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High-throughput Pore-C reveals the single-
allele topology and cell type-specificity of
3D genome folding

Jia-Yong Zhong 1,6, Longjian Niu 2,3,6, Zhuo-Bin Lin 4, Xin Bai1, Ying Chen1,
Feng Luo 5, Chunhui Hou 2 & Chuan-Le Xiao 1

Canonical three-dimensional (3D) genome structures represent the ensemble
average of pairwise chromatin interactions but not the single-allele topologies
in populations of cells. Recently developed Pore-C can capture multiway
chromatin contacts that reflect regional topologies of single chromosomes. By
carrying out high-throughput Pore-C, we reveal extensive but regionally
restricted clusters of single-allele topologies that aggregate into canonical 3D
genome structures in two human cell types. We show that fragments in multi-
contact reads generally coexist in the same TAD. In contrast, a concurrent
significant proportion of multi-contact reads span multiple compartments of
the same chromatin type over megabase distances. Synergistic chromatin
looping between multiple sites in multi-contact reads is rare compared to
pairwise interactions. Interestingly, the single-allele topology clusters are cell
type-specific even inside highly conserved TADs in different types of cells. In
summary, HiPore-C enables global characterization of single-allele topologies
at an unprecedented depth to reveal elusive genome folding principles.

Metazoangenomes are folded into hierarchical three-dimensional (3D)
structures that regulate gene expression to specify cell identity1,2.
These structures include chromosome territories3–6 that canbe further
segregated into A/B compartments (active/inactive chromatin)7–9,
topologically associating domains (TADs)10–13, and chromatin
loops14–16. TADs may confine regulatory activities, and disruption of
TAD borders leads to developmental disorders and even
tumorigenesis17–23. However, chromatin loops can bridge interactions
between enhancers and promoters or between CTCF sites to mediate
direct regulatory or structural functions24–30.

The discoveryof canonical 3D genome structures has beenmainly
driven by the invention of chromosome conformation capture (3C)31

and its derivativemethods, such as 4Cs32,33, 5C34, Hi-C7, andother forms
of high-throughput techniques that capture pairwise DNA sequences

that are physically proximal in the nuclear space3,35–42. Despite the
tremendous advancements achieved, however, 3C-basedmethods can
capture only pairwise interactions reflecting neither synergistic mul-
tilocus interactions nor single-allele topology in a cell population43.
Moreover, genome structures change dynamically throughout the cell
cycle44–46 and during development and differentiation19,24,47–51, reflect
progressive transitions between biological states, and correlate with
gene regulation that frequently involves multiway chromatin interac-
tions between enhancers and promoters27. To fully understand the
mechanisms of dynamic genome folding and functional relevance, it is
critical to acquire single-allele topology in populations of cells.

Theoretically, multiway interactions between fragments in a sin-
gle read can be used to identify synergistic interactions directly and to
acquire single-allele topology in a cell population. A few methods that
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generate multiway chromatin contacts have been developed, includ-
ing genome architecture mapping (GAM)52, ChIA-drop53, split-pool
recognition of interactions by tag extension (SPRITE)6,54, Tri-C55, multi-
contact 4C43, concatemer ligation assay (COLA)56, and Pore-C57. Among
these methods, Pore-C stands out because it can capture global high-
order multiway contacts, is technically simple, and captures DNA
methylation simultaneously in a cell population. Because multiway
contacts reflect synergistic chromatin interactions rather than multi-
plemutually exclusive interactions of different alleles,we can usePore-
C to reveal single-allele topologywithin designated genomic regions in
populations of cells.

In this work, we optimized the Pore-C protocol to achieve high-
throughput long-read multiway contact nanopore sequencing and
developed the MapPore-C pipeline to solve the low base-calling
accuracy problem. By applying high-throughput Pore-C (HiPore-C) to
human GM12878 and K562 cells, we reveal an unexpected relationship
between allele-specific topology and canonical 3D genome structures.

Results
Solving nanopore-clogging increases the output of multiway
contact sequencing
The average Pore-C throughput is relatively low (Fig. 1a and Supple-
mentary Table 1), and more expensive than traditional Hi-C for gen-
erating the same number of pairwise contacts (Fig. 1b and
Supplementary Table 2), limiting its power to reveal a multiway
interaction network and single-allele topology in a cell population.
Despite an average 60% increase in sequencing output resulted from
the improved flow cell quality, the Pore-C sequencing output is well
below the whole genome sequencing, suggesting that there is much
room for improvement in the Pore-C protocol. It is known that DNA-
bound proteins (as small as 2 kD) can clog sequencing pores58. We
suspected that incomplete removal of proteins crosslinked to DNA
during Pore-C concatemer library preparation causes the clogging
(Supplementary Fig. 1a). To solve this problem, we tested different
temperatures and durations of proteinase K digestion (Fig. 1c). The
purified DNAs were sequenced on the Oxford Nanopore Technology
(ONT) MinION platform, and the sequencing output was increased
(Supplementary Fig. 1b and Supplementary Table 3). However, the
number of active pores dropped faster than in genome sequencing
(Fig. 1d). Nevertheless, we confirmed that higher temperatures and
longer incubation times improved the sequencing output. Using
optimized conditions, we achieved an output per ONT PromethION
sequencing cell (Supplementary Fig. 1d and Supplementary Table 4)
~80 Gbase higher than that obtained using the published Pore-C57

technique (Fig. 1a).
To test whether repeated treatment can further reduce pore

clogging, we carried out two and three rounds of simultaneous pro-
teinase K digestion and reverse crosslinking (Fig. 1c and Supplemen-
tary Table 4). We successfully increased the sequencing output to an
average of 128 Gbase and 144 Gbase, respectively (Supplementary
Fig. 1d and Supplementary Table 4). However, the multiple rounds of
proteinase K digestion and DNA purification are tedious and reduce
the DNA recovery rate. To avoid these shortcomings, we first digested
chromatin with proteinase K, then purified DNA and degraded pep-
tides for another 40min with pronase (Fig. 1c). Pronase is a mixture of
nonspecific proteases from Streptomyces griseus that degrade both
denatured and native proteins to nearly complete digestion into
individual amino acids59. The purified DNA was sequenced, and an
average of 128Gbase datawas generatedperONTPromethION cell run
(Supplementary Fig. 1d and Supplementary Table 4). The number of
multiway contact in HiPore-C and Pore-C reads is similar (Fig. 1h). Due
to the increased sequencing throughput, pairwise contacts increased
by 80% (Fig. 1d and Supplementary Table 4). Thus, we successfully
developed two HiPore-C protocols that solved the pore-clogging
problem (Fig. 1d and Supplementary Fig. 1c), further improved the

sequencing yield by about 80%compared to Pore-C (Fig. 1e) and virtual
pairwise contact number, and reduced costs dramatically in both of
the cell types that we tested (Fig. 1e–g, Supplementary Fig. 1d–f, Sup-
plementary Table 2 and Supplementary Table 4).

We also developed the MapPore-C pipeline by integrating the
third-generation sequencing programs NGMLR60 and Minimap261 to
map fragments in multiway contact reads to the reference genome
(Supplementary Fig. 1g and Supplementary Table 5) and to generate
virtual pairwise contacts (Supplementary Fig. 1h). We then evaluated
the interexperimental variations during HiPore-C protocol develop-
ment and showed that the datasets generated were highly correlated
(Supplementary Fig. 1i, j). Thus, we combined them for further
analyses.

Because of the low probability of interhomologous chromosome
interactions (Supplementary Fig. 1k), theoretically, every molecule in
an unamplified in situ HiPore-C library represents a unique array of
multi-way-interacting DNA fragments from a single allele, thus allow-
ing the exploration of single-allele topology in the cell population for
genomic regions of interest. (Analyses below are carried out in
GM12878 cells unless otherwise stated.)

HiPore-C faithfully reproduces canonical 3D genome structures
To test whether HiPore-C can reproduce canonical 3D genome struc-
tures revealed by Hi-C, we first calculated Pearson’s correlation coef-
ficients and showed that the HiPore-C and Hi-C datasets14 were highly
correlated at both 500 kb and 50kb resolutions in GM12878 cells
(Fig. 2a, b and Supplementary Fig. 2a). Visual inspection of the HiPore-
C pairwise contact map revealed typical chromatin structures includ-
ing compartments A/B (Fig. 2c–e, Supplementary Fig. 2b, c), TADs
(Fig. 2f, g, and Supplementary Fig. 2d), and chromatin loops (Fig. 2h, i,
and Supplementary Fig. 2f, g) that were highly similar to those fromHi-
C. Consistently, the HiPore-C and Hi-C pairwise contact maps were
highly correlated at the levels of compartment eigenvector values
(r = 0.967) (Fig. 2e) and TAD insulation scores (IS) (r =0.868) (Fig. 2g).
Pearson’s correlation coefficients of the compartment eigenvector
scores and TAD insulation scores together with the Hi-C dataset were
calculated, and the correlations were high between pairs of replicates
(Supplementary Fig. 2c, e). Together, these results prove that HiPore-C
can faithfully capture typical 3D genome structures uncovered by
conventional Hi-C.

HiPore-C reveals interchromosomal chromatin clustering
We next asked whether HiPore-C can capture interchromosomal
multiway contacts. Approximately 38% of reads contain fragments
from nonhomologous chromosomes, the majority of which contain
three or more fragments showing a positive correlation with inter-
chromosomal interaction orders (Fig. 3a and Supplementary Fig. 3a),
consistent with another study62. To characterize interchromosome
interactions, we first separated genomic regions into telomeres, cen-
tromeres, and other genomic regions to plot the global inter-
chromosomal contact matrix (Fig. 3b). Then, we calculated and
determined the statistical significance of interchromosomal interac-
tions for each pair of bins (1Mb) (Supplementary Data 1). For telo-
meres, we detected a total of 109,941 pairwise contacts with telomere
sequences at least at one end (Fig. 3c). Two thousand paired bins were
significantly enriched with interchromosomal contacts, and only 41 of
them had both ends located in telomeres (Fig. 3d, Supplementary
Fig. 3b and Supplementary Data 2). For centromeres, we detected a
total of 279,739 pairwise contacts with at least one end located in the
centromere region (Fig. 3c). A total of 889 paired bins were sig-
nificantly enriched with interchromosomal contacts, and 68 of them
had both ends anchored in centromeres (Fig. 3e, Supplementary
Fig. 3c and Supplementary Data 3). These results show that inter-
telomere and inter-centromere contacts from nonhomologous chro-
mosomes exist but only between a few chromosomes.
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Themajority of interchromosomepairwise contacts (3.69million)
occurred between genomic regions outside of telomeres and cen-
tromeres (Fig. 3c). We identified 34,654 interchromosomal bin pairs
that were significantly enriched with pairwise contacts (Fig. 3c and
Supplementary Data 1). We further separated bins involved in sig-
nificant interchromosomal interactions into two clusters that formed
hubs and those that did not (Fig. 3f and Supplementary Data 4).

Interestingly, cluster 1 interactions formed an inactive hub andbridged
genomic regions mostly in small chromosomes (Fig. 3g and Supple-
mentary Data 4). In contrast, cluster 2 interactions formed an active
hub and connected both small and large chromosomes (Fig. 3h and
Supplementary Data 4). Furthermore, gene density, enhancer density,
and positive epigenetic modification levels were all higher in cluster 2
(Fig. 3i). As expected, the inactive cluster 1 hub mainly involved
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Fig. 1 | Solving nanopore clogging increases the output of multiway contact
sequencing. a Comparison of the sequencing yield (Gb) between Pore-C and
whole-genome sequencing (WGS) using ONT PromethION flow cells. Datasets of
Pore-C (Deshpande et al., 2022)57 and Pore-C (Control) were published and gen-
erated in this study, respectively (Pore-C57, n = 3; Pore-C control, n = 2; WGS, n = 6).
Lines indicate themean values. Related to Supplementary Table 1.bComparison of
the costs per million pairwise contacts between Pore-C and Hi-C (Pore-C57, n = 3;
Pore-C control, n = 2). The cost of Hi-C is estimated based on the output of the
IlluminaNova sequencingplatformand thepercentage of pairwise contacts thatHi-
C can typically produce. Lines indicate the mean values. Related to Supplementary
Table 2. c Schematic of the in situ HiPore-C protocols for generating higher-order
chromatin interactions. Condition optimization for reverse crosslinking and the

effect of nanopore sequencing; Pore-C optimization, bottom left; HiPore-C v1,
bottom middle, two or three rounds of reverse crosslinking and protease K
digestion; HiPore-C v2, bottom right, reverse crosslinking plus protease K and
pronase digestion. Flow cell sequencing channel clogging was compared. Green
squares indicate active sequence channels; red squares indicate inactive channels.
dComparisonof thedecays of thepercentageof active pores betweenWGS,Pore-C
(Control), and HiPore-C. X-axis, sequencing time; y-axis, percentage of active pores
per 10min. e-g Comparison of the sequencing yield (Gb), the numbers of virtual
pairwise contacts, and the costs between Pore-C and HiPore-C. Related to Sup-
plementary Table 2. h Comparison of the distribution of numbers of ligated frag-
ments in multiway contact long reads between Pore-C and HiPore-C.
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compartment B segments. In contrast, the active cluster 2 hub mainly
includes compartment A segments (Supplementary Fig. 3d). These
results confirm the presence of two major inter-chromosomal hubs of
different transcriptional activities6. In addition, we found that many
tRNA genes were enriched in interchromosomal interactions, espe-
cially tRNA genes on chromosomes 1, 6, 14, 15, 16, 17, and 19 (Supple-
mentary Fig. 3d, e, and Supplementary Table 6). These results suggest
that interchromosomal interactions occur but generally at low rates
for both constitutive heterochromatin of telomere, centromere, and
nonrepetitive genomic regions.

Multiway contacts span multiple compartments, TADs,
and loops
Multiway chromatin interactionsmay spanmultiple 3D structural units
of compartments, TADs, and loops, allowing direct measurement of
the interaction frequency between individual 3D structural units
across the whole genome6,53,57,62,63. To determine whether HiPore-C
reads cover genomic distances long enough to cover multiple com-
partments, TADs, and loops, we first calculated genomic distances
spanned by three types of fragment pairs (Fig. 4a). Overall, genomic
distances covered by HiPore-C reads were positively correlated with

Fig. 2 | HiPore-C faithfully reproduces canonical 3D genome structures.
a Pearson’s correlation of pairwise contacts between HiPore-C and Hi-C (Pairwise
contact count > = 50; blue, 500kb resolution, n = 13,613,408, P =0; green, 50 kb
resolution, n = 12,498,125, P =0). b Comparison of contact maps between HiPore-C
and Hi-C (upper right, HiPore-C; bottom left, Hi-C; 500kb resolution). c An
exemplary region showing compartment comparison between HiPore-C and Hi-C
(100kb resolution, tracks of eigenvector scores, RNA-seq,DNase-Seq, andChIP-seq
of RNA polymerase II (RNAPII), H3K27ac, H3K36me3, and H3K27me3 are shown on
the right.). d An exemplary region showing a Pearson’s correlation comparison

betweenHiPore-C andHi-C (100kb resolution). eCorrelationof eigenvector scores
between HiPore-C and Hi-C (100kb resolution bins, Pearson’s correlation coeffi-
cient r = 0.958, n = 27,935, P =0). fAn exemplary region showing a TAD comparison
between HiPore-C and Hi-C (10 kb resolution; insulation scores and CTCF track are
shown in themiddle).gCorrelation of insulation scores betweenHiPore-C andHi-C
(50 kb resolution bins, Pearson’s correlation coefficient r = 0.856, n = 56,244, P =0).
h An exemplary region showing a loop comparison between HiPore-C and Hi-C
(10 kb resolution, CTCF track is shown at the top). i Comparison of the aggregate
peaks between HiPore-C and Hi-C (10 kb resolution; peaks+/−100 kb).
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the number of fragments (Supplementary Fig. 4a–c) as reported in
other studies14,57. The distances between nonadjacent fragments and
between the most separated fragments in the multiway contacts were
approximately 1Mb in at least 50% of the HiPore-C reads (Fig. 4b–d).
Although some compartments, TADs, and chromatin loops span
genomic distances well over 1Mb, their median sizes are 400 kb,

185 kb, and 274 kb, respectively (Fig. 4e). These results indicate that
HiPore-C reads can be used to study the single-allele folding pattern
over multiple 3D genomic structural units.

By comparing the heatmaps generatedwith adj- and non-adj-pairs
of chromatin contacts (abbreviated as adj-pairs and non-adj-pairs), we
showed that the overall chromatin interaction patterns were similar

Article https://doi.org/10.1038/s41467-023-36899-x

Nature Communications |         (2023) 14:1250 5



and resembled Hi-C contact heatmap (stratum-adjusted correlation
coefficients are 0.938, 0.808, and 0.844 for the heatmaps of adj-pairs
and non-adj-pairs, adj-pair and Hi-C, and non-adj-pairs and Hi-C,
respectively) (Supplementary Fig. 5a). We further compared the
structures of compartments, TADs, and loops. In all cases, structural
patterns generated using adj-pairs, non-adj-pairs, and Hi-C datasets
showed strong correlations (Pearson’s correlation coefficients are
0.919, 0.942, and 0.982 for eigenvector scores, and 0.677, 0.706, and
0.902 for insulation scores between the non-adj-pairs and Hi-C, adj-
pairs, and Hi-C, and adj-pairs and non-adj-pairs, respectively) (Sup-
plementary Fig. 5b, c). In addition, we could identify the same loops
using adj- and non-adj-pairs (Supplementary Fig. 5d–e). The fact that
no apparent differences were observed suggests that non-adj pairwise
contacts are not fundamentally different from the classical direct adj-
ligations in single reads. Thus, we conclude that the non-adj-ligations
can be considered chromatin “contact” at least at the resolutions we
analyzed the data.

Although overall chromatin interaction patterns are similar
between chromatin interaction matrices generated from adj- and non-
adj-chromatin interaction pairs, we did find that adj-pairs were more
enrichedwithin the same structural unit while non-adj-pairsweremore
enriched in reads spanning multiple structural units (for adj- and non-
adj-pairs: inter-chromosomal enrichment scores are 0.45 and 1.17;
inter-compartment enrichment scores are 0.599 and 1.132 (A-A), and
0.775 and 1.073 (B-B), respectively; inter-TAD enrichment scores are
0.750 and 1.081) (Supplementary Fig. 5f–h). Overall, non-adj contacts
aremore enriched in reads coveringmultiple structural units than adj-
and conventional Hi-C pairwise contacts. More importantly, the frag-
ments seem to be arranged orderly in the sequenced long-reads sup-
porting a previously proposed conjecture that the linked segments are
not randomly distributed but comply with the chromatin extension
paths like C-walks, and the fragment arrangement order could have
important spatial and biological implications that require further
investigation63.

We first examined two previously identified adjacent loops to
measure the loop anchor interaction frequency. Out of a total of 10,113
HiPore-C reads containing fragments of at least one anchor (A, B, or C),
most reads (9586, 94.79%) contained only one of the three anchor
fragments (Fig. 4f). Only 4.95% (501/10113) of reads contained two
anchors (A-B, A-C, and B-C), and even fewer (0.26%, 26/10113) reads
contained three anchors (Fig. 4f). Although the formation of one loop
requires two anchors, the two loop anchors do not necessarily coexist
in the same read in our HiPore-C analysis because loops are identified
based on pairwise interactions derived from all contacts in HiPore-C
reads. We found that 50.5% of HiPore-C reads contained one loop
anchor,with 37.0%of reads containing ananchor for only one loop and
13.5% of reads containing an anchor for multiple loops that shared the
same anchor (Supplementary Fig. 4d–g). Reads containing both
anchors of a loop accounted for 3.3% of total reads, including 0.27% of
total reads that contained anchors formulti-loops. That 53.6% of reads

contain certain anchor sequences for loops suggests that looping is a
general principle of chromosome folding. At the same time, the low
percentage of reads containing both anchors of a loop or anchors of
multiple loops suggests that loop formation could be very dynamic,
consistent with the observation in Fig. 4f. The low coexistence of
anchor fragments in multiway interaction reads is consistent with a
recent live microscopic observation showing that even strong intra-
chromosomal interactions occur in only ~3% of cells64. Using multiway
contacts, we also identified higher-order interactions of consecutive
loops6. Nevertheless, these results show that HiPore-C multiway
interaction reads can be used to calculate the interaction probability
between any two genomic loci across the whole genome in a popula-
tion of cells, a task that has only been feasible now.

TADs contain self-associating chromatin restricted to a discrete
genomic region. However, long-range chromatin interactions that
anchor in one TAD and reach out into genomic regions in other TADs
must occur to establish 3D genome structures of compartments and
chromatin loops. To answer this puzzling question, we extracted
49,065 multiway HiPore-C reads that each contained at least two
fragments located in a genomic region on chromosome 2 (98.58-
99.37Mb) that covered four TADs (Fig. 4g). Interestingly, only 9.17%
(4500/49,065) of HiPore-C reads contained fragments exclusively
within only one of the four TADs (average 2.3%, 1125/49,065 per TAD).
Mostmultiway interaction reads (69.08%, 33,892/49,065) contained at
least one fragment in a TAD outside of this analyzed genomic region.
Additionally, 21% (10,673/49,065) of HiPore-C reads contained frag-
ments in two, three, and all 4 TADs within this genomic region. At the
genome-wide scale, approximately 54% of reads span two or more
TADs (Supplementary Fig. 4h). The number of fragments in a read
positively correlates with the number of TADs being covered, in
agreement with the results in Fig. 4g. These results suggest that single
alleles may fold dynamically into different forms of “loop-string-loop”
structures in which a read contains two loops established by two pairs
of fragments that are far-separated in the linear genomic distance.
Interestingly, most of these structures represent interactions between
fragments fromTADs separatedbymore thanoneTAD. Like aprevious
study62, our HiPore-C data also support that intra-TAD interactions
synergize with inter-TAD long-distance interactions to form a higher-
order 3D genomic structure.

We further asked whether single-allele chromatin interactions are
mostly confined within one compartment or span both types of
compartments. To address this question, we chose a genomic region
(53.83–60.53Mb) on chromosome 14, extractedHiPore-C readswith at
least two fragments falling within this region, and clustered HiPore-C
reads based on their fragment distribution in the A and B compart-
ments (Fig. 4h). A total of 55.21% (155,987/282,523) of HiPore-C reads
contained fragments located in only compartment A or compartment
B. Consistent with a previous study62, a higher percentage (56.74%,
40,684/71,707) of compartment B reads contained fragments located
in multiple B compartments than the percentage of compartment A

Fig. 3 | HiPore-C reveals interchromosomal chromatin clustering. a Percentage
of multiway intra-/inter-chromosome contact reads (top). The blue–red color bar
represents the fragmentnumber in reads. Percentage of reads of different numbers
of fragments fromdifferent chromosomes (bottom). Different colors represent the
number of chromosomes that a multiway contact read covers. b Global inter-
chromosome interaction heatmap at 1Mb resolution. The color bar represents the
enrichment of interactions on a log scale. The chromosomes are labeled on top,
green squares indicate centromeres, and gray dots indicate telomeres.
c Interchromosome interaction counts, including contact bins located within
centromere or telomere regions. The number of interactions is shown (Tel indi-
cates telomeres interactions, n = 109,941; Cent indicates centromeres interactions,
n = 27,9739; Other, interactions between genomic regions outside of the telomere
and centromere sequences, n = 3,683,803). The number of significantly enriched
interchromosome interactions was shown in red. Circos diagrams of significant

interchromosome interactions between centromeres (d) or telomeres (e) at both
anchor ends. f tSNE diagram of the significant interchromosome interaction
regions. Two sets of interchromosome interaction regions are separated and
labeled in red (active hub) and blue (inactive hub). Circos diagrams of two sets of
interchromosome interactions: red, active hub (g), and blue, inactive hub (h).
i Boxplots of gene density, enhancer density, DNase-seq, RNA Polymerase II, and
histone modification (H3K4me3, H3K27ac, H3K36me3, H3K4me4, and H3K4me1)
signals in inactive hub (blue, n = 72), active hub (red, n = 78), and control (yellow,
n = 2894, genomic bins not in either of the active and inactive hubs) regions. The
center line, median; red dot, mean; boxes, first and third quartiles; whiskers, 5th
and 95th percentiles. Significance was calculated by the Kruskal–Wallis test, fol-
lowed by Dunnett’s t-test for active and inactive hubs. P values are shown in box-
plots. P < 2.2 × 10−16 in all of the Kruskal–Wallis tests.
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reads (41.62%, 35080/84280) that contained fragments in multiple A
compartments suggesting that repressive chromatin may associate
more easily than active chromatin. Less than 50% (44.79%, 126,536) of
HiPore-C reads contained fragments in both the A and B compart-
ments. In fact, among these reads, 34.8% (44,037/126,536) and 43.02%
(54,439/126,536) showed the pattern “multi A-one B” or “multi B-one

A”, respectively. Reads with fragments located in “multi A-multi B”
compartments were rare (5.34%, 6789/126,536). Reads containing
fragments in adjacent or separated A and B compartments were also
infrequent (14.85%, 18788/126,536; 1.96%, 2483). The genome-wide
analysis produced similar results (Supplementary Fig. 4f–i). It con-
firmed that interactions spanning the same-type compartment (A-A
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and B-B) were more frequent than interactions spanning both A and B
compartments62,63. These results confirm that multiway interactions of
a single allele are not random and preferentially confined to a specific
type of compartment.

These analyses could be successfully carried out because the
greater the number of fragments in a HiPore-C read, the more loop
anchors, TADs, and compartments it may span (Supplementary
Fig. 4d–f). However, the number of HiPore-C reads decreases as the
numbers of loop anchors, TADs, and compartments that can be cov-
ered by single-allele reads increase (Supplementary Fig. 4g–i), high-
lighting the importance of producing high-order fragment interactions
within each read.

Diversity and cell type-specificity of single-allele topology clus-
ters underlie the formation of TADs
TADs are highly similar in different cell types and even in different
organisms13,65,66. However, microscopic imaging analyses indicate that
theTADborder canbepromiscuous, suggesting a lack of homogeneity
in chromatin folding in single cells67.Wewonderedwhether high-order
reads might reflect finer structures inside TADs. First, we confirmed
that hierarchical clustering could successfully separate high-order
HiPore-C reads into single TADs (Supplementary Fig. 6a, b). Next, we
chose a TAD (70.18-70.42Mb) on chromosome 11 that is nearly iden-
tical in GM12878 and K562 cells (Fig. 5a, b). HiPore-C reads were
clustered into three groups, with most fragments preferentially con-
finedwithin a sub-TAD range. These three clusters of reads correspond
to pairwise contact matrices that differ between the two cell types
(Fig. 5c, d). In both cell lines, cluster 2 was between pairs of tandem
CTCF siteswith the lowest number of reads (25%, 454/1813 inGM12878;
28.1%, 667/2374 in K562). Cluster 3 was shorter in GM12878, with 29%
(523/1813) of reads than in K562 (34.5%, 818/2374). Cluster 1 was more
prominent in GM12878, with 46% (836/1813) reads than in K562 (37.4%,
889/2374). Interestingly, fragments containing CTCF motifs and pair-
wise interactions between them were many-fold higher in K562 cells
than in GM12878 cells. This difference correlates with the varied gene
transcription in the region of cluster 1 reads. Thus, we show that a
single allele may adopt several preferred topologies in a cell type-
specific manner in conserved and highly similar TADs.

In addition, we examined the human Fbn2 TAD (similar to the
mouse Fbn2 TAD64). We again revealed differences in single-allele
topology preference despite silent gene expression in this TAD in both
GM12878 andK562 cells (Supplementary Fig. 6c–g). Thus, we conclude
that fragments in single alleles tend to cluster in discrete regions.
Within each cluster, the single-allele topology can be highly diverse.
However, suppose one cluster contains enough fragments generally
clustered in neighboring or even more distant regions; in that case,
these clusters will not be identified as separate TADs in the pairwise
contact matrices. Otherwise, these clusters can be identified as
separate TADs.

To further test this hypothesis, we dissected a hierarchical TAD
(121.34-121.81Mb) on chromosome 2 in GM12878 (Fig. 5e)14.

Interestingly, HiPore-C reads were clustered into three groups instead
of two corresponding to the two visually identifiable sub-TADs. The
contact matrices of cluster C2 and C3 reads showed numerous out-
reaching interactions over cluster C1 in the middle (Fig. 5f). Con-
sistently, genomic distances covered by HiPore-C reads and pairwise
fragments in the C2 and C3 clusters spannedmuch longer distances at
higher frequencies than C1 reads (Fig. 5g). These results show that
single alleles in the sub-TADs of a hierarchical TAD form a curved
dumb bell-like structure in which clustered multiway contacts located
at the two ends of a TAD frequently colocalized in the same reads
(Fig. 5f) implying they could interact more frequently than with the
sequences separated them in the middle of a TAD (Fig. 5g), forming a
bent dumb-bell whose two endsmeet. In addition, we also noticed that
CTCFpairwise interactions in singleHiPore-C reads varieddramatically
in GM12878 and K562 cells (Fig. 5a and Supplementary Fig. 6c, d).
Surprisingly, intra-TAD clusters of single-allele topologies do not cor-
relate with convergent CTCF binding, suggesting that other mechan-
isms dictate the topology choices within restricted regions in a TAD.
Nevertheless, these results are consistentwith ourmodel that relations
between clusters of single-allele topologies underlie TAD partitioning.

HiPore-C reveals a cell type-specific enhancer hub at the β-
globin locus
To test whether high-order HiPore-C reads may capture functionally
relevant 3D structures,we compared the humanβ-globin locus in K562
and GM12878 cells. Human embryonic ε-, fetal Gγ- and Aγ-globin genes
were expressed in K562 cells but not in GM12878 cells, and pairwise
contact matrices of the β-globin locus showed no obvious
differences68 (Fig. 6a, b, Supplementary Fig. 7a, b). HiPore-C reads in
this region were clustered into two groups. Cluster 1 (C1) contains
hypersensitive sites 5-3 (HS5-3), skips over cluster 2 (C2), and covers
adult δ- and β-globin genes and 3′HS1. C2 (32.3%, 985/3052) covers a
genomic region between the downstream region of HS3 and the
upstream region of the silent δ-globin gene in K562 cells (Fig. 6a and
Supplementary Fig. 7c). In GM12878, the majority of reads were in
cluster 2 (74.3%, 2218/2985), covering the sequences from upstreamof
5′HS5 to downstream of the β-globin gene, with cluster 1 covering the
rest of the β-globin locus, including 3′HS1 (Fig. 6b and Supplementary
Fig. 7d). Interestingly, C2 in K562 cells contains HS2 and HS1 but not
HS3-HS5, suggesting that HS2 and HS1 in the LCR physically interact
with and enhance embryonic and fetal globin gene expression (Fig. 6c
and Supplementary Fig. 7e). Interactions among ε- and Gγ-/Aγ-globin
genes, HS2, HS1, and the region upstream of the ε-globin gene in K562
were much less frequent in GM12878 (Fig. 6d and Supplementary
Fig. 7f). In addition, three-way interaction analysis confirmed the
coexistence of the HS2-HS1, ε-globin gene, and Gγ-/Aγ-globin genes in
C2 reads, especially in K562 cells (Fig. 6e, f). Consistent with several
multi-contact studies of the β-globin locus43,55, globin gene promoters
and enhancers can interact simultaneously to form an enhancer hub.
We also found that the HS5-HS3, HS2-HS1, and ε-globin genes coexist
but at a lower rate (Fig. 6g, h), suggesting that HS5-HS3 are less

Fig. 4 | Multiway contact reads spanmultiple compartments, TADs, and loops.
a Schematic diagram showing how three types of contact distances were calcu-
lated: 1. the longest genomic distance covered by fragments in a read; 2. genomic
distances between pairs of adjacent fragments in a read; and 3. genomic distances
between pairs of nonadjacent fragments in a read. b Cumulative frequency of
different types of paired fragments against genomic distance for HiPore-C andHi-C
data. c, Decaying curves of different types of paired fragments in HiPore-C andHi-C
data.d Frequencies of different typesof paired fragments normalized against those
of Hi-C data over continuous genomic distance. e Violin plots showing the size
distribution of chromatin loops, TADs, and compartments. Total of 9448 loops,
9274 TADs and 2909 compartments were identified14. The average size of each
structural unit was shown. The center dot, median; boxes, first and third quartiles;
whiskers, 5th and 95th percentiles. f An exemplary region showingmultiway contact

reads spanning three loop anchors (bin size is 25 kb). The top panel shows the loop
interaction arcs. Reads covering different numbers of loop anchors are shown
separately in each panel. Read numbers are shown in each panel. g An exemplary
region showing multiway contact reads spanning multiple TADs (bin size is 10 kb).
Colored fragments correspond to the TADs in which they are located. Fragments
outside the analyzed region (Chr2: 98.58-99.37Mb) are marked in black. Reads
spanning different numbers of TADs, and the corresponding number of reads are
shown separately in each panel. h An exemplary region showing multiway contact
reads spanning multiple compartments (bin size is 10 kb). Colored fragments and
reads correspond to the type of compartment in which they are located. Fragments
outside the analyzed region (Chr14: 53.83-60.53Mb) are marked in black. Reads
spanning the compartments, and the corresponding numbers of reads are sepa-
rately grouped and shown in each panel.
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involved in the enhancer hub that activates ε-, Gγ- and Aγ-globin gene
expression. The silent adult δ- and β-globin genes and 3′HS1 showed a
much weaker interaction in C2 in both K562 and GM12878 cells (Sup-
plementary Figs. 6i, 7j). The fact that only 32.3% of alleles adopt a C2
topology in K562 cells suggests that chromatin interactions are
dynamic and short-lived, consistent with the microscopic observation

that even strong interactions between CTCF sites exist in only 3% of
cells and last for only 20-30 min64. We conducted multiple promoters
and enhancer interaction analyses as described27. Our results also
revealed a low proportion of multiway promoter and multiway
enhancer interactions (Supplementary Fig. 8a–c and Supplementary
Data 5, 6). Consistent results were also obtained in promoter and
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enhancer multiple interaction analysis of two well-studied gene
families of the Histone gene 1, 2, 3 (HIST1) and the human leukocyte
antigen (HLA) gene loci (Supplementary Figs. 9 and 10). Altogether,
these results demonstrate that HiPore-C can reveal functionally rele-
vant structural details and heterogeneity in single-allele topology at an
unprecedented resolution.

HiPore-C captures DNA methylation and chromatin topology
simultaneously
ONT sequencing can detect DNAmethylation directly. To test whether
HiPore-C can capture DNA methylation faithfully, we processed
HiPore-C ONT sequencing signals and obtained highly reproducible
methylated CpG profiles (Supplementary Fig. 11a, b) that were highly
consistent with DNA methylation profiled by whole-genome bisulfite
conversion sequencing (WGBS) (ENCODE ENCFF067JYV) (Fig. 7a). At
both high and lowmethylation levels, themajority of CpGmethylation
siteswere capturedbyHiPore-C (Fig. 7b) andhighly correlatedwith the
WGBS data (Pearson’s correlation, r = 0.8038) (Fig. 7c). These results
prove that HiPore-C can faithfully capture DNA methylation just as it
can faithfully capture 3D genome structures.

DNAmethylation is prevalent in the human genome and enriched
in various functional genomic regions that may fold into distinct 3D
structures. We first examined and showed a positive correlation of
DNA methylation at chromatin loop anchors (Fig. 7d, e, Pearson’s
correlation, r = 0.119). We further separated loops into three groups
with or without the CTCF motif. Anchors with CTCF motifs at both
anchors showed the lowest DNA methylation levels, possibly because
CTCF binding can be blocked by DNA methylation in its motif, and
anchors without CTCF motifs showed the highest DNA methylation
level (Fig. 7f and Supplementary Figs. 11c–e). The correlation of DNA
methylation levels at two anchors was also the highest in non-CTCF
loops and the lowest in loops with CTCF motifs at both anchors
(Fig. 7g). Together with DNA methylation, DNase I hypersensitivity,
H3K27ac, and RNA expression were all positively correlated at loop
anchors (Supplementary Fig. 11f–k), suggesting that looping facilitates
long-range co-modification of chromatin.

Compartment A contains a higher density of genes than com-
partment B, and DNA methylation is enriched in the mammalian gene
body, suggesting that compartments A andB canbedeterminedbased
on DNA methylation level. To test this hypothesis, we first compared
the methylation levels in compartments A and B14. As expected, the
DNA methylation level was significantly higher in compartment A
(Fig. 7h). We then used DNA methylation level to determine the com-
partment types and showed that more than 93% of the compartments
could be reproduced (Fig. 7i, j). A zoomed-in view of a genomic region
shows DNA methylation enriched in the gene body and devoid at the
promoter with H3K27ac (Fig. 7k, l), indicating the association between
DNAmethylation and thegenebody. These results prove thatHiPore-C
sequencing can accurately determine compartment types by simulta-
neously measuring DNA methylation levels.

Discussion
Here, we described HiPore-C, an assay that simultaneously captures
multiway higher-order chromatin interactions andDNAmethylation in

populations of cells in one experiment. HiPore-C providesmore virtual
pairwise chromatin interactions than traditional Hi-C and Pore-C for
the same cost through a much simpler procedure.

HiPore-C captures multiway chromatin interactions. Theoretically,
any twomultiway long reads covering a specific genome region can be
estimated to be allele-specific or not if the cell population is large
enough, especially if there is an overlap of sequences between the two
reads, allowing the study of single-allele topology for any designated
genomic region. Becauseof this remarkable feature,HiPore-Callows the
exploration of genome folding principles at an unprecedented resolu-
tion and helps address a few long-standing questions.

HiPore-C shows that a typical chromatin structure TAD contains
multiple clusters of distinct multiway chromatin interactions. Each
cluster of interactions forms a partial pattern of a TAD. Only after the
aggregation of all the patterns can a typical TAD be observed. Inter-
estingly, a sub-TAD in a hierarchical TAD can present a bent dumbbell-
shaped structure represented by one cluster of single alleles. Another
cluster of single alleles represents another local sub-TAD in themiddle.
This unexpected discovery implies that each allele’s dynamic folding
can be more complex than previously thought.

The capability of capturing the single-allele topology of HiPore-C
data also allows an in-depth investigationof the 3D genome structure’s
role in gene regulation. Using the human β-globin locus as amodel, we
reveal the heterogeneity of local allele-specific chromatin interactions
and show that only a subset of interactions may support ε-, Gγ-, and Aγ-
globin gene expression by bringing enhancers in the LCR to these
target genes. For many alleles, the 3D structures suggest a lack of
communication between enhancers and target genes. However, it is
difficult to distinguish at this stage whether the transcription-
supportive and inactive structures can dynamically transit between
each other or remain unchanged in an allele-specific manner and
whether these structures reflect the states of alleles in cells at different
cell cycle phases. Nevertheless, our HiPore-C results greatly improve
our understanding of the complexity of the 3D local chromatin
structure and its relationship with transcriptional regulation.

HiPore-C is a powerful tool for higher-order genome structure
mapping in 3D space. In addition to its current application, HiPore-C
can be modified in a few ways. For example, single-cell RNA-seq and
single-cell HiPore-C can be combined to reveal whether allele-specific
chromatin structures correlate with variations in RNA expression in
single cells. In addition, HiPore-C can be modified to generate com-
binatorial maps of DNA accessibility, RNA loops, histone variants/
modifications, or transcription factors with high-order 3D structures.
These potential applications will empower the exploration of the elu-
sive mechanisms of 3D structure establishment and the relationship
between spatial genome organization and gene regulation in the
nucleus during development and differentiation.

Methods
Cell culture
Human B lymphocyte GM12878 cells (Coriell Institute) and ery-
throleukemia K562 cells were incubated in 1× RPMI 1640 media sup-
plemented with 15% (GM12878) or 10% (K562) fetal bovine serum at
37 oC with 5% CO2.

Fig. 5 | Diversity and cell type-specificity of single-allele topology clusters
underlie the formation of TADs. Clustering of HiPore-C reads covering an
exemplaryTAD inGM12878 (a) andK562 (b) at 5 kb resolution (bin). The top panels
are the pairwise contact heatmaps and additional tracks, as indicated. Middle
panels are hierarchical clusters of multiway contact reads: C1, green; C2, blue; C3,
orange. Reads are arranged according to the genomic coordinates of the 5′ frag-
ments in reads. Bins containing CTCF peaks (ENCODE data) are shown in black. The
relative frequencies of bins (a) and bins containing CTCF (b) are shown in the line
plot panel. The relative frequency of pairwise contact between bins containing
CTCF peaks (c) is shown in the arc-line panel. The orientation of CTCF motifs (d)

that are covered by fragments in HiPore-C reads is shown in the bottom panel.
c, d.Heatmaps of the three HiPore-C read clusters in panels a and b. e, Clustering of
HiPore-C reads covering a hierarchical TAD in GM12878 (5% of reads from each
cluster were randomly selected and visualized in panels C1-C3). f, Heatmaps of the
three HiPore-C read clusters in panel e. g. The normalized observed/expected
contact frequency against genomic distance for three clusters of reads in the
hierarchical TAD shown in panel e. The top panel shows the genomic distances
covered by whole HiPore-C reads. The bottom panel shows the genomic distances
covered by virtual pairwise contacts in HiPore-C reads.
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Cell crosslinking
Fifteen million GM12878 or K562 cells were spun down and resus-
pended in 10ml of freshmedium. Cells were fixed by adding 278μL of
37% formaldehyde and incubated for 10minutes at room temperature
(RT). The reactionwas stopped by adding 894μL of 2.5Mglycines. The

cell suspension was incubated for five minutes at RT, followed by
10minutes on ice. Fixed cellswere pelleted by centrifugation at 1000×
g for 5minutes at 4 °C and then gently washed twice with 5ml of ice-
cold 1× PBS. The cell pellet was stored at −80 °C until further
processing.
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Chromatin digestion and ligation
Up to three million crosslinked cells were resuspended in 1000 µL of
ice-cold cell lysis buffer (10mM Tris-HCl pH 7.5, 10mM NaCl, 0.2%
NP-40, 1× Roche protease inhibitors) and rotated at 4 °C for 30min.
Nuclei were pelleted at 4 °C for 5min at 1000 × g, and the super-
natant was discarded. Pelleted nuclei were washed once with 500 µL
of ice-cold cell lysis buffer. The supernatant was removed, and the
nuclear pellet was resuspended in 50 µL of 0.5% SDS and incubated
at 62 °C for 10min. Then, 145 µL of water and 50 µL of 10% Triton
X-100 were added, and the samples were rotated at 37 °C for 15min
to quench SDS. Then, 25 µL of 10x NEB Buffer 3.1 and 10 µL of 10 U/µL
DpnII restriction enzyme (NEB, R0543T) were added, and the sample
was rotated at 37 °C for 4 h. DpnII was then heat-inactivated at 62 °C
for 20min. Then, the reactions were rotated at 4 °C for 5min. A total
of 750 µL of ligation master mix was added: 100 µL of 10× NEB T4
DNA ligase buffer with 10mM ATP (NEB, B0202), 75 µL of 10% Triton
X-100, 3 µL of 50mg/mL BSA (Thermo Fisher, AM2616), 10 µL of
400 U/µL T4 DNA Ligase (NEB, M0202), and 562 µL of water. The
reactions were rotated at 16 °C for 4 h and then allowed to proceed
for an additional 1 h at RT.

DNA purification procedure optimization
We added 45 µl of 10% SDS and 55 µl of 20mg/ml proteinase K to
reverse crosslinking of the ligated chromatin. Samples were incubated
at 63 °C for at least 4 hours (overnight recommended). Then,we added
65 µl of 5M NaCl and incubated the samples at 68 °C for at least
2 hours. Next, samples were extracted with 500 µl of phenol:chloro-
form: isoamyl alcohol (25:24:1). After centrifugation at top speed, the
aqueous phasewas separated using a 2mlMaXtract high-density tube.
Then, 1 µl of GlycoBlue, 100μL of 3M sodium acetate (pH 5.2), and
850μL of isopropanol were added to the aqueous solution. The mix-
ture was incubated at −80 °C for 1 hour. We centrifuged themixture at
maximum speed for 30minutes at 4 °C, removed the supernatant, and
washed the pellet twice with ice-cold 75% ethyl alcohol before dissol-
ving the dried pellet with 170μL of Buffer EB. The above is the opti-
mized Pore-C experimental protocol.

For version 1 HiPore-C, we repeated digestion by adding 20 µL of
10%SDS and 10 µL of 20mg/ml proteinaseK to 170μL of DNA solution.
The mixture was incubated at 63 °C for 1 hour to digest the remaining
associated protein and purified as in the first round. Proteinase
digestion and reverse crosslinking can be repeated for another round.
The final library DNA was dissolved in 30μL of Buffer EB.

For version 2 HiPore-C, we digested samples for an additional
round with pronase and then purified library DNA as described in the
Pore-C and HiPore-C version 1 protocols. The final library DNA was
dissolved in 30μL of Buffer EB.

Nanopore sequencing library preparation and ONT single-
molecule sequencing
3-4 ug of purified DNA per sample was used as input material for ONT
sequencing library preparation. DNA was size selected (>3 kb) using
the PippinHT system (Sage Science, USA). DNA ends were repaired

with dA addition, and the A-ligation reaction was conducted with the
NEBNext Ultra II End Repair/dA-tailing Kit (Cat# E7546). The adapter in
SQK-LSK109 (Oxford Nanopore Technologies, UK) was used for fur-
ther ligation, and the DNA library was measured on a Qubit 4.0 fluo-
rometer (Invitrogen, USA). Approximately 700 ng of library DNA was
sequenced on the ONT PromethION (or MinION) platform at the
GenomeCenter of Grandomics (Wuhan, China). Andwe carried Pore-C
experiment described by Deshpande et al57. on GM12878 and K562 cell
lines and sequenced these libraries on the PromethION platform for
comparison with the HiPore-C.

Nanopore sequence base-calling and methylation calling
Nanopore sequencing raw signals were converted to DNA sequences
using the high-accuracy model “dna_r9.4.1_450bps_hac_prom.cfg” of
Guppy v4.5.3 software (Oxford Nanopore Technologies) and reads
with quality scores less than 7 were discarded. Sequencing statistical
analysis was conducted using NanoPlot69. 5mC methylation sites were
called using Megalodon (Oxford Nanopore Technologies) v2.3.4 with
the ‘–guppy-config res_dna_r941_prom_modbases_5mC_v001.cfg –

outputs mod_basecalls –mod-motif m CG 0 –devices
cuda:0 –processes 48 –overwrite’.

HiPore-C data alignment pipeline
TheHiPore-C alignment analysis pipeline requires using ngmlr v0.2.760

and minimap2 v2.17-r94161 software. Reads were first aligned to the
reference genome (GRCh38) using ngmlr with the parameter
“–subread -length 256 -x ont” and minimap2 paftools.js sam2paf to
convert from sam format to paf format. In the preliminary alignment,
unaligned readswere realignedusingminimap2with the parameter “-x
map-ont -B 3 -O 2 -E 5 -k13”, and then the two alignment results were
combined. Different parts of the reads were mapped to distinct
genomic loci and called fragments. There were gap openings and
overlap between fragments (Supplementary Fig. 1g). If the alignment
strand and genomic position of the two overlapping fragments were
coincident (the dislocated overlapping genome positions were within
50 bp), the two fragments were merged. Otherwise, the shorter
alignment fragment was discarded. After processing overlapping
fragments, we extracted the gap regions from the alignment reads and
realigned themwith the sameparameters usingminimap2: “-xmap-ont
-B 3 -O 2 -E 5 -k13”. The alignment fragments were annotated with the
genome in silicoDpnII restriction digestion fragments, and we defined
fragment ends located within 30bp of the digestion sites as thematch
ends. If both fragments’ ends matched, the fragment was fully diges-
ted. To obtain reliable alignment results, we discarded fragments with
a mapq score <10 without match ends. After annotating the multiple
fragments of reads, eachmulti-fragment read represented ahigh-order
chromatin interaction. For comparison with Hi-C data, the multiway
contacts of HiPore-C reads were decomposed into pairwise contacts
(Supplementary Fig. 1h). A read with n ligated fragments was able to
generate C(n, 2) pairwise contacts, and a pairwise contact matrix file
wasgenerated to juicermedium format. Pore-Cdatasetswere analyzed
in the same way.

Fig. 6 | HiPore-C reveals a cell type-specific enhancer hub at the β-globin locus.
Clustering of HiPore-C reads covering the human β-globin locus in K562 (a) and
GM12878 (b) cells (The HiPore-C reads were binned at 1 kb resolution. Only reads
containing three or more fragments in the region of Chr11:5.19-5.30Mb were used
to perform clustering. Fifty percent of the reads from each cluster were randomly
selected and visualized in multi-contact read panels). Multiway contact analysis
anchored at human ε- and Gγ-/Aγ-globin gene promoters in K562 (c) and GM12878
(d) cell lines. Viewpoints are shown as anchors. Reads from each cluster were
randomly sampled 100 times to generate subsample sets. The relative appearance
frequency of readswith viewpointswas calculated. Lineswith shading represent the
mean±sd of the bin relative appearance frequency in the subsample sets. The sta-
tistical significance of the relative appearance frequency of bins was calculated by

comparing the two clusters using a two-sided Welch’s test with Bonferroni cor-
rection and is depicted with gray and dark red bars (gray, non-significant, adjusted
P > =0.01; red, significant, adjusted P <0.01). e Multiway contacts at the human β-
globin gene locus formed by simultaneous interactions of human ε- and Gγ-/Aγ-
globin genes and two hypersensitive enhancer sites (HS2 and HS1). f A graphic
showing the multiway contacts formed by simultaneous interactions of three
human ε- and Gγ-/Aγ-globin genes and two hypersensitive enhancer sites (HS2 and
HS1). g Multiway contacts at the human β-globin gene locus formed by simulta-
neous interactions of the human ε-globin gene and hypersensitive sites (HS2, HS1,
and HS5-HS3) in the locus control region. h A graphic showing the multiway con-
tacts in g.
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Comparison of HiPore-C and Hi-C data
We obtained a total of 1.35 billion pair contacts from 5 runs of the
GM12878 HiPore-C datasets, and we obtained the previously reported
GM12878 cell in situ DpnII digestion Hi-C dataset containing 421.7
million pairwise contacts from the 4DN Data Portal (4DNESQWI9K2F)
for GM12878 cell line14 and 601.97 million pairwise contacts
(4DNESF17LNZE) for K562 cell line70. We used cooler v0.8.6.post071 to

normalize the HiPore-C and Hi-C pairwise contact matrix to generate
data in the cool and mcool formats with default parameters. To
visualize the chromatin conformation contact heatmap, we used juice
tools v1.22.172 to generate the hic file. To compare the degree of simi-
larity between HiPore-C and Hi-C datasets and between different runs
of HiPore-C, the stratum-adjusted correlation coefficient of the pair-
wise contact matrix between samples was calculated using HiCrep
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v1.2.0 (scc)73. We used eigs-cis from cooltools v0.5.074 to calculate
compartment eigenvectors with a bin resolution of 100 kb and deter-
mined the types of compartments A and B using ENCODE GM12878
H3K27ac ChIP-Seq data (ENCFF798KYP). We used cooltools v0.5.0 to
calculate insulation scores for TAD at 50kb resolution and window
sizes of 2, 5, and 10. We also separately calculated the Pearson’s cor-
relation r of compartment eigenvector scores and TAD insulation
scores between the two methods. We used the juicer apa tool to
compare the results of aggregate peak analysis (APA) for the loops
betweenHiPore-C andHi-C datasets and loops derived fromaprevious
study14.

Analysis of 3D genome high-order interactions
Analysis of multiway contacts. Previous studies have reported that
multiway contact reads can capture longer-range genomic interac-
tions than Hi-C-captured pairwise contacts57. We calculated three
types of contact distances in terms of the relative locations of
fragments in HiPore-C reads, which were read cover distance (the
maximum genomic distance covered by a read), adjacent contact
distance (distance between pairs of adjacent ligation fragments),
and separated contact distance (distance between pairs of separated
fragments) (Fig. 4a), and compared them with the Hi-C pairwise-
contact distance. The contact distances of HiPore-C reads with dif-
ferent numbers of fragments, lwLRMFs (2-3), mdLRMFs (4-9), and
hgLRMFs (>=10), were also analyzed, where lw indicates low, md
indicates medium, and hg indicates high. We collected loops, TADs,
and compartment information of the GM12878 cell line
(GSE63525)14. We analyzed reads spanning multiple chromatin
structural domains (loop anchors and regions, TADs, and compart-
ments) with different numbers of fragments.

Comparison of adj-pairs and non-adj-pairs of chromatin contacts in
multi-contact reads. When generating pairwise contacts, we sepa-
rated contacts between two neighboring fragments (adj-pairs) from
the rest (non-adj-pairs) and generated contact matrices for these two
types of chromatin interaction pairs separately. The matrices of the
non-adj-pairs andHi-C containedmore contacts than thematrix of adj-
pairs. We down-sampled Hi-C and non-adj-pairs datasets to the same
amount of the adj-pairs by cooltools random-sample. Then, we cal-
culated the stratum-adjusted correlation coefficient, compartment
eigenvectors and insulation scores, and the aggregate peak analysis.
Finally, to test whether inter-chromosomes, inter-compartments, and
inter-TADs contacts (named inter-contacts) were enriched in the adj-/
non-adj-pairs datasets, we set the proportion of the inter-domain
contacts in all pairwise contacts as the expected ratio. We then mul-
tiplied it by the number of adj-/non-adj-pairs to derive the expected
values. The enrichment score was calculated by dividing the observed
inter-contact number by the expected value. The enrichment scores of

intra-chromosome, intra-compartment, and intra-TAD contacts were
similarly calculated.

Hierarchical clustering of multiway contacts. Taking advantage of
the informative multiway interactions within the HiPore-C reads, we
analyzed differences between single-allele topologies to improve our
understanding of the cell type-specific chromatin conformations. We
performed hierarchical clustering on high-order reads in a specific
region to study the chromatin interaction complexity in TAD regions.
To facilitate the observation of long-range multiway interactions, we
selected reads containingmore than four fragments in specific regions
to cluster. According to its size, the region of interest was divided into
M bins (for example, 1 kb bins if the region was less than 200 kb,
otherwise 5 kb), and N (number) read fragments were assigned to
corresponding bins if the fragment midpoint fell within a bin. If binj
was in read i, thenPi,j is 0; otherwise, 0. This resulted in a P[N×M]matrix
containing reads in the rows and region bins in the columns. We used
the Python scipy package for hierarchical clustering (scipy.clus-
ter.hierarchy) with the matrix distance generated by “euclidean” and
the clusters generated by the “ward”method, and branch distancewas
adjusted to achieve read hierarchical clustering in this region. The
relative frequency for each cluster bin was calculated as the observed
frequency of every bin divided by the number of reads in each cluster:

Relative f req= bin number=reads number ð1Þ

To analyze the profile of multiway contact of CTCF sites, we
obtainedCTCFpeaks inGM12878 cells (ENCFF796WRU) fromENCODE
and the CTCF motif weight matrix from JASPAR. MEME Suite FIMO
software75 was used to identifymotifs in regions of CTCFbindingpeaks
with a p-value threshold of 1e−4. We calculated each cluster’s relative
frequencies of CTCF fragments (fragments located in CTCF regions)
and CTCF pairwise contacts (pairwise contact fragments located in
CTCF regions).

To visualize the contact heatmap of each cluster, we created a
pairwise contact matrix for each cluster of reads, and normalization
and visualization were conducted as described above. To compare the
interaction distances of different cluster reads, we calculated the dis-
tanceobserved/expected (O/E) by taking the cover distanceof reads or
pairwise contact distance of all the reads as expected values (E) and
contact distance in the cluster reads as the observed values (O).

Multiway contact of regulatory elements. To investigate the het-
erogeneity of high-order interactions at the human β-globin gene
locus, we performed hierarchical clustering of multiway contact reads
in GM12878 and K562 cell lines as mentioned above. The relative
association frequency between the gene regulatory region of interest
(X) and other regulatory regions was calculated in each clustered read.

Fig. 7 | HiPore-C captures DNA methylation and chromatin topology simulta-
neously. a CpG methylation captured by HiPore-C and WGBS. (Black, highly
methylated, average methylation ratio > = 0.6; gray, medianly methylated, average
methylation ratio 0.4 − 0.6; white, lowly methylated, average methylation ratio < =
0.4). Bar plots show the distribution of CpGs with different methylation levels.
bOverlapof the highly and lowlymethylatedCpGbetween theHiPore-C andWGBS
datasets. c, Pearson’s correlation between HiPore-C and WGBS datasets on CpG
methylation levels (with 5x coverage). d, e Pearson’s correlation coefficient (PCC)
values of CpG methylation levels between anchors of chromatin loops14 (25 kb
resolution bin). Only reads (n = 14,604) containing three or more CpGs on both
anchor fragment were used in calculation. In e, paired anchor fragments in reads
were shuffled (n = 14,604, shuffled anchor pairs) to calculate the expected back-
ground PCCs. Comparison of the PCCs of the expected background and the
observed is shown in d. Statistical significance was calculated using Finsher’s z
(1925) in cocor package tool. Distribution of anchor methylation level (f) and
comparison of the PCC values between paired anchors (g) of three loop types.

Loops with CTCF at two anchors (n = 4858); Loops with CTCT at one anchor,
(n = 3432); Loopswithout CTCF (n = 1140). Statistical significancewas calculated by
the Kruskal-Wallis test, followed by Dunnett’s t-test. In f and h, the center line/ dot,
median; boxes, first and third quartiles; whiskers, 5th and 95th percentiles. In
g, Data are shown as the mean ± sd. h Distribution of methylation level in the A
(n = 1396) and B (n = 1445) compartments. Statistical significance was calculated by
two-sided Student’s t-test. Data are shown as in f. i Venn diagrams show the overlap
between A, and between B compartments that were identified by Rao et al.14 and by
using the HiPore-C captured CpG methylation, respectively. j Chromatin com-
partments and methylation profile at Chr11:60Mb-130.0Mb. The H3K27ac track
was plotted using ENCODE H3K27ac datasets. k, I, Contact heatmaps (500kb and
50kb resolutions) andmethylation profiles at Chr8:80.0Mb-110.0Mb. Dashed lines
show the amplified regions from the left panels. In panel l, methylated and
unmethylated regions detected by HiPoreC in local single-allele reads are shown in
the bottom frame. The ChIP-seq and RNA-seq tracks were plotted using data from
ENCODE database.
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We repeated sampling in eachcluster, and if Xpreferentially interacted
with regulated targets, it was also present at high frequency in the
sampling datasets. We sampled 100 times, calculated the frequencies
of targets in reads containing X elements in each sampling dataset, and
divided them by the number of subsets reads for normalization. To
analyze the differences in simultaneous interactions between multiple
promoters and multiple enhancers among different clusters, we cal-
culated and compared the frequencies of reads containing three-way
interactions in the regulatory regions of interest in the sampled data-
sets among different clusters. The means and standard deviations of
relative frequencies were calculated, and the significance of differ-
ences between clusters was calculated using Welch’s t-test and Bon-
ferroni’s multiple test correction, with alpha = 0.01.

Multiway promoter and enhancer interaction analysis. To analyze
the globalmultiway interaction of cis-regulatory elements,we adopted
the multi-promoter interaction model27 and set up a multi-enhancer
interaction model (Supplementary Fig. 8a). We obtained the V15
ChromHMMannotations ofGM12878 andK562 cell lines from the hg19
ENCODE data resource (http://genome.ucsc.edu/ENCODE/downloads.
html). The annotations were lifted to the reference hg38 genome via
the liftOver utility tool from theUniversity of California Santa Cruz.We
then selected ‘strong enhancers’ and ‘active promoters’ for further
analysis. In addition, the promoter needed to be located within 2 kb
upstream of the gene TSSs in the Encode GRch38 V29 genome anno-
tation (https://www.encodeproject.org/data-standards/reference-
sequences). The promoter and enhancer regions were binned in 2 kb
resolution, and themultiway contacts were counted in each bin. Some
of the promoter bins and enhancer bins overlapped. In the promoter
interaction model, the overlapped bins were all treated as promoter
bins, while in the enhancer interaction model, they were treated as
enhancer bins. In the promoter interaction model, a basal promoter
(BP) read contains only one promoter fragment and no enhancer
fragment; a single-gene (SG) interaction read contains only one pro-
moter fragment and one or more enhancer fragments; a multi-gene
interaction (MG) read contains two or more promoter fragments. In
the enhancer interactionmodel, a none-enhancer interaction (NE) read
contains only one promoter fragment and no enhancer fragment; a
single-Enhancer interaction (SE) read contains at least one promoter
fragment and only one enhancer fragment; a multi-enhancer interac-
tion (ME) read contains at least one promoter fragment and two or
more enhancer fragments. Then, we calculated the frequency of dis-
tinct interaction for those gene which are covered by promoter frag-
ment (Supplementary Fig. 8a).

To analyze the association of multiway interaction of cis-
regulatory elements with gene expression, we obtained RNA-seq
data of GM12878 (ENCFF678BLG, ENCFF897XES, ENCFF791MED,
ENCFF473KMX) and K562 (ENCFF068NRZ, ENCFF928YLB,
ENCFF472HFI, ENCFF628SMT) from the Encode database. We
normalized gene expression level as the mean value of transcripts
per million (TMP). We divided genes into groups with the lowest
interaction frequency (Q1, <25% interaction frequency), moderate
interaction frequency (Q2, ≥25% and <75% interaction frequency),
and the highest interaction frequency (Q3, ≥75% interaction
frequency).

Analysis of interchromosome interactions
Identification of interchromosomal interactions. We divided chro-
mosomes into 1Mb bins and converted the interchromosomal
interactions in the multiway contact reads into a pairwise contact
matrix. According to the reported method, the significance of
interchromosomal interaction enrichment was calculated using the
negative binomial distribution with Bonferroni’s multiple correc-
tions based on the assumption that interchromosomal interactions
were randomly distributed. We selected significantly enriched

interchromosomal interactions by an enrichment score > = 2 and
adjusted p-value <0.01 based on the distribution profile of enrich-
ment scores and adjusted p-values, and then we selected contact
pair ij with two other consecutive bins that were significantly enri-
ched contact pairs (i.e., the i + 1 and j + 1 and the i-1 and j-1 contact
pairs were significantly enriched). To exclude false-positive inter-
action bins further, we required that the enriched bins have inter-
actions withmultiple regions (at least 20 other bins). Finally, 623 bin
regions were identified as significant interchromosomal interacting
loci. Enrichment analysis was performed for the interchromosome
interactions with the centromere, telomere, and tRNA genes in the
anchor regions.

Interchromosomal interaction hubs
It was reported that two classes of interchromosome interaction hubs
could be identified from multiple contacts6. We transformed the
interactions of the 623 regions into a 623*623 matrix with M i, j = 1 if
there were significantly enriched interactions in regions i and j;
otherwise, 0. We then used the Gaussian mixture model from the
Python sklearn library, taking the matrix as input, to partition these
regions into two sets. In each set, we selected regions with a significant
degree of connectivity within the same set and a small degree of
connectivity with the other set (regions with a contact ratio within the
same set ≥ 0.9). We obtained two interchromosome interaction hubs,
which contained 72 and 78 regions. We analyzed the features of
genomic regions of these two hubs, including epigenetic histone
modifications (H3K4me1: ENCFF321BVG; H3K4me3: ENCFF587DVA;
H3K27ac: ENCFF023LTU; and H3K36me3: ENCFF432EMI), RNA poly-
merase II (RNAPII) ChIP-seq occupancy(ENCFF916VXY), and DNase I
hypersensitivity (ENCFF759OLD), as well as the densities of genes and
enhancers. The histone modifications, RNAPII ChIP-seq occupancy,
and DNase sensitivity were defined as the number of peaks (ENCODE)
per Mb region, and densities of the gene (Ensemble gene annotation)
and enhancer (ENCODE candidate enhancers ENCFF733BFV) were
defined as the counts of genes and enhancers per Mb region, respec-
tively. TheRNAexpression level wasdefined as themean total RNA-seq
fold change over the control level per Mb region. The average value of
these features in two hub regions was calculated, and the inter-
chromosomal contact-enriched regions not from the two hubs were
used as the control group. One hub was considered an active hub
because of the higher genomic accessibility and histonemodifications
related to its active transcription state. The other hubwas considered a
transcriptionally inactive hub.

Analysis of HiPore-C methylation
Comparison of HiPore-C methylation with the conventional
method. We extracted 5mC methylation sites from the HiPore-C
dataset of megalodon bam files using a customized Python script and
set a methylation probability score greater than 191 (i.e., methylation
possibility greater than 0.75) as the threshold for methylation C base
calling. The megalodon bam files were converted to fastq files, and
alignment and annotation were performed as described in the HiPore-
C data alignment pipeline. The CpG sites were mapped to the refer-
ence genome according to read annotations. There were 2.53 billion
CpG methylation calls and 1.40 billion CpG unmethylation calls (Sup-
plementary Table 7).

To evaluate the reliability of the HiPore-C methylation results, we
calculated the methylation ratio of CpG sites in the reference genome
using theWGBSdataset as a control (100× coverage ofGM12878WGBS
data, ENCODE accession number ENCFF067JYV). The Pearson corre-
lation coefficient for CpGmethylation between the WGBS and HiPore-
C datasets was calculated. The concordance of highly methylated CpG
sites (methylation ratio > = 0.6) and lowly methylated CpG sites
(methylation ratio < = 0.4) between these two methods was also
calculated.
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To determine the GC density bias in HiPore-Cmethylation calling,
we used 1 kb bins. We analyzed the coverage of genome bin regions
against the GC percentage by fitting a linear regression model of GC
percentage ~log10(bin count) and using the slope of the fitted straight
line to reflect GC density bias.

Association betweenCpGmethylation and 3Dchromatin structure.
We analyzed the CpGmethylation profile associated with chromatin
structures in the GM12878 cell line. Reads containing fragments at
loop anchors and in compartments (GSE63525)14 were kept. For
reads with paired fragments in loop anchor regions (at least 3 CpG
sites in the loop anchor regions), the average CpG methylation level
of each read fragment of the pair of contact fragments was calcu-
lated, and the Pearson correlation coefficient (PCC) was calculated
from the average methylation levels of paired fragments. To com-
pare the difference between the background expected PCC and
the observed PCC, we selected reads containing paired anchor
fragments and shuffled these fragments between reads, then sub-
jected them to PCC calculation. Correlation comparing was
performed using Finsher’s z (1925) in cocor tool76 (v1.1-3, http://
comparingcorrelations.org).

We classified loops into three groups (anchors at both ends with
CTCF binding, only one anchor with CTCF binding, and neither anchor
with CTCF) using CTCF ChIP-Seq data (CTCF narrow peaks, ENCODE
accession ENCFF796WRU) and compared the methylation levels and
calculated correlation coefficients between the two ends. We also
divided loops into high- and low-level groups (top 10% vs. bottom 10%
ranked by the peak density and average signal levels in loop regions)
according to the DNAse-seq (ENCODE accession ENCFF960FMM),
H3K27ac ChIP-seq (ENCODE accession ENCFF469WVA), and RNA-seq
(ENCODE accession ENCFF936ZZD and ENCFF808QGQ) datasets and
compared the methylation levels and correlation coefficients of the
high- and low-level groups.

We determined the methylation difference of A/B compartments
by calculating the averageCpGmethylation level in the compartments.
To assess whether the HiPore-C methylation results could be used
directly to classify A/B compartments, we performed a simple classi-
fication of A compartments (n = 1396) and B compartments (n = 1445)
of the GM12878 cell line (GSE63525)14 with two rules: higher methyla-
tion levels in the A compartment than in the B compartment and sig-
nificant methylation changes between adjacent A and B
compartments. We also analyzed CpG methylation in the gene pro-
moter region at the singl-allele level using R scripts from a previous
study77.

Quantification, statistical, and visualization. Plots and statistics were
generated in Python 3.7, R version 3.3.1, andMicrosoft Excel 2016. All P
values and Pearson correlation coefficients, the exact values of the
numbers, and each applied statistical test are specified in the figure or
figure legends. The bar graphs show the mean ± standard deviation
(SD), as indicated in the figure legends. To compare two different
groups, we applied a two-sided Welch t-test, and a Bonferroni–Holm
correction was used to avoid errors in cases of multiple testing. To
compare more than two groups, we applied the Kruskal–Wallis test,
followed byDunnett’s t-test. The results were significant when P <0.05
for the respective statistical test, with significance as *P <0.05,
**P <0.01, and ***P <0.001.

The Juicebox (v2.10.01)72, HiCExplorer (3.6)78, HiGlass(v1.11.7)79,
and FAN-C(v0.9.23)80 were utilized for depicting contact matrices and
interactions, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The HiPore-C sequencing data
generated in this study have been deposited in the NCBI GEO database
under series accession number GSE202539. The processed data are
available at http://www.tgsbioinformatics.com/HiPore-C. Publicly
available sequencing datasets analyzed in this study are as follows:

GM12878 Hi-C data (4DNESQWI9K2F). ChIP-seq datasets include
H3K27ac (ENCFF798KYP), CTCF (ENCFF796WRU), H3K4me1
(ENCFF321BVG), H3K4me3 (ENCFF587DVA), H3K27ac (ENCFF023LTU),
H3K27ac (ENCFF469WVA), H3K36me3 (ENCFF432EMI), and RNA-
PII (ENCFF916VXY). DNase I hypersensitivity (ENCFF759OLD) and
DNAse-seq (ENCODE accession ENCFF960FMM). GM12878 WGBS
(ENCFF067JYV). RNA-seq datasets (ENCFF678BLG, ENCFF897XES,
ENCFF791MED, ENCFF473KMX, ENCFF068NRZ, ENCFF928YLB],
ENCFF472HFI, ENCFF628SMT, ENCFF936ZZD and ENCFF808QGQ).

Code availability
The custom Python and shell scripts used in this project are available
on GitHub (https://github.com/zhengdafangyuan/HiPore-C).
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