endothelial cells (HUVECs) (Fig. 1A). Next, to evaluate the
effect of inflammation in endothelial cells in the form of LPS-
treatment on FABP3 expression, we treated endothelial cells
with different doses of LPS (10, 20, 50, 100, and 200 ng/ml) or
vehicle control for 24 h and then measured the FABP3
expression. Our qPCR data show significant upregulation of
FABP3 in endothelial cells by all the doses of LPS-treatment
(Fig. 1A). Maximum but similar FABP3 expression was
observed for 100 and 200 ng/ml of LPS, and accordingly,
100 ng/ml was chosen to be the experimental dose to evaluate
the effect of loss of FABP3 on LPS-induced endothelial
dysfunction. A similar dose has been used by many other
2 J. Biol. Chem. (2023) 299(3) 102921
comparable studies in endothelial cells (29, 30). We also
evaluated the effect of time on LPS-induced FABP3 upregu-
lation and observed that the FABP3 was upregulated as early as
1-h posttreatment (Fig. 1B). We then tested whether LPS-
induced FABP3 upregulation is associated with increased
secretion of FABP3 in the culture medium and observed
increased LPS treatment–induced secretion of FABP3 in the
culture medium (Fig. 1C).
Endothelial cell-specific loss of FABP3 protects against LPS-
induced endothelial dysfunction and apoptosis

To understand the effect of LPS-induced upregulation of
FABP3 on endothelial function, we successfully silenced
FABP3 in HUVECs and observed �90% reduction at the
transcript level (Fig. 1D). FABP3-silencing was also confirmed
at the protein level by Western blotting for FABP3 (Fig. 1E).
We then treated FABP3-silenced and control endothelial cells
with 100 ng/ml of LPS and evaluated endothelial function in
the form of tube-forming, migratory, and proliferative poten-
tial of endothelial cells. To our surprise, the loss of FABP3
significantly increased the number of nodes and tube length in
FABP3-silenced versus control endothelial cells (Fig. 1, F–H).
LPS treatment is known to inhibit tube-forming potential (31);
accordingly, we also observed significant inhibition of tube
formation in LPS-treated scrambled-transfected versus
vehicle-treated scrambled-transfected control endothelial cells
(Fig. 1, F–H). Interestingly, loss of FABP3 was able to signifi-
cantly restore tube length in LPS-treated FABP3-deficient in
comparison to LPS-treated control endothelial cells (Fig. 1, F
and H). However, the loss of FABP3 showed no effect on the
LPS-induced inhibition of the number of nodes in HUVECs
(Fig. 1, F and G). Next, to understand the effect of LPS
treatment on the migratory capacity of FABP3-deficient
endothelial cells, we measured migratory capacity via scratch
assay (32). Loss of FABP3 and LPS treatment appeared to
inhibit and upregulate endothelial cell migration, respectively
(Fig. 1, I and J). LPS-induced upregulation of endothelial cell
migration has been previously reported depending on specific
dosages (33); however, loss of FABP3 was able to attenuate
LPS’s effect on endothelial cell migration (Fig. 1, I and J). We
did observe a trend toward increased LPS-induced migration,
but the difference was nonsignificant and that can be attrib-
uted to the sensitivity of the method used. We then evaluated
the effect of loss of FABP3 and LPS on the proliferative ca-
pacity of endothelial cells via measuring the cell count using
the CytoSmart Automated Cell Counter. Loss of FABP3
appeared not to affect endothelial cell proliferation; however,
LPS treatment significantly inhibited the proliferative potential
of endothelial cells, which was, interestingly, restored in the
FABP3 silenced and LPS treated in comparison to LPS-treated
scrambled control-transfected endothelial cells (Fig. 1K). Next,
to understand whether LPS-induced reduced cell proliferation
is associated with increased cell death and whether the loss of
FABP3 is associated with the restoration of cell proliferation is
due to increased survival, we measured apoptosis in FABP3-
silenced and LPS-treated endothelial cells. Our Western blot
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Figure 1. LPS-induced FABP3 modulates endothelial function. A, HUVECs were treated with different doses of LPS, and RNA was extracted 24 h
posttreatment to perform qPCR for FABP3. B, HUVECs were treated with 100 ng/ml of LPS, and RNA was extracted 1h and 24 h post-treatment to perform
qPCR for FABP3. C, HUVECs were treated with 100 ng/ml of LPS for 24 h, and culture media were collected to perform ELISA for FABP3. D and E, HUVECs were
transfected with either scrambled control or siFABP3, and RNAs and proteins were extracted to perform qPCR and immunoblot, respectively, for FABP3;
GAPDH was used as a control. F–H, HUVECs were transfected with either scrambled control or siFABP3 and seeded on Matrigel in the presence of vehicle or
LPS for 6 h, and tube formation was assessed microscopically (F); the number of nodes (G) and tube lengths (H) were quantified (scale bar = 100 μm). I and J,
HUVECs were transfected with either scrambled control or siFABP3, and 24 h posttransfection, a scratch was made, and cell migration was assessed using
phase contrast light microscopy at 0, 8, and 20 h, scale bar = 200 μm (I), and migratory capacity was calculated (J). K, HUVECs were transfected with either
scrambled control or siFABP3 for 24 h, and the live cells were counted using Cytosmart automated cell counter. L, HUVECs were transfected with either
scrambled control or siFABP3, and then proteins were extracted to perform immunoblot for cleaved-CASPASE3 and GAPDH (loading control). Difference
between the means of two groups and more than two groups were calculated using the Student’s t test and one-way ANOVA with Tukey’s multiple
comparison test, respectively. *p < 0.05, **p < 0.01, ***p < 0.001 versus Vehicle, control and Scr Control. #p < 0.05, ##p < 0.01, ###p < 0.001 versus Scr
Control + LPS. N = 3 in triplicates for qPCR. Data are represented as mean ± SD. FABP3, fatty acid–binding protein 3; HUVECs, human umbilical vein
endothelial cells; LPS, lipopolysaccharide; qPCR, quantitative polymerase chain reaction.
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data demonstrated the absence of cleaved-CASPASE3 protein
in the siFABP3-transfected endothelial cells, suggesting that
LPS-induced apoptosis in endothelial cells was inhibited by
loss of FABP3 in LPS-treated endothelial cells (Fig. 1L).
Overall, these data indicate that loss of FABP3 protects against
LPS-induced endothelial dysfunction by restoring angiogenic,
migratory, and proliferative potential and by inhibiting LPS-
induced apoptosis of endothelial cells.
Endothelial cell-specific loss of FABP3 restores LPS-induced
endothelial nitric oxide synthase expression and activation

To understand the effect of loss of FABP3 and LPS on the
molecular and regulatory level in endothelial cells, we evalu-
ated the expression and activation of the essential regulators of
endothelial function. Endothelial nitric oxide synthase (eNOS)
and protein kinase B (AKT) are the two essential regulators of
endothelial function (34). LPS is known to inhibit eNOS
expression and activation (35), and accordingly, we also
observed a reduction in the eNOS protein expression and
activation levels in LPS-treated endothelial cells (Fig. 2, A–C).
Interestingly, we observed a significantly higher protein level of
eNOS in FABP3-silenced endothelial cells, which also corre-
sponded with increased phosphorylation of eNOS (Fig. 2, A–
C). LPS-associated inhibition of eNOS expression and activa-
tion was restored in LPS-treated FABP3-silenced endothelial
cells (Fig. 2, A–C). Given that the phosphatidylinositol 3-
kinase (PI3K)/AKT/eNOS signaling pathway is critical for
the maintenance of endothelial function and that activated
AKT can directly activate eNOS (34), we next measured total
and activated AKT levels in FABP3-silenced and LPS-treated
endothelial cells. LPS has been shown to compromise AKT
activation (36); accordingly, we also observed reduced AKT
activation in LPS-treated endothelial cells (Fig. 2D). However,
to our surprise, when we quantified and evaluated the acti-
vated versus total AKT, the inhibition was not significant
J. Biol. Chem. (2023) 299(3) 102921 3
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Figure 2. Endothelial cell-specific loss of FABP3 promotes eNOS expression and activation. HUVECs were transfected with either scrambled control or
siFABP3 for 24 h and treated for additional 24 h with LPS, and then protein and RNA were extracted to perform immunoblot and qPCR, respectively. A–C,
immunoblotting for eNOS, p-eNOS, and GAPDH (A), and quantification for eNOS (B) and p-eNOS/eNOS ratio (C). D, E, F and H, immunoblotting for AKT, pAKT,
and GAPDH and quantification for pAKT/AKT ratio (E), AKT (F), and pAKT (H). J and K, immunoblot (J) and (K) quantification for p21. G and I, qPCR was
performed for AKT (G) and p21 (I). Difference between the means of groups were calculated using one-way ANOVA with Tukey’s multiple comparison test.
*p< 0.05, **p < 0.01, ***p < 0.001 versus Scr Control. #p< 0.05, ##p< 0.01, ###<p0.001 versus Scr Control+LPS. $p < 0.05 versus siFABP3. N = 3 in triplicates
for qPCR, and data are represented as mean ± SD. AKT, protein kinase B; eNOS, endothelial nitric oxide synthase; FABP3, fatty acid–binding protein 3;
HUVECs, human umbilical vein endothelial cells; LPS, lipopolysaccharide.
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between the LPS-treated siFABP3- and scrambles-transfected
HUVECs (Fig. 2E). Next, we questioned whether this lack of
difference is due to inhibition of total AKT expression by LPS
treatment in endothelial cells and quantified total AKT. As
expected, LPS significantly inhibited total AKT expression in
endothelial cells (Fig. 2F). Interestingly, AKT expression was
restored in LPS-treated FABP3-silenced endothelial cells
(Fig. 2F), and when we quantified activated AKT (p-AKT), we
observed a significant upregulation again for both FABP3-
silenced endothelial cells and LPS-treated FABP3-silenced
endothelial cells (Fig. 2, D and H). Protein p21, a cell cycle
inhibitor, is known to regulate endothelial cell proliferation
physiologically and also in pathological conditions (37). Most
importantly, LPS-mediated inhibition of cell proliferation has
been previously attributed to p21 upregulation (38). Accord-
ingly, we measured the p21 expression in FABP3-silenced and
LPS-treated endothelial cells. Our transcript data showed a
significant reduction in p21 transcript level in FABP3-silenced
endothelial cells; p21 transcript and protein appeared to be
upregulated in LPS-treated endothelial cells, whereas the p21
4 J. Biol. Chem. (2023) 299(3) 102921
expression was restored in LPS-treated FABP3-silenced
endothelial cells in comparison to LPS-treated scrambled
control-transfected endothelial cells (Fig. 2, I–K). These data
indicated that loss of FABP3-associated restoration of endo-
thelial function in LPS-treated endothelial cells is mediated by
increased AKT/eNOS signaling and inhibition of LPS-
associated p21 expression.
Endogenous FABP3 deficiency ameliorates LPS-induced
inflammation in endothelial cells

To assess the role of FABP3 in endothelial inflammation, we
evaluated the expression level of key inflammatory markers,
including the ICAM-1, VCAM-1, and E-SELECTIN, and the
secretory inflammatory cytokines, such as IL1b, IL6, and MCP-
1, in FABP3-silenced and LPS-treated endothelial cells.
LPS-treatment is known to induce ICAM-1 and VCAM-1
expression (39); accordingly, we also observed a significant
induction of ICAM-1 (Fig. 3, A–C) and VCAM-1 (Fig. 3, D–F)
in the LPS-treated scrambled control-transfected endothelial
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Figure 3. Inflammatory markers modulated by loss of FABP3’s function in LPS-treated endothelial cells. HUVECs were transfected with either
scrambled control or siFABP3 for 24 h and treated for additional 6 h and 24 h with LPS to isolate RNA and protein, respectively. A, D, G–J, bar graphs
representing qPCR data for ICAM-1 (A), VCAM-1 (D), E-SELECTIN (G), IL1b (H), IL6 (I), and MCP-1 (J). B, C–F, immunoblot and quantification for ICAM-1 (B and C)
and ICAM-1 (E and F). Difference between the means of groups were calculated using one-way ANOVA with Tukey’s multiple comparison test. *p < 0.05,
**p < 0.01, ***p < 0.001 versus Scr Control. ##p < 0.01, ###p < 0.001 versus Scr Control+LPS. N = 3 in triplicates for qPCR, and data are represented as
mean ± SD. FABP3, fatty acid–binding protein 3; HUVECs, human umbilical vein endothelial cells; LPS, lipopolysaccharide; qPCR, quantitative polymerase
chain reaction.
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cells. Loss of FABP3 significantly inhibited LPS-induced
expression of ICAM-1 at both the transcript and protein
levels in HUVECs (Fig. 3, A–C). LPS-induced VCAM-1 tran-
script level also appeared to be inhibited by loss-of FABP3 in
endothelial cells; however, to our surprise, these data did not
translate to the protein levels, where we observed further
increased level of VCAM-1 in the LPS-treated FABP3-silenced
endothelial cells versus LPS-treated scrambled control-
transfected endothelial cells (Fig. 3, D–F). Similar to ICAM-1
and VCAM-1, the expression level of E-SELECTIN was
induced by LPS, which was again restored by loss of FABP3 in
LPS-treated FABP3-silenced endothelial cells (Fig. 3G). LPS is
also known to promote the expression of inflammatory cyto-
kines, such as interleukins, IL1b and IL6, and the chemo-
attractant factor MCP-1 (40). Accordingly, we observed
LPS-induced significant upregulation in the expression level
of IL1b and IL6 along with the expression of MCP-1 in
endothelial cells (Fig. 3, H–J). Interestingly, loss of FABP3 was
successfully able to significantly inhibit the expression of all
these studied inflammatory molecules in LPS-treated
FABP3-silenced endothelial cells (Fig. 3, H–J). Taken together,
these data indicate that loss of FABP3 protects against LPS-
induced inflammation in endothelial cells.
Exogenous exposure of FABP3 exacerbates LPS-induced
inflammation in endothelial cells

Next, to understand the effect of exogenous exposure of
FABP3 on endothelial inflammation basally and after LPS-
stimulation, we treated endothelial cells with different doses
of recombinant human FABP3 (rhFABP3) and LPS and then
measured the expression level of ICAM-1 and VCAM-1. Re-
combinant human FABP3 alone did not significantly affect the
inflammation, measured in the form of ICAM-1 and VCAM-1
expression; however, rhFABP3 significantly increased ICAM-1
and VCAM-1 transcripts in LPS-treated endothelial cells,
demonstrating an additive effect (Fig. 4, A and B). Given the
observed discrepancy between transcript and protein levels in
LPS-treated FABP3-deficient endothelial cells, we measured the
expression level of ICAM1 and VCAM1 in rhFABP3 and LPS–
J. Biol. Chem. (2023) 299(3) 102921 5
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Figure 4. Exogenous FABP3 treatment exacerbates LPS-induced inflammation in endothelial cells, and LPS treatment upregulates circulatory
FABP3 levels in wildtype mice. HUVECS were cultured, and following 60 to 70% confluency, these cells were pretreated with different doses of re-
combinant human FABP3 for 1-h before treatment with 100 ng/ml of LPS. Later, 6 h and 24 h posttreatment, RNA and proteins, respectively, were extracted.
A and B, bar graphs show the qPCR quantification for ICAM-1 (A) and VCAM-1 (B). C, the qPCR data were further confirmed by immunoblotting for ICAM-1
and VCAM-1, which also showed exacerbation of ICAM-1 and VCAM-1 expression in rhFABP3 pretreated and LPS-treated endothelial cells. D, isometric
tension data from myograph experiments using acetylcholine to show relaxation (%) of phenylephrine-contracted aorta in control (PBS) versus rhFABP3
(45 ng/ml, 20 min) groups (p > 0.05). E, wildtype mice were treated with vehicle (N = 5) or LPS (N = 6, 4 mg/kg), and plasma was collected 4 h posttreatment
to perform ELISA for FABP3. Difference between the means of groups were calculated using one-way ANOVA with Tukey’s multiple comparison test (A and
B), two-way ANOVA with Bonferroni’s multiple comparison test (C), and Student’s t test (D). **p < 0.01, ***p < 0.001 versus Vehicle. $p < 0.05, $$p < 0.01
versus LPS + 50 ng/ml rhFABP3, #p < 0.005 versus LPS + 5 or 50 ng/ml rhFABP3. Data are represented as mean ± SD except in figure D, which is represented
as mean ± SEM. FABP3, fatty acid–binding protein 3; HUVECs, human umbilical vein endothelial cells; LPS, lipopolysaccharide; rhFABP3, recombinant human
FABP3.
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treated endothelial cells. We observed an expected result, where
VCAM-1 and ICAM-1 protein were increased in rhFABP3 and
LPS–treated endothelial cells in comparison to LPS only–
treated endothelial cells (Fig. 4C). Next, to assess the effect of
rhFAB3 exposure on endothelial cell function in vivo, we
measured acetylcholine-induced relaxations using myography
with isolated aortas from wildtype mice (41). There appears to
be a small effect of increasing relaxation (<10%) of
phenylephrine-contracted aortas by acetylcholine in the
rhFABP3-treatment group versus controls; however, the dif-
ference was not significant (p = 0.5878) (Fig. 4D). In order to
confirm whether LPS-induced FABP3 expression in endothelial
cells in vitro also occurs in vivo, we treated wildtype mice with
4 mg/kg (42) for 4 h, as we have previously observed that 4 h of
LPS treatment is sufficient to induce circulatory cytokines (43)
and measured circulatory FABP3 level in mouse plasma. Our
data showed significantly increased circulatory FABP3 levels in
LPS-treated versus vehicle-treated mice (Fig. 4E). Taken
together, these data indicate that FABP3 exposure exacerbates
LPS-induced inflammation in vitro and may cause endothelial
dysfunction in vivo in endothelial cells.
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Loss of FABP3 protects endothelial cells against LPS-induced
endothelial dysfunction by promoting cell survival and pro-
angiogenic pathways and by inhibiting inflammatory
pathways

Given the increased circulatory level of FABP3 in myocar-
dial injury (9) and PAD (18), the obscurity about the role of
endothelial FABP3 and the observed complexity about the role
of FABP3 in LPS-treated endothelial cells from our data, for
clarity, we performed a qPCR array containing 84 endothelial
and vascular disease-related genes. Our prime qPCR array data
in FABP3-silenced versus scrambled control demonstrated a
total of 15 upregulated genes (cut-off <2 fold) (Table 1). These
genes included pro-angiogenic and prosurvival genes, such as
COL1A2, BDNF, FN1, BCL2, EGFR, VEGFA, EGR1, CDK1, and
BIRC5 (Fig. 5). PTGS2 was the most upregulated gene iden-
tified in the FABP3-silenced endothelial cells. Validation qPCR
was performed for five of the upregulated genes to validate the
qPCR array data (Table 1). LPS treatment upregulated a total
of 10 genes (mainly pro-inflammatory, such as IL6, IL1b,
CCL2, CCL5, TLR2, and ICAM-1) and downregulated 18 genes
(mainly prosurvival and pro-angiogenic, such as STAT1,



Table 1
Top upregulated DE mRNAs in HUVECs transfected with siFABP3 versus scrambled-controls

qPCR array data Validation data

Nr Gene symbol Fold change p value Fold change p value

1 PTGS2 5.93 0.001058 3.75 ± 0.61 5.42E-06
2 COL1A2 4.04 0.000606 5.68 ± 1.79 3.21E-05
3 PLAU 4.01 0.000419 2.00 ± 0.18 0.010158
4 BDNF 3.48 0.000012 3.09 ± 0.37 5.01E-08
5 BCL2 3.12 0.000104
6 CCL5 2.99 0.03108 2.37 ± 0.32 0.000321
7 EGR1 2.93 0.001455
8 TLR2 2.91 0.0044
9 EGFR 2.71 0.003101
10 FN1 2.54 0.005133
11 TOP2A 2.4 0.001877
12 RRM2 2.35 0.005011
13 IGFBP3 2.23 0.010228
14 FOS 2.13 0.025431
15 VEGFA 2.01 0.012069 − −

Abbreviations: PTGS2, prostaglandin-endoperoxide synthase 2; COL1A2, collagen type I alpha 2 chain; PLAU, plasminogen activator, urokinase; BDNF, brain-derived
neurotrophic factor; BCL2, BCL2 apoptosis regulator; CCL5, C-C motif chemokine ligand 5; EGR1, early growth response 1; TLR2, toll-like receptor 2; EGFR, epidermal
growth factor receptor; FN1, fibronectin 1; TOP2A, DNA topoisomerase II alpha; RRM2, ribonucleotide reductase regulatory subunit M2; IGFBP3, insulin-like growth factor
binding protein 3; FOS, Fos proto-oncogene, AP-1 transcription factor subunit; VEGFA, vascular endothelial growth factor A; DE, differentially expressed.
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IGFBP3, CAV1, STAT3, BIRC5, AURKA, COL1A2, CDK1,
KDR, and FGF2) in comparison to vehicle-treated control (cut-
off <2 fold) (Tables 2 and 3 and Fig. 5). IL1b and MMP7 were
the most upregulated and downregulated genes in LPS-treated
endothelial cells (Tables 2 and 3). Validation performed for
four of the upregulated genes and five of downregulated genes
demonstrated a similar trend as the qPCR array (Tables 2 and
3). The prime qPCR array data for LPS versus vehicle-treated
FABP3-silenced endothelial cells showed a total of 15
Figure 5. Endothelial cell-specific loss of FABP3 protects against LPS-induc
differentially expressed genes, their regulatory implications, and proposed resu
dysfunction, inflammation, and injuries through upregulating and downregula
marizing the array data on the differentially expressed genes, their regulatory
stress by LPS. Loss of FABP3 function ameliorates cellular impairment induced
downregulation of inflammatory and senescent factors. Illustration summari
implications, and proposed results in LPS stressed with loss of FABP3’s function
binding protein 3; LPS, lipopolysaccharide.
upregulated and eight downregulated genes (Tables 4 and 5).
Most of the upregulated genes in LPS-treated FABP3-silenced
endothelial cells were prosurvival and pro-angiogenic, and the
most downregulated genes were proinflammatory in nature
(Tables 4 and 5 and Fig. 5). Overall, our PCR array data
indicated that loss of FABP3 promotes endothelial cell func-
tion and survival and protects against LPS-induced toxicity by
promoting pro-angiogenic and prosurvival pathways and by
inhibiting inflammation.
ed endothelial dysfunction. Illustration summarizing the array data on the
lts in FABP3-deficient endothelial cells. LPS-treated endothelial cells undergo
ting proinflammatory and prosurvival genes, respectively. Illustration sum-
implications, and proposed results in endothelial cells under inflammatory
by LPS in endothelial cells through upregulation of prosurvival targets and
zing the array data on the differentially expressed genes, their regulatory
(created with BioRender.com, agreement # KK24HGD240). FABP3, fatty acid–
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Table 2
Top upregulated DE mRNAs in HUVECs treated with LPS versus Vehicle

qPCR array data Validation data

Nr Gene symbol Fold change p value Fold change p value

1 IL1b 20.01 0.001069 15.1 ± 0.21 0.00007
2 IL8 14.87 0.000030 41.1 ± 20.12 0.00193
3 CCL5 5.38 0.008772 8.44 ± 1.56 8.42E-05
4 SOD2 3.58 0.003152
5 ICAM1 2.82 0.001696 3.47 ± 0.32 0.00021
6 TLR2 2.31 0.020022
7 CCL2 2.18 0.035624
8 PTGS2 1.97 0.030868
9 IL6 1.89 0.002871
10 PLAU 1.59 0.039647

Abbreviations: IL1b, interleukin 1 beta; IL8, C-X-C motif chemokine ligand 8; CCL5, C-C motif chemokine ligand 5; SOD2, superoxide dismutase 2; ICAM1, intercellular adhesion
molecule 1; TLR2, toll-like receptor 2; CCL2, C-C motif chemokine ligand 2; PTGS2, prostaglandin-endoperoxide synthase 2; IL6, interleukin 6; PLAU, plasminogen activator,
urokinase.

Role of FABP3 in endothelial function and dysfunction
Discussion
The FABPs are cytosolic lipid chaperones abundantly

expressed in active lipid-metabolizing tissues, such as the heart
and liver, or cell types specialized in lipid storage, trafficking
and signaling, such as adipocytes and macrophages (44). The
FABP family consists of nine members (FABP 1–9), each with
unique tissue-expression patterns (45), although lipid-
metabolizing tissues or cells can be found with more than
one isoform (46). The degree of FABP-expression in a tissue or
cell-type may reflect their lipid-metabolizing capacity, which
can be modulated by changes in lipids bioavailability (47). All
FABPs are generally known to reversibly interact and escort
hydrophobic ligands with various affinities to sites of lipid
metabolism or signaling (e.g., lipid droplets, plasma membrane,
mitochondria, etc.) (48). However, 20 to 70% sequence ho-
mology exists among the nine members (45), and the unique
functional features of each member remain poorly understood
(49). The FABPs expressed in adipocytes and macrophages
have been associated with metabolic and inflammatory regu-
lation (44).

Endothelial cells are known to metabolize fatty acids for
energy through mitochondrial oxidation processes (50).
Parenchymal absorption of circulating lipids is mediated by
endothelial cells (51). Moreover, fatty acids in endothelial cells
also have signaling roles impacting cell differentiation, endo-
thelial function, and dysfunction in diseases, although the
underlying mechanisms remain largely unclear outside the
metabolic diseases. A single recent study has identified FABP3
in human coronary artery endothelial cells and suggested their
interaction with the PPARγ through binding fatty acids in
regulating transcriptional activities (5). PPARγ is a central
component in the inflammatory response mounted by endo-
thelial cells. In addition, the PPAR family of nuclear receptors/
transcription factors are expressed in endothelial cells to
mediate endothelial function (52). In this notion, we planned
to evaluate endothelial FABP3 and investigate its connection
to endothelial function. To induce inflammation and endo-
thelial dysfunction, we treated cells with LPS, an in vitro
model, to study inflammation (26). We used the standard
in vitro endothelial cell model, HUVECs (53–56), and
confirmed basal FABP3 expression, which was upregulated
8 J. Biol. Chem. (2023) 299(3) 102921
upon LPS treatment, suggesting a regulatory role of FABP3 in
the endothelial response to LPS (Fig. 1, A–C). LPS binding to
endothelial cells elicits endothelial activation, which encom-
passes the upregulation of inflammatory cytokines and adhe-
sion molecules and the modulation of several critical pathways,
including NF-κB, mitogen-activated protein kinase, and PI3K/
AKT pathways (57–60).

Aspects of endothelial function include angiogenesis,
migration, proliferation, nitric oxide (NO) production and
mounting the inflammatory responses (53–56). In our tube-
formation and migratory assessment, FABP3-silenced
HUVECs demonstrated better tube-forming potential, but
the migratory potential was reduced relative to scramble
controls in both following vehicle or LPS treatment (Fig. 1, F–
J). Although how FABP3 is oppositely influencing the two
functional aspects remains inconclusive, our data strongly
suggest a consequential role of endothelial FABP3 in angio-
genesis and endothelial migration. Endothelial inflammatory
activation is marked by an increased migratory response (61).
Loss of FABP3 appeared to reduce cell migration at baseline
and after LPS treatment, suggesting an independent effect of
loss of FABP3 on endothelial cell migration (Fig. 1, I and J).
Endothelial NO synthase is a key regulator of endothelial
functions by its influence on NO production, which is essen-
tially involved in oxidative homeostasis and, thereby, influ-
encing many aspects of endothelial function (62). In
endothelial cells, AKT is an upstream regulator of eNOS (34).
Assessment of these two key regulators of endothelial function
revealed an increased eNOS expression in FABP3-silenced
HUVECs, and the restoration of eNOS expression in FABP3-
deficient endothelial cells following LPS treatment (Fig. 2,
A–C). AKT’s activity, measured by the levels of its phos-
phorylated and total AKT expression ratio, appeared to be
upregulated in both FABP3-silenced endothelial cells and
FABP3-silenced endothelial cells treated with LPS (Fig. 2, D, E,
and H). Data from both eNOS and AKT assessments suggest
their activities are upregulated by the loss of FABP3 in endo-
thelial cells, thereby improving endothelial function. More-
over, LPS has previously been reported to inhibit AKT in
endothelial cells (36), but we for the first time show that LPS
also significantly inhibits total AKT expression, which was



Table 3
Top downregulated DE mRNAs in HUVECs treated with LPS versus vehicle

qPCR array data Validation data

Nr Gene symbol Fold change p value Fold change p value

1 MMP7 −4.79 0.012612 0.678 ± 0.14 0.091
2 RRM2 −4.77 0.000825
3 TOP2A −4.26 0.000580
4 FGF2 −3.79 0.000975 0.469 ± 0.09 0.0051
5 CDK1 −3.68 0.000090 0.661 ± 0.14 0.0013
6 IL18 −3.67 0.019809
7 BIRC5 −3.66 0.000739
8 COL1A2 −3.40 0.001588 0.404 ± 0.01 0.0155
9 TACC3 −2.92 0.007174
10 IGFBP3 −2.85 0.028628 0.768 ± 0.08 0.068
11 AURKA −2.82 0.019969
12 ABCB1 −2.77 0.000632
13 KDR −2.45 0.018919
14 TCF7L2 −2.25 0.024388
15 RB1 −2.19 0.006922
16 CAV1 −2.13 0.000385
17 STAT1 −2.13 0.011240
18 STAT3 −2.13 0.032995

Abbreviations: MMP7, matrix metallopeptidase 7; RRM2, ribonucleotide reductase regulatory subunit M2; TOP2A, DNA topoisomerase II alpha; FGF2, fibroblast growth factor 2;
CDK1, cyclin dependent kinase 1; IL18, interleukin 18; BIRC5, baculoviral IAP repeat containing 5; COL1A2, collagen type I alpha 2 chain; TACC3, transforming acidic coiled-coil
containing protein 3; IGFBP3, insulin-like growth factor binding protein 3; AURKA, aurora kinase A; ABCB1, ATP binding cassette subfamily B member 1; KDR, kinase insert
domain receptor; TCF7L2, transcription factor 7 like 2; RB1, RB transcriptional corepressor 1; CAV1, caveolin 1; STAT1, signal transducer and activator of transcription 1;
STAT3, signal transducer and activator of transcription 3.

Role of FABP3 in endothelial function and dysfunction
salvaged in endothelial cells with loss of FABP3’s function
(Fig. 2, D, E, and G). Likewise, our proliferative and survival
assessments indicated improved endothelial proliferation and
survival in FABP3-silenced LPS-treated endothelial cells
(Fig. 1K). P21 is a cyclin-dependent kinase that inhibits the cell
cycle and thereby proliferation in endothelial cells (63). LPS is
known to promote p21 expression and inhibit cell proliferation
(38). In line, we also observed increased p21 expression and
reduced proliferation in LPS-treated endothelial cells (Fig. 2,
I–K). However, the loss of FABP3 downregulated p21 both
under vehicle and LPS treatment, implying enhanced prolif-
eration and unmasking the effect of LPS (Fig. 2, I–K). Lastly,
our Western blotting data for cleaved-CASPASE3 showed
induction of apoptosis in LPS-treated cells (Fig. 1L) as previ-
ously reported (64); however, the LPS-induced apoptosis was
Table 4
Top upregulated DE mRNAs in LPS-treated HUVECs transfected with sc

siFABP3- versus scramble-transfected and LPS-treated HUVECs

Nr Gene symbol Fold change p value

1 COL1A2 5.46 0.000518
2 BDNF 4.48 0.002061
3 RRM2 3.71 0.000630
4 PTGS2 3.61 0.001994
5 CCL5 3.53 0.016385
6 TOP2A 3.29 0.004118
7 BIRC5 3.25 0.004793
8 BCL2 3.16 0.006861
9 CXCL10 2.92 0.046103
10 EGR1 2.78 0.008167
11 FN1 2.35 0.013405
12 CDK1 2.33 0.011819
13 EGFR 2.10 0.012967
14 TACC3 2.02 0.019845
15 VEGFA 1.49 0.039754

Abbreviations: COL1A2, collagen type I alpha 2 chain; BDNF, brain derived neurotrophic
endoperoxide synthase 2; CCL5, C-C motif chemokine ligand 5; TOP2A, DNA topoiso
regulator; CXCL10, C-X-C motif chemokine ligand 10; EGR1, early growth response 1;
receptor; TACC3, transforming acidic coiled-coil containing protein 3; VEGFA, vascular
prevented by loss of FABP3 in endothelial cells (Fig. 1L).
Overall, it appears that in this scenario, both reduced p21
expression and increased survival contribute to the restoration
of endothelial cell proliferation in FABP3-defiecient LPS-
treated endothelial cells.

In the inflammatory response, activated endothelial cells
express adhesion molecules, such as ICAM-1, VCAM-1, and
E-SELECTIN, that function primarily to recruit circulatory
leukocytes and mediate their transendothelial migration to-
ward the site of acting antigen (65). Activated endothelial cells
also secrete the chemokines, such as MCP-1, and the in-
terleukins (e.g., IL1b, IL6, etc.), which mediate the chemotaxis
of neutrophils and amplify the inflammatory response,
respectively (61). These inflammatory molecules were evalu-
ated in our assessments of endothelial function. LPS is known
rambled-controls versus siFABP3

siFABP3- versus scramble-
transfected HUVECs

LPS- versus vehicle-treated
HUVECs

Fold change p value Fold change p value

4.04 0.000606 −3.40 0.001588
3.48 0.000012 −1.28 0.045815
2.35 0.005011 −4.77 0.000825
5.93 0.001058 1.97 0.030868
2.99 0.031080 5.38 0.008772
2.40 0.001877 −4.26 0.000580
1.94 0.001717 −3.66 0.000739
3.12 0.000104 −1.27 0.200420
1.30 0.621431 −1.29 0.685949
2.93 0.001455 −1.30 0.123815
2.54 0.005133 −1.83 0.022166
1.42 0.011762 −3.68 0.000090
2.71 0.003101 −1.01 0.939513
1.31 0.184808 −2.92 0.007174
2.01 0.012069 −1.14 0.488615

factor; RRM2, ribonucleotide reductase regulatory subunit M2; PTGS2, prostaglandin-
merase II alpha; BIRC5, baculoviral IAP repeat containing 5; BCL2, BCL2 apoptosis
FN1, fibronectin 1; CDK1, cyclin dependent kinase 1; EGFR, epidermal growth factor
endothelial growth factor A.
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Table 5
Top downregulated DE mRNAs in LPS-treated HUVECs transfected with scrambled-controls versus siFABP3

siFABP3- versus scramble-transfected and LPS-treated HUVECs
siFABP3- versus scramble-

transfected HUVECs
LPS- versus vehicle-treated

HUVECs

Nr Gene symbol Fold change p value Fold change p value Fold change p value

1 MMP1 −2.21 0.006971 −1.67 0.001441 −1.29 0.023254
2 CCL2 −2.01 0.028389 −1.23 0.461531 2.18 0.035624
3 SERPINE1 −1.82 0.029037 1.18 0.321398 1.52 0.068618
4 SOD2 −1.68 0.045407 −1.22 0.319038 3.58 0.003152
5 CTBP2 −1.63 0.047921 −1.25 0.436409 −1.85 0.072752
6 IL1B −2.55 0.054269 1.78 0.208236 20.01 0.001069
7 IL8 −1.59 0.062081 1.09 0.388103 14.87 0.000030
8 IL6 −1.47 0.058008 1.60 0.005547 1.89 0.002871

Abbreviations: MMP1, matrix metallopeptidase 1; CCL2, C-C motif chemokine ligand 2; SERPINE1, serpin family E member 1; SOD2, superoxide dismutase 2; CTBP2, C-terminal
binding protein 2; IL1B, interleukin 1 beta; IL8, C-X-C motif chemokine ligand 8; IL6, interleukin 6.

Role of FABP3 in endothelial function and dysfunction
to induce the expression of endothelial cells inflammatory
markers, such as ICAM-1, VCAM-1, and E-SELECTIN (66).
Accordingly, we also observed a significant upregulation of
these markers in LPS-treated versus vehicle-treated endothelial
cells (Fig. 3, A–G). To our surprise, loss of FABP3 significantly
reduced LPS-induced ICAM-1 and E–SELECTIN expression;
however, interestingly, opposite to VCAM-1 transcript
expression, the VCAM-1 protein expression was significantly
exacerbated in LPS-treated FABP3-silenced versus LPS-treated
control endothelial cells (Fig. 3, D–F). The observed increase
in VCAM-1 protein might be due to a higher protein’s activity
and stability in endothelial activation as previously reported
(67); however, this remains to be explained. LPS-induced
expression of MCP-1, IL1b, and IL6 were also reduced in
FABP3-deficient endothelial cells following LPS treatment
(Fig. 3, H–J).

Establishing the gain-of FABP3’s function through exog-
enous treatment with rhFABP3 revealed a reverse trend for
ICAM-1 and VCAM-1; rhFABP3 exacerbated LPS-induced
upregulation of ICAM-1 and VCAM-1 in endothelial cells,
reinforcing the inflammatory role of FABP3 (Fig. 4, A–C).
ICAM-1, E-SELECTIN, and VCAM-1 in an activated endo-
thelium all function in leukocyte–endothelial adhesion via
interaction with leukocytes’ LFA-1 (68), PSGL1 (69), and
ITGA4/ITGB1 complexes (70), respectively, that are present
on leukocytes. Of the three, ICAM-1 is notably also
expressed in leukocytes, an active source of fatty acids
signaling (71); such interaction may imply a role related to
FABP3 in leukocyte–endothelial interaction in an activated
endothelium. E-SELECTIN and VCAM-1 are more specific
to endothelial cells, and both are notable for their additional
roles in angiogenesis (72). Most interestingly, compared to
E-SELECTIN and ICAM-1 in endothelial cells, which are
localized primarily on the cell membrane, VCAM-1 is
expressed both intracellularly in addition to the cell surface
(73–75). This and the diverse regulatory implications of
cellular fatty acids (76) may attribute to the complicated
behavior of VCAM-1 in our siFABP3-transfected endothelial
cells under LPS-induced inflammation. Lastly, the elevation
of all three pro-inflammatory markers is associated with
cardiovascular and atherosclerotic risk (77). Overall, our data
strongly indicate an essential regulatory anti-inflammatory
role of FABP3 in endothelial cells. To extend these
10 J. Biol. Chem. (2023) 299(3) 102921
findings and start to explore the acute effect of exogenous
rhFABP3 on vasoreactivity, we performed a myography
experiment with isolated aortas from wildtype mice. We
treated these aortas with either vehicle or rhFABP3 and
measured acetylcholine-induced relaxations. These re-
laxations did not differ significantly between the controls
and the treatment group using 45 ng/ml rhFABP3 (Fig. 4D).
Although the human and mouse forms of FABP3 are highly
conserved, we argue that a larger sample sized study using
mouse FABP3 with time-course studies, both sexes, and
other blood vessel types, warrants attention as we did
observe a small effect of increasing relaxation (<10%). In a
clinical scenario, FABP3 released into the circulation
following ischemia may help by a vasodilatory effect to in-
crease the blood flow to the impacted tissues. In this sce-
nario, an increase in acute circulatory FABP3 may be
beneficial, for example, after acute myocardial infarction;
however, a chronic presence of circulatory FABP3 in PAD
patients may be beneficial for similar reasons but is coun-
tered by the detrimental additive effect to increase the
severity of PAD. Accordingly, in PAD, inhibiting FABP3
might prove to be beneficial. LPS is used in an in vitro model
to study inflammation and in an in vivo model to study
sepsis (78). To evaluate the relevance of our LPS-associated
in vitro data in an animal model of sepsis, we treated wild-
type mice with LPS and measured circulatory FABP3. Not
only we observed baseline circulatory FABP3 but also a
significant increase of FABP3 levels in response to LPS
stimulation in vivo (Fig. 4E). The source of LPS-induced
FABP3 in mouse plasma is still unknown, but if true in
humans, then FABP3 might also provide a biomarker for the
severity of sepsis in humans, which warrants future in-
vestigations. FABP3 as a biomarker is of particular interest
as we were also able to find an association between urinary
FABP3 and PAD (79).

Given that FABP4 and FABP5 are the known predominant
FABPs in endothelial cells (1, 4), we assessed the relative
expression of FABP3, FABP4, and FABP5. As expected, out of
these three FABPs, FABP5 was the most, and FABP3 was the
least expressed FABP in endothelial cells (Fig. 6A). These data
show that FABP3 is basally expressed at a low level; however,
FABP3 is upregulated in stress conditions such as LPS-
treatment in endothelial cells. Next, we also tested the effect
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Figure 6. Relative expression of FABP3, FABP4, and FABP5 in cultured endothelial cells. A, HUVECs were cultured and following 70 to 80% confluency,
RNA was extracted to perform qPCR for FABP3, FABP4, and FABP5. B and C, cultured HUVECs were treated with 100 ng/ml of LPS, and RNA was extracted
24 h posttreatment to perform qPCR for FABP3, FABP4, and FABP5. N = 3 in triplicates. Difference between the means of groups were calculated using
ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001 versus vehicle. FABP3, fatty acid–binding protein 3; HUVECs, human
umbilical vein endothelial cells; LPS, lipopolysaccharide.

Role of FABP3 in endothelial function and dysfunction
of LPS on FABP4 and FABP5 and observed similar upregula-
tion of these genes similar to FABP3 (Fig. 6, B and C). FABP4
and FABP5 are known to be co-expressed and to play over-
lapping as well as nonredundant roles (1, 4). A similar pattern
observed for LPS-induced upregulation of FABP3, FABP4, and
FABP5 in endothelial cells indicates that these molecules may
be co-expressed; however, distinct effects of loss-of and gain-of
FABP3 in endothelial cells warrant similar investigations
following the loss-of and gain-of FABP4 and FABP5 in endo-
thelial cells under LPS treatment or inflammation.

To understand the complexity of FABP3 action and to
expand our endothelial function assessment, the regulatory
roles of endothelial FABP3 were conducted using a prime
qPCR array to evaluate endothelial cell-specific genes known
to play roles in vascular disease. Among the upregulated genes
in siFABP3-transfected endothelial cells, COL1A2 encodes for
collagen type I, which composes the extracellular matrix and
surrounding connective tissues. The expression of COL1A2, as
well as that of the fibronectin-encoding FN1 gene, are featured
in the focal adhesion processes of endothelial cells, which
promote endothelial cells’ integrity, growth, and survival
through the TGF-beta and PI3K-AKT signaling pathways
(80, 81). EGFR’s gene product, which is the receptor for the
epidermal growth factors, is also activated in endothelial focal
adhesion and promotes cell growth through the PI3K-AKT
signaling pathway (82). IGFBP3, which encodes for a compo-
nent of the complex-carrier of the insulin-like growth factors,
stimulates endothelial cells’ proliferation through EGFR (83,
84). VEGFA is an inducer of endothelial cell growth required
for angiogenesis and vasculogenesis, as well as general endo-
thelial function and the maintenance of vasculature’s integrity
(85). As we observed upregulated EGR1, VEGFa also promotes
EGR1 (86), which has been linked to activated PDGF-A that
regulates endothelial function in endothelial cells (87). FOS’s
gene product, which composes the transcription factor com-
plex AP-1, promotes endothelial cell growth (88). BDNF,
whose gene product is essential in the survival and differen-
tiation of neurons (89), regulates vessel’s integrity and
promotes angiogenesis in endothelial cells (90). Lastly, BCL2 is
the prosurvival factor in apoptosis, which functions to inhibit
caspases activity, thereby promoting cell survival (91). Overall,
the upregulation of these genes in HUVECs with compromised
FABP3 indicates a positive regulation of endothelial cells’
growth, function, and survival from the loss-of FABP3’s
function (Table 1 and Fig. 5).

Under LPS treatment, endothelial cells respond negatively
with impaired function and survival and a state of inflammation
(Tables 2 and 3 and Fig. 5). As expected, in LPS-treated
HUVECs, genes encoding for the pro-inflammatory cytokines
(IL6, IL1B) and chemokines (CCL2, CCL5) were upregulated, as
well as TLR2, which encodes for the receptor responding
against foreign agents (25), and the leucocyte-adhesive inflam-
matory marker ICAM-1 (92). Likewise, among the down-
regulated genes were IGFBP3 and COL1A2, indicating a
downregulation in endothelial proliferation and survival in
response to LPS. This notion is further supported by the
downregulated AURKA, FGF2, and CDK1, whose gene prod-
ucts are key regulators of cellular proliferation (93–95). The
gene products of STAT1 and STAT3 are transcription factors of
the STAT protein family known to be regulated by the in-
terferons and EGFs (96, 97); their roles have also been implied
in VEGFa and EGFR signaling (98, 99), as well as the production
of the anti-inflammatory cytokines IL-4, IL-7, and IL-10 (100).
Downregulated STAT1 and STAT3 in LPS-treated endothelial
cells, therefore, indicated compromised cell growth and a state
of pro-inflammation. Impaired endothelial function is further
suggested by the downregulation of CAV1, a mediator of
cellular transcytosis essential for many cell-signaling pathways
(101), and KDR that encodes for VEGFR, the receptor for
VEGFa (102). LPS-mediated apoptosis is also indicated by
downregulated BIRC5, whose gene product, Survivin, is a
member of the inhibitor of apoptosis (IAP) protein family (103).

From the differentially expressed genes in HUVECs with
both siFABP3 and LPS treatments, we observed a remarkable
ameliorating effect by the loss of FABP3’s function (Tables 4
and 5 and Fig. 5). Salvaged endothelial integrity and survival
J. Biol. Chem. (2023) 299(3) 102921 11
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were indicated by the upregulation of COL1A2 & FN1 and
BCl2 & BIRC5, respectively. Upregulated EGFR and CDK1
further suggested increased cell proliferation, and upregulated
BDNF, EGR1, and VEGFA indicated a promotion of endothe-
lial functions. On the other hand, CCL2 as well as IL6 and IL1B
were downregulated, indicating reduced inflammation. Inter-
estingly, SERPINE1, whose gene product is an inhibitor of
fibrinolysis (104), was downregulated. Activated SERPINE 1
also promotes cellular senescence downstream of the p53
regulatory network (105). Reduced activity of SERPINE1,
therefore, suggests that loss of FABP3’s function prompts
endothelial cells away from a state of senescence and improves
clot breakage, providing benefits against cardiovascular risk in
aging and dysregulated clot formation in atherosclerosis (106).

In summary, our data demonstrate that FABP3 is expressed
in endothelial cells and that loss of endothelial FABP3 inhibits
LPS-induced endothelial dysfunction by modulating cell sur-
vival and inflammatory and angiogenic signaling pathways. We
also observed exacerbation of LPS-induced inflammation in
endothelial cells. We were able to provide a global view of the
pathways associated with FABP3; however, these findings
warrant further detailed investigations. We observed a rather
low expression of FABP3 in endothelium and an increased
level of circulating FABP3 in LPS-treated mice; however, it
remains to be seen whether the endothelium is a significant
source of FABP3 in LPS-treated mice and in PAD patients. To
this aim, we are generating endothelial cell-specific FABP3
knockout (FABP3endo) mice. We will measure circulating
FABP3 following LPS treatment to FABP3endo and wildtype
mice. Circulating FABP3 will also be measured following
crossing FABP3endo mice with ApoEnull mice (FABP3endo:A-
poEnull) and feeding them high-fat diet to induce atheroscle-
rosis. A decreased level of circulating FABP3 in FABP3endo

following LPS-treatment or in FABP3endo:ApoEnull mice
following high-fat diet treatment will confirm endothelium as a
significant source of FABP3 in vivo. As of current, our data
indicate that an increase in circulating FABP3 may be detri-
mental to endothelial function, and therefore, therapies aimed
at inhibiting FABP3 may improve endothelial function in
diseased states, particularly in the cases with chronic elevation
of FABP3, such as PAD.

Experimental procedures

Animals

Wildtype C57BL/6J (Charles River Laboratories) were used
in accordance with the Guide to Care and Use of Animals of
the Canadian Council of Animal Care (CCAC). The use of
animals was approved by the Animal Care Committee at
Western University, Canada.

Cell culture, FABP3 silencing, and LPS treatment

HUVECs (Lonza # CC-2519, pooled, passage # 4–7), a
standard model to study endothelial cells function in vitro (28,
53–56), were grown in endothelial cell complete growth
medium-2 (EGM-2 Bulletkit; Lonza). HUVECs were trans-
fected with either siFABP3 (optimized to 5 nM, sense strand:
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50-GCUAAUUGAUGGAAAACUCTT -30 and antisense
strand: 50-GAGUUUUCCAUCAAUUAGCTC-30) or scram-
bled control (Ambion Silencer Select Pre-Designed siRNA)
using Lipofectamine RNAi-max (Invitrogen) and OptiMEM
(Gibco). Following 24 h of transfection, HUVECs were treated
with either LPS (Sigma-Aldrich) or diluent (PBS) in MCDB-
131 low-serum media (+1% FBS) for different time points.
HUVECs were starved overnight in the MCDB-131 low-serum
media before treatment.
RNA extraction, cDNA synthesis, and quantitative real-time
PCR

Following transfection and treatment, total RNAs were
extracted and quantified using the Trizol standard method
(Invitrogen) (107). Total RNA was quantified using NanoDrop
(Thermo Scientific). Complementary DNAs were synthesized
from RNAs using the QuantiTect kit (Qiagen). qPCRs were
conducted to evaluate the expression of targeted genes using
SYBR (Bio-Rad), primers, and QuantStudio-3 Real-Time PCR
system (Applied Biosystems). All protocols were conducted in
accordance with the manufacturer’s instructions. The qPCR
was performed for GAPDH, vascular cell adhesion molecule-1
(VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-
SELECTIN (108), p21, eNOS (53), FABP3 (forward 50-CAT-
GACCAAGCCTACCACAAT-30 and reverse 50-CCCCAACT
TAAAGCTGATCTCTG), FABP4 (109), FABP5 (109), IL1b
(forward 50-GAAGCTGATGGCCCTAAACA-30 and reverse 50-
AAGCCCTTGCTGTAGTGGTG-30), IL6 (forward 50-AGTGA
GGAACAAGCCAGAGC-30 and reverse 50-GTCAGGGGTGGT
TATTGCAT-30), MCP1 (forward 50-GCCTCCAGCATGAA
AGTCTC-30 and reverse 50-AGGTGACTGGGGCATTGAT-30),
and AKT (forward 5’ -TCTATGGCGCTGAGATTGTG-30 and
reverse 50-CTTAATGTGCCCGTCCTTGT-30).
Western blot

Cultured HUVECs were collected in RIPA buffer to isolate
total proteins (110). Equal amount of proteins from each
sample were loaded onto sodium dodecyl sulfate (SDS) poly-
acrylamide gels, which were then subjected to electrophoresis.
Proteins were then transferred onto PVDF membranes (Bio-
Rad), and the following antibodies were employed to detect for
the proteins of interest [Cell Signaling Technology: ICAM-1
(4915S, dilution 1:1000), VCAM-1 (13662S, dilution 1:1000),
eNOS (32027S, dilution 1:1000), phospho (p)-eNOS (Milli-
pore, 07 -428-I, dilution 1:1000), AKT (4691S, dilution 1:1000),
p-AKT (4060S, dilution 1:1000), cleaved-CASPASE3 (9664S,
dilution 1:1000), p21 (2947S, dilution 1:1000), and GAPDH
(5174S, dilution 1:1000)]. Western blot for FABP3 was per-
formed using polyclonal antibody (ThermoFisher, PA5-92386,
dilution 1:1000), and wildtype mouse total heart protein
was used as a positive control. Western blots were
developed using chemiluminescence substrates (Bio-Rad) and
the Licor-Odyssey XF Imaging System. Densitometry was
performed to measure the band intensities using the Image
Studio Lite.
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Cell counting

HUVECs were silenced and seeded at a density of 2 ×
105 cells/well in a 6-well plate prior to LPS or diluent control
for 24 h. Cells from each well were then harvested and counted
under an Automated Cell Counter (CytoSmart) to assess for
proliferative/viability capacity.

Scratch assay

Following reverse transfection, HUVECs were seeded at a
density of 2 × 105 cells/well in a 6-well plate and allowed to
grow to 70 to 80% confluency. Each well was then adminis-
tered a consistent straight scratch prior to LPS or negative
control. Phase-contrast microscopy using an adapted camera
(Optika) was employed to take pictures of cells in each well
migrating into the scratch over time to evaluate for migrating
capacity as described (111). The experiment was performed in
triplicates.

In vitro tube-formation assay

The In vitro Angiogenesis Kit (Millipore) was employed to
evaluate endothelial angiogenic properties. HUVECs were
transfected and seeded at a density of 2 × 105 cells/well in a 6-
well plate and allowed to grow to �75% confluency. The kit-
provided matrix solution was added into designated wells of
a 96-well plate. Transfected cells from the previous prepara-
tion were then harvested and seeded at an equal density of 1 to
1.5 × 104 cells/well onto the designated wells in EGM-2 sup-
plemented with LPS or vehicle diluent. Phase contrast mi-
croscopy was employed (Optika) to obtain pictures of cells
under phase contrast in each designated well over time to
monitor tube formation, and quantification was performed
according to the manufacturer’s instruction.

Exogenous recombinant FABP3 treatment

HUVECs grown in endothelial cell complete growth
medium-2 were exposed to different doses of human-
recombinant FABP3 (Cayman Chemical) or their diluent
(PBS) in low-serum MCDB-131 media. Following 1 h of
exposure, HUVECs were treated with either LPS or PBS for 6 h
for RNA extraction to perform qPCR and 24 h for protein
extraction to perform Western blotting.

Enzyme-linked immunosorbent assay and wire myography

HUVECs were cultured and treated with 100 ng/ml of LPS
for 24 h following 80% confluency. Later, culture medium was
collected, and ELISA for FABP3 was performed using
concentrated culture medium and analyzed as instructed by
DuoSet ELISA Development System and Ancillary Reagent Kit
2 (R&D Systems, Cat. # DY1678 and DY008). ELISA for
circulating FABP3 was performed following 4 h of i.p. injection
of LPS (4 mg/kg) or vehicle (PBS) to the wildtype mice (N = 6/
group, C57BL/6 12–15 weeks old male—Charles River Labo-
ratories). Blood was collected in heparinized tubes, centri-
fuged, and the supernatant was collected to isolate plasma. A
total of undiluted 100 μl of mouse plasma was used to perform
ELISA as instructed by the Mouse FABP3 ELISA Kit (Frog-
gaBio, Cat #MOES01684).

Isometric tension myography studies of isolated aortas

Wildtype male mice (n = 4, 12–15 weeks of age) were
euthanized by overdose inhalation of isoflurane. Descending
thoracic aortas were removed from mice and placed in ice-cold
Krebs Hepes buffer while cleaned of adherent fat and con-
nective tissues. Krebs Hepes buffer (pH 7.4, 37 �C) was
composed of 114 mM NaCl, 4.7 mM KCl, 0.8 mM KH2PO4,
1.2 mM MgCl2 6H2O, 2.5 mM, CaCl2 2H2O, 11.0 mM D-
Glucose, 20 mM NaHCO3, and 5 mM Hepes hemisodium salt.
Krebs buffer was bubbled continuously with 95% O2/5% CO2

during myograph experiments. In brief, we used DMT 620M
myograph chambers with the methods and conditions
described in (41) for continuous measuring and recording of
isometric tension with mouse aortas. The aorta from each
mouse was divided into two groups: control (vehicle, PBS) and
treatment (rhFABP3, 45 ng/ml). We tested the viability of
aorta preparations (1–3 mm lengths) using 90 mM KCl. Viable
tissues contractions were >1 mN. We assessed acetylcholine-
induced relaxations of phenylephrine-contracted aortas under
isometric tension conditions as we described previously (41).
Aortic rings mounted in the DMT620 M chambers were
exposed to treatments for 20 min then contracted with
phenylephrine (3 μM) and then acetylcholine dose–responses
curves constructed.

Prime qPCR array

RNAs extracted from HUVECs transfected with either
siFABP3 or scrambled control and treated with LPS or ve-
hicles were subjected to a prime qPCR array screening a li-
brary of vascular disease–related genes (Bio-Rad, Vascular
disease, tier 1, H384, cat#10038720). The expression levels of
the differentially expressed mRNAs targets were measured
and then organized to outline the topmost upregulated or
downregulated gene targets. HUVECs were treated with
either LPS or diluent in MCDB-131, and RNAs were
extracted to perform validation qPCR. Validation of the
outlined targets were then conducted by regular qPCR pro-
cedure using the primers listed in Table S1 as described in
the RNA Extraction, cDNA Synthesis, and Quantitative Real-
Time PCR section. The targets were also analyzed by gene
ontology enrichment using Enrichr software to highlight the
biological processes or pathways affected by the differentially
expressing genes.

Data and statistical analysis

Difference between the means of two groups and more than
two groups were calculated using the Student’s t test and
analysis of variance (ANOVA) statistical analysis, respectively.
ANOVA significant results were followed by the post-hoc
Tukey’s test. Data are presented as mean ± SD unless other-
wise indicated. N = number of independent experiments or
animals. In myograph experiments, relaxation (%) by acetyl-
choline was calculated as the reversal of tension induced by the
J. Biol. Chem. (2023) 299(3) 102921 13
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contractile agonist (phenylephrine). Acetylcholine-induced
relaxations were analyzed using 2-way ANOVA with Bonfer-
roni post-hoc test for pairwise comparisons. p <0.05 was
considered significant.
Data availability

Data will be available upon request.
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