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Abstract
Necroptosis is one of the common modes of apoptosis, and it has an intrinsic association with cancer prognosis. However, 
the role of the necroptosis-related long non-coding RNA LncRNA (NRLncRNAs) in uterine corpora endometrial cancer 
(UCEC) has not yet been fully elucidated at present. Therefore, the present study is designed to investigate the potential 
prognostic value of necroptosis-related LncRNAs in UCEC. In the present study, the expression profiles and clinical data of 
UCEC patients were downloaded from TCGA database to identify the differentially expressed NRLncRNAs associated with 
overall survival. A LncRNA risk model was constructed via Cox regression analysis, and its prognostic value was evaluated. 
We have also further evaluated the relationships between the LncRNA features and the related cellular function, related 
pathways, immune status, and immune checkpoints m6A-related genes. Seven signatures, including PCAT19, CDKN2B-
AS1, LINC01936, LINC02178, BMPR1B-DT, LINC00237, and TRPM2-AS, were established to assess the overall survival 
(OS) of the UCEC in the present study. Survival analysis and ROC curves indicated that the correlated signature has good 
predictable performance. The normogram could accurately predict the overall survival of the patients with an excellent 
clinical practical value. Enrichment analysis of gene sets indicated that risk signals were enriched in several immune-related 
pathways. In addition, the risk characteristics were significantly correlated with immune cells, immune function, immune cell 
infiltration, immune checkpoints, and some m6A-related genes. This study has identified seven necroptosis-related LncRNA 
signatures for the first time, providing a valuable basis for a more accurate prognostic prediction of UCEC.
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Introduction

Uterine corpora endometrial cancer (UCEC) is one [1] of the 
common gynecological malignancies. In recent years, the 
incidence and mortality of UCEC are increasing year by year 
[2, 3]. Currently, transvaginal ultrasound with endometrial 
tissue biopsy is the main method of diagnosing endome-
trial cancer. In cases of uncertainty, hysteroscopy is feasible 
[4]. At present, the surgery, adjuvant radiotherapy, chemo-
therapy, and other treatment methods [2, 5] are the main 
methods to treat the UCEC. However, the UCEC is easy to 
metastasize [5] via lymph nodes, and the disease is prone to 
relapse [6] after treatment. Therefore, it is essential to find 
out new prognosis-related biosignatures to guide the clinical 
treatment of UCEC patients.

Necroptosis is a programmed cell death mediated [7–10] 
by the receptor-interacting protein kinase-3 (RIPK3) and its 
substrate mixed lineage kinase-like (MLKL). Resistance to 
apoptosis has been reported to be one of the main marks of 
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tumors [11]. Thus, the emergence of mature immune patterns 
directed against necroptosis has great implications for cancer 
treatment. Low expression of RIPK3 improves tumor necrosis 
factor–mediated cell damage. The kinase activity of RIPK3 
is critical [12, 13] for the process of cell necrosis. Long non-
coding RNA (LncRNAs) refers to the RNA [14, 15] that is 
longer than 200 nucleotides with no protein-coding capability. 
Genome-wide association studies of tumor samples have iden-
tified a large number of LncRNAs [16] associated with vari-
ous types of cancers. For example, many LncRNAs have been 
shown to be potential biosignatures and targets [17] for the 
diagnosis and treatment of cancer. In addition, immune-related 
[12, 13] LncRNAs may be disorderly expressed in tumors and 
significantly correlated with the immune cell infiltration [18].

Therefore, it is significantly important for the prognosis in 
UCEC by finding out the key LncRNAs closely related to the 
necroptosis. In this paper, we applied the bioinformatic meth-
ods to identify specific biosignatures related to the prognosis 
of UCEC, providing new perspectives for the prognosis of 
UCEC. See Fig. 1 for a flow chart of our study. Throughout 
the workflow, we constructed risk score prognostic models for 
necroptosis-related LncRNAs (NRLncRNAs) in UCEC sam-
ples by univariate cox regression analysis, lasso regression, and 
multivariate cox regression analysis. A series of correlation and 
prognostic analyses were performed on patients in the high- and 
low-risk score groups, and a final screen of seven prognostically 
relevant NRLncRNAs was performed.

Materials and Methods

Data Sources

We obtained RNA sequence data (FPKM values) and their 
corresponding clinical features from the tumor tissues of 
552 UCEC patients and normal tissues of 23 people in The 
Cancer Genome Atlas (TCGA) database (https://​portal.​gdc.​
cancer.​gov/​repos​itory), as well as extracted and standard-
ized these data using R software (4.1.1) [19]. One hundred 
and four genes associated with necroptosis were extracted 
from previous reviews and shown in the Appendix Table 
Supplementary S1 [7–9, 11, 20–24]. We intersected the 
gene information in the expression matrix with the genes 
related to necroptosis to obtain a new necroptosis-related 
gene (NRGs) expression matrix. Since the TCGA database 
is a public access resource, the present study is exempted 
from the approval of the Ethics Committee.

Identification of NRG‑Related LncRNAs

In order to identify the NRG-related LncRNAs, we used 
the Pearson correlation to assess the association between 

the LncRNAs and NRGs. Typically, we used a threshold 
of p < 0.001 and a correlation coefficient > 0.4 to select the 
NRG-related LncRNAs (NRLncRNAs).

The “limma” package [25] of R software was used to 
identify differentially expressed necroptosis-related LncR-
NAs between the tumor tissue and normal tissue. By refer-
ring to screening criteria of logFC > 1 and P < 0.05, differ-
entially expressed NRLncRNAs were acquired in the tumor 
tissue and normal tissue.

Construction and Validation of the Prognostic Risk 
Model of NRLncRNAs

We combined differentially expressed NRLncRNA expres-
sion with survival time using the perl language (perl 
5.28.1) to remove samples with incomplete clinical infor-
mation and zero or negative survival time. Univariate Cox 
regression analysis was performed using the “survival” 
package to screen out NRLncRNAs with a prognostic 
value. In order to prevent overfitting, the least absolute 
shrinkage and selection operator (LASSO) Cox regression 
model were then used to narrow the candidate gene range 
and build the prognostic model. After that, the screened 
genes were subjected to multivariate Cox regression anal-
ysis to obtain the prognostic genes, draw the prognostic 
NRLncRNA gene-related network, build a risk score model 
for predicting survival time, and output the risk score 
coefficient (coef) that was included in the model genes. 
The established prognostic risk score model was calcu-
lated as risk value (risk score) = prognostic NRLncRNA 
gene expression 1 × coef1 + prognostic NRLncRNA gene 
expression 2 × coef 2 + … + prognostic NRLncRNA gene 
expression n × coef n. Patient risk values were calculated 
according to the risk scoring model formula. These patients 
were divided into low-risk and high-risk groups based on 
the median.

We compared the overall survival (OS) between the 
high-risk and low-risk groups by Kaplan–Meier analysis 
and drew HR forest plots and heatmaps for the NRLncRNA 
prognosis model and survival curves of each prognostic 
gene. ROC is short for receiver operating characteristic 
curve. The relationship between various variables and 
risk values was evaluated using univariate and multivari-
ate independent prognostic analyses to determine whether 
the risk model could serve as an independent prognostic 
indicator. The evaluation of the model predictive effect 
was carried out using the “timeROC” package function 
of the R software and receiver operating characteristic 
(ROC) curve. In addition, the principal component analysis 
(PCA) was performed using the “Rtsne” package function 
of the R software. Moreover, a t-SNE test was conducted 
to visualize grouping, thereby exploring the distribution 
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of different groups. Samples were distinguished according 
to risk score. Risk score distribution maps and survival 
status plots were drawn using the “pheatmap” package of 
the R software. Besides, a normograph was established 
to predict the patient outcomes by applying the “regplot” 
package of the R software, and the “ggDCA” package of 
the software was used to make a decision curve to analyze 
the sensitivity of risk features and other clinical pathologi-
cal characteristics.

Construction of mRNA‑LncRNA Co‑expression 
Network

In order to prove the correlation between the necroptosis-
related LncRNAs and its corresponding mRNAs, a mRNA 
LncRNA co-expression network was constructed and visual-
ized with Cytoscape software (3.7.2) so as to further dem-
onstrate the degree of correlation between the necroptosis-
related LncRNAs and its corresponding mRNAs.

Fig. 1   Flow chart of the entire study. Throughout the workflow, risk 
score prognostic models for necroptosis-related LncRNAs (NRLncR-
NAs) were constructed in UCEC samples by univariate cox regres-
sion analysis, lasso regression, and multivariate cox regression analy-

sis. A series of correlation and prognostic analyses were performed 
on patients in the high- and low-risk score groups, and a final screen 
of seven prognostically relevant NRLncRNAs was performed
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GSEA

Gene set enrichment analysis (GSEA) is used to detect the 
relevant pathways and biological processes of high-risk pop-
ulation. Expressed gene sets in low-risk or high-risk popula-
tions and signature gene sets collected in the Kyoto Ency-
clopedia of Genes and Genomes (kegg) database V7.4 were 
analyzed using the GSEA (4.1.0) software [26]. FDR < 0.05 
was defined as statistical significance.

Functional Analysis of Differential Genes in High‑ 
and Low‑Risk Groups

Patients were divided into high-risk and low-risk groups 
according to the necroptosis-related prognostic model for 
differential expression analysis of genes using the limma 
package in order to explore the possible causes of survival 
differences between the high- and low-expression groups. 
Setup filtering conditions: logFC > 1. The FDR (BH)-cor-
rected threshold was P.adj < 0.05. Differentially expressed 
genes were imported into the ClueGO plugin in Cytoscape 
software (3.7.2) for functional analysis and setup threshold 
P < 0.05.

Immune Correlation Analysis

We evaluated the activity of immune cells based on FIRLS 
features in the high-risk and low-risk populations using 
CiberSort [27, 28], TIMER [29], MCP-COUNTER (MCP-
COUNTER) [30], QUANTISEQ [31], and XCell [32], 
as well as estimated proportion of immune cells to can-
cer cells (EPIC) [33] and so on algorithms. Meanwhile, 
single-sample gene set enrichment analysis (ssGSEA) was 
conducted using the “gsva” package of the R software in 
order to assess the infiltration scores of 16 immune cells 
and the activity of 13 immune pathways. Furthermore, the 
expression levels of immune checkpoint-related genes may 
be associated to the therapeutic response of immune check-
point inhibitors. The relationship between risk scores and 
immune checkpoints was discussed by examining differ-
ences in gene expression levels between the high-risk and 
low-risk populations.

Correlation Analysis of m6a Gene

Studies have shown that m6A modifications can influence 
the complexity [34] of cancer progression by modulating 
the biological function associated with cancer. The m6A-
related genes are key regulatory genes of tumor progression. 
Therefore, we discussed the relationship between the risk 
scores and m6a-related genes by examining differences in 
gene expression levels in high-risk and low-risk populations.

Results

Identification of Necroptosis‑Related Differentially 
Expressed LncRNAs

Figure 1 illustrates the workflow of this study. Firstly, 4668 
LncRNAs were identified in the RNA-SEQ data from UCEC 
patients based on the latest LncRNA annotation file (see 
Supplementary S2). These LncRNAs were then analyzed for 
Pearson correlation with 74 NRGs to yield 459 necroptosis-
related LncRNAs (NRLncRNAs). Finally, there were 85 dif-
ferentially expressed NRLncRNAs identified.

Construction of Prognostic Gene Risk Models 
of NRGs

A total of 539 UCEC samples were matched to the corre-
sponding patients with complete survival data. Prognosis-
related genes were preliminarily screened using univariate 
Cox regression analysis. A total of 14 NRLncRNAs were 
found associated with prognosis (Fig. 2A). Lasso regres-
sion analysis and multivariate Cox regression analysis 
were performed afterwards, and the results showed that 
seven genes were included in the model (Fig.  2B–D). 
These seven prognostic NRLncRNAs were PCAT19, 
CDKN2B-AS1, LINC01936, LINC02178, BMPR1B-DT, 
LINC00237, and TRPM2-AS, respectively. Based on the 
best λ value, a prognostic risk score model of NRLncR-
NAs was established: risk score = (− 0.0784 × PCAT19 
expression score + (1.0279 × CDKN2B-AS1 expression 
score) + (0.3622 × LINC01936 expression score) + (0.0099 
LINC02178 expression score) + (− 0.0065 × BMPR1B-DT 
expression score) + (− 0.1754 × LINC00237 expression 
score) + (− 0. 0801 × TRPM2-AS expression score). Fig-
ure 2E shows the heatmap of NRLncRNA expression in 
the normal group and the tumor group. Figure 2F illustrates 
the mRNA-LncRNA co-expression network of prognosis-
associated NRLncRNAs and necroptosis-related genes.

Evaluation of Prognostic Risk Score Model

Through univariate Cox regression analysis, lasso regres-
sion analysis, and multivariate Cox regression analysis 
algorithms, according to the stepwise regression algorithm, 
the prognosis-related LncRNAs are finally screened from 
numerous necroptosis-related LncRNAs in order to predict 
LncRNA molecules that are more critical for the prognosis of 
UCEC patients in a more precise way. This analytical method 
is also frequently used in other papers [35–37]. Patient risk 
scores were calculated and sorted from low to high. Then, 
they were divided into the high-risk group and low-risk group 
(Fig. 3A) based on the median. PCA demonstrated that the 
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patients with different risks were already effectively divid-
ing into two groups (Fig. 3C). In addition, we performed 
t-distributed Stochastic random neighbor embedding (TSNE) 
to validate the PCA results (Fig. 3D). The higher the risk 
score is, the higher the mortality in the high-risk group will 
be as compared to the low-risk group (Fig. 3B). The K-M 
survival analysis showed that the survival was statistically 
significant in both high-risk and low-risk groups. The sur-
vival rate was decreasing year by year over time. The survival 

rate of the high-risk group was significantly lower than that 
of the low-risk group (Fig. 3E). Single-gene survival analysis 
(Fig. 4A–G) was performed based on the expression profiles 
of the seven prognostic genes. The sensitivity and specificity 
of the prognostic model were evaluated using ROC analysis. 
It was found that the ROC area under curve of 1-, 2-, and 
3-year survival rates was 0.701, 0.702, and 0.689 (Fig. 3F), 
respectively. It indicates that the risk model can better pre-
dict the patient survival condition. The heatmap showed the 

Fig. 2   Identification of prognostic necroptosis-related LncRNAs. 
A Univariate cox regression forest plot shows that 14 prognostic-
related NRLncRNAs are initially screened. Red indicates that the 
Hazard ratio (HR) index is greater than 0, blue indicates that the HR 
index is less than 0; B, C Lasso-Cox regression analysis shows that 
10 RNLncRNAs are good candidates for constructing prognostic 
characteristics; D multivariate cox regression forest plot shows that 
PCAT19, CDKN2B-AS1, LINC01936, LINC02178, BMPR1B-DT, 

LINC00237, and TRPM2-AS were prognosis-associated NRLncR-
NAs and were involved in forming the prognostic model. Red indi-
cates that the HR index is greater than 0, blue indicates that the HR 
index is less than 0; E heatmap of prognostic-related NRlncRNAs. 
Blue represents low expression of LncRNA, red represents high 
expression of LncRNA; F mRNA-LncRNA co-expression network 
of prognosis-associated NRlncRNAs and necroptosis-related genes. 
Green molecules indicate mRNA, red molecules indicate LncRNA
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expression of prognosis-related NRLncRNAs between high-
risk and low-risk groups (Fig. 4H).

Independent Prognostic Value of Prognostic Risk 
Score Model

In order to evaluate whether the prognostic risk score model 
could be used as an independent prognostic predictor, the 
univariate Cox regression analysis and multivariate Cox 
regression analysis were performed. Both univariate Cox 
regression analysis and multivariate Cox regression analysis 
showed that the age, grades, and risk scores were significantly 
correlated with the OS in UCEC patients (Fig.  5A, B). 
Therefore, the age, grades, and risk scores can be used as 
independent prognostic factors for evaluating patients with 
UCEC. The ROC curve illustrated the accuracy of these 
indicators as the independent prognostic factors (Fig. 5C) in 
patients, where the age had a low accuracy as an independent 
prognostic factor. The nomograph was used to predict the 

results for each patient (Fig. 5D). Decision curves showed a 
greater sensitivity to risk scores and disease grades (Fig. 5E).

Research Progress of NRG‑Related Signaling 
Pathways

In order to explore the biological function and signaling 
transduction pathways of LncRNAs associated with 
necroptosis, gene set enrichment analysis (GSEA) was 
performed using differentially expressed genes between 
the high-risk and low-risk groups. The results are 
shown in Fig. 6A–J. In the UCEC high-risk group, the 
endometrial cancer, jak stat signaling, MAPK signaling, 
ECM receptor, and endocytosis and so on related pathways 
were more active, while in the UCEC low-risk group, the 
peroxisome, steroid hormone biosynthesis, oxidative 
phosphorylation, arginine and proline metabolism, alpha 
linolenic acid metabolism, and so on related pathways 
were more active.

Fig. 3   Prognostic analysis of the characteristic model of necroptosis-
related LncRNAs. A Distribution map of patients in high-risk group 
and low-risk groups. B Patient’s survival status chart. C Principal 
component analysis (PCA) plot. D t-SNE (t-distributed stochastic 

neighbor embedding) plot. E Kaplan–Meier survival curve analy-
sis showed significant differences in OS between low- and high-risk 
score groups. F The AUC of the ROC curve validated the prognostic 
accuracy of the risk score
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Functional Analysis of Differential Genes 
in High‑Risk and Low‑Risk Groups

Functional analysis was carried out for those differen-
tially expressed genes between the high-risk and low-risk 
groups using the ClueGO plugin in Cytoscape software 
(3.7.2), and the results of functional analysis are shown 
in Fig. 7. From the results, we found the “extracellular 
matrix organization,” “cilium movement,” “chondrocyte,” 
“tissue development,” “pattern specification process,” 

and “anatomical structure morphogenesis.” In addition, 
the complex network formed between the anatomical 
structure morphogenesis and cilium movement had closer 
interactions.

Immune Infiltration Level and m6a Correlation 
Analysis

Immuno-related heatmaps based on the TIMER, CiberSort, 
QUANTISEQ, MCP-Counter, XCell, and EPIC algorithms 

Fig. 4   Survival curve of prognosis-associated NRLncRNAs. A PCAT19. B CDKN2B-AS1. C LINC01936. D LINC02178. E BMPR1B-DT. F 
LINC00237. G TRPM2-AS. H The heatmap showing the expression of prognosis-related NRLncRNAs between high- and low-risk groups
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are shown in Fig. 8A. Given the key role of necroptosis in 
the immune process in human cells, especially in the tumor 
microenvironment, we compared the enrichment scores of 
16 immune cells and the activity of 13 immune-related path-
ways between the low and high populations using a single-
sample gene set enrichment analysis (SsGSEA) (Fig. 8B, C). 
The results showed that the difference in aDCs, DCs, iDCs, 
neutrophils, T helper cells, Th2 cells, TIL, CCR, check-
points, cytolytic activity, HLA, MHC class I, parainflamma-
tion and T cell co-stimulation, type I IFN response, and type 
II IFN response was statistically significant between the two 
groups. In consideration of the importance of checkpoint-
based immunotherapy, further differences (Fig. 8D) in the 
expression of immune checkpoints were discovered between 
the two groups (Fig. 8D). Due to the key role of necroptosis 
in the m6a process in human cells, the differences in the 
expression of m6a-related genes were found between the 
two groups (Fig. 8E).

Discussion

In recent years, sequencing technology has gradually devel-
oped and progressed. LncRNA, CircRNA, and MirRNA 
have been detected [38–40]. Prognostic prediction of can-
cer by detecting the products of the sequencing technology 
contributes to the clinical treatment of patients [41, 42]. 
LncRNA, as an RNA with more than 200 nucleotides in 
length, the LncRNA may regulate the gene transfer rate and 
translational and post-translational modification [43]. The 
LncRNA is involved in processes such as proliferation, dif-
ferentiation, migration, invasion, and apoptosis in cells [44]. 
A large number of studies have shown the important value of 
LncRNAs for the diagnosis and treatment of cancer [16, 45]. 
Therefore, this paper has investigated necroptosis-related 
LncRNAs to predict the survival of the patients with UCEC.

In the present study, we have screened the LncRNAs 
associated with both necroptosis and UCEC and con-
structed a prognostic model for the UCEC containing seven 

Fig. 5   Combination of NRLncRNAs and clinical characteristics in 
predicting UCEC prognosis. A Univariate independent prognostic 
analysis. B Multivariate independent prognostic analysis. C The AUC 
of the ROC curve validated the prognostic accuracy of the prognosis-

related clinical characteristics. D The associated nomogram for pre-
dicting the OS of patients with UCEC at 1, 3, and 5 years. E Deci-
sion curve analysis of associated clinicopathological features and risk 
signature
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necroptosis-related LncRNAs. Moreover, this model has a 
good prediction for the patient survival after being validated 
by ROC curve [46]. The seven prognostic NRLncRNAs 
are PCAT19, CDKN2B-AS1, LINC01936, LINC02178, 
BMPR1B-DT, LINC00237, and TRPM2-AS, respec-
tively. Among them, the high expression of TRPM2-AS, 
LINC01936, and LINC02178 represents a shorter survival 
time in patients with UCEC. While the high expression of 
PCAT19, CDKN2B-AS1, BMPR1B-DT, and LINC00237 
represents a longer survival time in patients with UCEC.

Currently, many studies have confirmed that the above 
LncRNAs are important for the prognosis and progression 
of certain cancers. For example, LncRNA PCAT19 plays an 
important role [47] in the snp-mediated promoter-enhancer 
conversion mechanism in the process of regulating prostate 

cancer and adjusts the proliferation [48] of laryngeal can-
cer cells by regulating the miR-182/PDK4 axis. It has been 
shown that LncRNA CDKN2B-AS1 may act as a novel 
prognostic factor [49] in the immune microenvironment of 
UCEC. LncRNA LINC01936 can be an important factor 
[50] in the construction of a competitive endogenous RNA 
network related to the survival of patients with lung adeno-
carcinoma. LncRNA LINC02178 could also be used as a 
prognostic signature [51] in the prediction of the patients 
with bladder urothelial cancer. LncRNA BMPR1B-DT can 
also be used as one of the LncRNAs for predicting survival 
in patients with ovarian cancer to guide targeted medica-
tions [52]. LncRNA TRPM2-AS inhibits the cellular pro-
cesses [53] such as glioma growth and invasion by JNK, 
c-Jun, and RGS4. Furthermore, according to Fig. 2F, we 

Fig. 6   Gene set enrichment analysis (GSEA) based on the prognostic NRLncRNAs signature for high-risk group and low-risk group. A–E Five 
remarkably enriched active pathways in the high-risk group. F–J Five remarkably enriched active pathways in the low-risk group
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have found that LncRNA BMPR1B-DT and TRPM2-AS are 
co-expressed with the necroptosis-related gene TRAF5, as 
well as LncRNA PCAT19 with the necroptosis-related gene 
MOK, LncRNA LINC01936 with the necroptosis-related 
gene PKN1, LncRNA LINC02178 with the necroptosis-
related gene CCL2, LncRNA LINC00237 with the necrop-
tosis-related gene PCSK1, and LncRNA TRPM2-AS with 
the necroptosis-related genes MOK and REL. Genes associ-
ated with prognostic LncRNA have a great impact on cancer. 
For example, necroptosis-induced CCL2 release depends on 
the activation of the receptor interaction protein 1 (RIP1)/
RIP3/mixed lineage kinase-like (MLKL) pseudokinase, 
which may promote the oncogenic phenotype [54] of tumor-
associated astrocyte TAA.LncRNA. The identified hits need 
further experimental validation and methods for validation.

In addition, the expression of p53 overexpression has a 
significant correlation with prognostic markers. The study 
demonstrated that PCAT19 negatively regulates the p53 
tumor-suppression pathway, promoting cancer cell prolifera-
tion in patients with NSCLC [55]. Downregulated LncRNA 

TRPM2-AS induced cell apoptosis and altered cell cycle 
distribution through activating the p53-p66shc pathway [56]. 
The expression of the CDKN2B-AS1 and adjacent gene, 
CDKN2A, are downregulated in the peripheral blood of 
patients with IPF, which activates the p53-signaling path-
way to promote lung cancer formation [57]. The above argu-
ments suggest that these prognostic markers may also play 
an important role in regulating the prognosis of endometrial 
cancer.

Furthermore, we have detected that the relevant path-
ways are more active in the high-risk group via GSEA 
analysis, including MAPK signaling pathway, Jak-STAT 
signaling pathway, and ECM-receptor interaction. MAPK 
signaling pathway is closely related to numerous tumors 
[58–60]. Besides, this pathway is involved in the regula-
tion of necroptosis [61, 62] to some extent. However, the 
Jak-STAT signaling pathway partly suppresses the colo-
rectal cancer cell proliferation and stimulated apoptosis 
[63]. ECM-receptor interaction may promote [64] prolif-
eration and invasion in some cancer cells. However, we 

Fig. 7   Functional analysis of differentially expressed genes between high-risk group and low-risk group
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have discovered that peroxisome, steroid hormone biosyn-
thesis, and oxidative phosphorylation pathways are more 
active in the low-risk group. The peroxisome pathway is 
involved in most oncogenic processes [65, 66]. Oxidative 
phosphorylation is involved in inducing the necrosis [67, 
68] of various cells. The steroid hormone biosynthesis 
pathway then affects the progression [69] of UCEC. This 
may be associated with the function of cellular pattern 
specification process, anatomical structure morphogen-
esis, and tissue development (Fig. 7).

Through the study, we have also found out a different 
expression of immune-related factors in the high-risk and 
low-risk groups. Antibody drug conjugates (ADCs) are 
exciting types of tumor therapy [70]. In the present study, 

ADCs are active in the high-risk group. Perhaps the inhibi-
tion of ADCs is a new direction for tumor treatment in the 
future. In recent years, blocking T helper cells by targeted 
regulation to treat cancer has become a trend [71]. These 
hosts with strong immunocompetence will select cancer 
cells with less immunogenicity during tumor development 
to escape the antitumor immune response [72]. Furthermore, 
immune checkpoint-related genes are clearly differentially 
expressed in both high-risk and low-risk groups, generally 
highly expressed in the high-risk group. Moreover, although 
the detailed mechanisms behind these relationships require 
further investigation and validation (Fig. 8E), our necropto-
sis-associated LncRNA signatures could effectively predict 
the expression levels of m6A-related genes.

Fig. 8   Potential role of risk signature in UCEC immune status and 
m6A-related genes. A The heatmap for immune responses based on 
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-
COUNTER, XCELL, and EPIC between low-risk and high-risk 
group. B Comparison of ssGSEA scores of 16 types of immune cells 
between low-risk and high-risk group. C Comparison of the enrich-

ment scores of 13 immune-related pathways between low-risk and 
high-risk group. D Expression of immune checkpoints between high-
risk groups and low-risk groups. E Associations between the risk sig-
nature and m6A-related genes. P values mean: *P < 0.05; **P < 0.01; 
***P < 0.001; ns not significant
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Limitations

Despite the strong predictive value in the established risk 
model, there are some shortcomings in our current study. 
Firstly, the original datasets for LncRNA-related models are 
only retrieved from the TCGA database. The number of con-
trol patients used in the study is small compared to the tumor 
sample group (23 vs 552). The reliability and accuracy of 
our risk model require to be validated in other external data-
sets and large-scale clinical cohorts. Secondly, the signifi-
cant shortcomings in this study are the lack of experimental 
validation of the identified targets. The mechanism by which 
necroptosis regulates the exact process of UCEC is unclear. 
It needs to be elucidated by further experimental studies.

Conclusion

This study has identified seven necroptosis-related LncRNA 
signatures for the first time. It provides a valuable basis for 
a more accurate prognostic prediction.
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