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Abstract

Purpose Meningiomas are the most frequently diagnosed intracranial neoplasms. Usually, they are treated by surgical resec-
tion in curative intent. Radiotherapy and stereotactic radiosurgery are commonly applied in the adjuvant setting in newly
diagnosed atypical (CNS WHO grade 2), and anaplastic (CNS WHO grade 3) meningioma, especially if gross total resection
is not feasible, and in recurrent cases. Conversely, the evidence for pharmacotherapy in meningioma is scarce.

Methods The available literature of systemic treatment in meningioma was screened using PubMed, and ongoing clinical
trials were explored using ClinicalTrials.gov.

Results Classical cytotoxic agents, somatostatin analogs, and antihormone treatments have shown only limited efficacy.
In contrast, tyrosine kinase inhibitors and monoclonal antibodies, especially those targeting angiogenic signaling such as
sunitinib and bevacizumab, have shown promising antitumoral activity in small phase 2 trials. Moreover, results of recent
landmark studies on (epi-)genetic alterations in meningioma revealed potential therapeutic targets which are currently under
investigation. These include inhibitors of mammalian target of rapamycin (mTOR), focal adhesion kinase (FAK), cyclin-
dependent kinases (CDK), phosphoinositide-3-kinase (PI3K), sonic hedgehog signaling, and histone deacetylases. In addition,
clinical trials evaluating immune checkpoint inhibitors such as ipilimumab, nivolumab, pembrolizumab and avelumab are
currently being conducted and early results suggest clinically meaningful responses in a subset of patients.

Conclusions There is a paucity of high-level evidence on systemic treatment options in meningioma. However, interesting
novel treatment targets have been identified in the last decade. Positive signals of anti-angiogenic agents, genomically targeted
agents and immunotherapy in early phase trials should be confirmed in large prospective controlled trials.
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Introduction

Meningiomas are the most common primary central nerv-
ous system (CNS) neoplasms in adults. Accounting for
39% of tumors in the CNS, their incidence reaches about
9.1/100.000 person-years in the United States, with a pre-
dominance in female individuals of higher age [1]. In the
recent update of the WHO Classification of Central Nerv-
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such as rapid growth or brain invasion. Although CNS WHO
grade 2 and 3 meningiomas occur in only 4-28% and 1-3%
of cases [3, 4], they represent a high clinical need as they
show higher recurrence rates after resection [5] and may
metastasize extracranially to the lungs, liver, or bones [6].

According to current guidelines [7, 8], asymptomatic
meningiomas with no mass effect can be followed by a
watch-and-wait approach with annual magnetic resonance
imaging (MRI). However, growing and/or symptomatic
meningiomas with mass effect should be treated by maximal
safe resection with curative intent. Indeed, extent of resec-
tion has been repeatedly shown as a prognostic factor, with
higher recurrence rates and worse survival in higher-grade
meningioma [9, 10]. Therefore, radiotherapy or stereotactic
radiosurgery should be considered in meningiomas that were
not gross totally resected (GTR) as well as higher-grade
tumors. The role of systemic therapy remains unclear due to
a lack of evidence, and pharmacological treatment of men-
ingiomas is generally regarded as experimental. However,
systemic treatment options are frequently used as salvage
treatment in situations where no further local therapeutic
options are available. Overall, cytotoxic agents have shown
limited activity, whereas targeted treatment approaches,
especially anti-angiogenic agents, have shown some efficacy
in the salvage treatment of meningioma [7]. Here, we aim
to summarize the available evidence on systemic treatment
options in meningioma and provide an overview of currently
studied agents and future prospects.

Clinical trial endpoints and assessment
of therapy response in meningioma

Meningiomas are heterogeneous tumors in terms of growth
rate, clinical course and therefore prognosis. Consequently,
the definition of appropriate clinical trial endpoints and
response criteria remains challenging, and recommendations
for response criteria and clinical trial endpoints were issued
only recently [11]. While overall survival (OS) is generally
regarded as the primary benchmark to evaluate the efficacy
of anticancer treatments, use of this parameter is compli-
cated by the long follow-up times, especially in relatively
benign tumors such as CNS WHO grade 1 meningiomas.
As valid historical data are missing, use of OS as a clinical
trial endpoint is only reasonable in randomized trials with
a respective control arm. Radiological response parameters
such as objective response rate (ORR) are also used; how-
ever, clearly defined radiological assessment criteria were
lacking in meningioma. This also complicates the use of
progression-free survival (PFS) and PFS rates, as progres-
sion may be defined differently between trials and historical
controls. Moreover, progression may be easily overlooked
due to the slow growth rate of most meningiomas. Still, PFS
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and PFS rates are a frequently used surrogate parameter for
assessing the activity of a treatment without considering the
potential impact of post-progression treatments. In addition,
the absence of meningioma progression may also best reflect
clinical stability in terms of neurological symptom burden.
Indeed, most clinical trials reported PFS at 6 months (PFS-
6), providing a large number of historical controls of men-
ingiomas of all grades.

Systemic treatment in meningioma -
the status quo

The efficacy of cytotoxic agents such as hydroxyurea
[12—15], irinotecan [16], temozolomide [17, 18], or combi-
nation regimens such as vincristine, adriamycin and cyclo-
phosphamide (VAC) [19] has been evaluated, with overall
limited efficacy (Table 1). Whereas the DNA-intercalating
agent trabectedin has shown promising activity in vitro and
in one heavily pretreated patient [20], a prospective rand-
omized phase 2 trial (EORTC 1320) failed to meet its pri-
mary endpoint, with no difference to physician’s choice in
terms of antitumoral activity but significantly higher toxicity
[21].

As many meningiomas show overexpression of the
somatostatin receptor 2A [22], somatostatin analogs such
as octreotide or pasireotide [23—-25] as well as targeted radio-
nucleotide therapy have also been studied [26], with vary-
ing degrees of efficacy. Moreover, a phase 2 trial evaluating
the combination of octreotide with the mammalian target of
rapamycin (mTOR) everolimus has shown clinical activity
and a decreased growth rate in WHO grade 1-3 meningi-
oma [27, 28]. Similarly, due to the high expression of pro-
gesterone receptor on meningioma cells, the progesterone
antagonist mifepristone has been considered among other
hormonal agents, although no clinically meaningful activity
was demonstrated [29].

More promising results have been observed with tyros-
ine kinase inhibitors, especially those targeting angio-
genic pathways such as vascular endothelial growth fac-
tor (VEGF) signaling. Indeed, soluble isoforms of VEGF
have been detected in WHO grade 2 and 3 meningiomas
which also showed higher microvascular density as com-
pared to WHO grade 1 tumors [30]. These results suggest
that VEGF-directed agents could be reasonable agents for
the management of higher-grade meningiomas. Consist-
ent with this hypothesis, a phase 2 trial of sunitinib in 36
patients with atypical and anaplastic meningioma showed
a progression-free survival (PFS) rate of 42% at 6 months
(PFS-6), comparing well with historical controls [31, 32].
Similar results have been observed with the tyrosine kinase
inhibitor vatalanib (PTK787) which targets VEGF signal-
ing, platelet-derived growth factor receptor (PDGFR), and
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Table 1 (continued)
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Main inclusion criterion
Recurrent and progressive

Monoclonal anti-PD-1

Drug class
antibody

Pembrolizumab

Drug

Springer

31-66%)
Median PFS: 7.6 months

WHO grade 2-3 menin-

gioma

(90%CI: 3.4-12.9)

c-kit [33]. A small retrospective series of 15 patients with
atypical or anaplastic meningioma treated with bevacizumab
found a median PFS of 26 weeks and a PFS-6 of 43.8% [34].
Another retrospective study showed a PFS-6 of even 86%,
with no significant improvement if cytotoxic chemotherapy
was added [35]. Similar results were seen in a small phase 2
trial of a combination treatment consisting of bevacizumab
and the mTOR inhibitor everolimus [36]. Bevacizumab was
also associated with growth-inhibitory and anti-edematous
activity in longitudinal imaging analyses [37]. Other previ-
ously studied drugs include imatinib, erlotinib and gefitinib,
with no relevant clinical activity [38—41].

These results which mainly stem from retrospective or
small prospective studies could be substantiated in explora-
tory analyses of the EORTC 1320 study, where physician’s
choice was included as a control arm [21]. Control treat-
ments included the cytotoxic compounds hydroxyurea, vin-
cristine, cyclophosphamide, doxorubicin as well as bevaci-
zumab and somatostatin analogs. An unplanned post-hoc
analysis corroborated the relative superiority of bevaci-
zumab (median PFS: 6 months, PFS-6: 44.4%) over hydrox-
yurea (median PFS: 2.4 months, PFS-6: 8.8%) and over the
experimental drug trabectedin (median PFS: 2.4 months,
PFS-6: 24.4%). However, these were unpowered analyses,
and further prospective trials are needed to clarify the effi-
cacy of bevacizumab and other anti-angiogenic agents in
meningioma.

Frequent genetic alterations and potential
therapeutic implications

Based on data of high-throughput landmark studies, signifi-
cant advances have been made concerning the genetic signa-
ture and molecular pathogenesis of meningiomas of different
grades and tumor locations [42, 43]. For an in-depth review
on this topic, we refer to the review of Preusser et al. [44].
Here, we summarize the available knowledge on frequent
alterations and discuss their potential as targets for novel
systemic treatment options based on results of preclinical
and planned early phase clinical studies (Fig. 1, Table 2).

Neurofibromin 2/Merlin

Nearly half of sporadic meningiomas carry loss-of-function
mutations in the tumor suppressor gene NF2 encoding for
the protein Merlin [43]. Conversely, patients with neurofi-
bromatosis type 2 carrying germline mutations in NF2 have
a significantly higher risk for meningioma in their lifetime
and even during childhood [44]. From a pathogenetic point
of view, the encoded protein Merlin has an inhibitory role
on the growth-promoting phosphoinositide 3-kinase (PI3K)/
AKT/mTOR pathway, providing a potential treatment target
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Fig. 1 Emerging targets and candidate drugs of systemic treatment in meningioma. Abbreviations are given in text

as this pathway might be constitutively activated in the pres-
ence of NF2 mutations. Whereas data on the efficacy of
everolimus had been published previously [36], the mTOR
inhibitor vistusertib (AZD2014) has also been investigated.
A phase 2 trial assessed vistusertib in 18 patients with WHO
grade 2-3 meningioma (NCT02831257), with a promis-
ing PFS-6 of 88.9% according to early data [45]. Another
phase 2 trial of vistusertib in WHO grade 2-3 meningioma
is ongoing (NCT03071874). As another potential target,
focal adhesion kinase (FAK) inhibition has been shown to
exert antitumoral activity in in vitro meningioma models
with NF2 loss [46]. In line, the FAK inhibitor GSK2256098
is being evaluated in patients with progressive meningi-
oma in a still recruiting multi-arm phase 2 trial (Alliance
A071401, NCT02523014) along with the cyclin-dependent
kinase 4/6 inhibitor abemaciclib, the AKT inhibitor capiva-
sertib, and the sonic hedgehog (SHH) inhibitor vismodegib.
Early results of FAK inhibition in recurrent or progressive

meningioma have shown a PFS-6 of 83.3% and a median
PFS of 12.8 months in WHO grade 1 meningioma, whereas
PFS-6 was 33.3% and median PFS 3.7 months in WHO
grade 2-3 meningioma. GSK2256098 was generally well
tolerated [47].

Tumor necrosis factor receptor-associated factor 7
(TRAF7) and Krupple-like factor 4 (KLF4)

TRAF7 mutations occur in~25% of meningiomas and seem
to be mutually exclusive with NF2 mutations according to
a genomic landmark study of 300 meningiomas [42]. Func-
tionally, TRAF7 is a ubiquitin ligase impacting a variety
of signaling pathways including NF-xB, the MAP kinase
pathway, among others, and has physiologically a pro-
apoptotic function [44]. Likewise, KLF4 mutations seem
to occur only in NF2-intact meningiomas and frequently
co-exist with alterations of TRAF7 [42]. Physiologically,

@ Springer
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Table 2 Selection of ongoing clinical trials of systemic therapy in meningioma

Clinical trial identification =~ Drug Drug class Main inclusion criterion Status (effective
12/07/2022)
NCT03071874 (phase 2) Vistusertib mTOR inhibitor Recurrent or progressing Active, not recruiting
WHO grade 2-3 menin-
gioma
NCT02523014 (phase 2) - GSK2256098 - FAK inhibitor Progressing WHO grade Recruiting
- Abemaciclib - CDK4/6 inhibitor 1-3 meningioma
- Capivasertib - AKT inhibitor
- Vismodegib - SHH inhibitor
NCTO03631953 (phase 1) Alpelisib 4 trametinib PI3K inhibitor + MEK Progressing WHO grade Recruiting
inhbitor 1-3 meningioma
NCT03220646 (phase 2) Abemaciclib CDK4/6 inhibitor Recurrent primary brain Active, not recruiting

NCTO01324635 (phase 1)

NCT03604978 (phase 1/2)

NCT02648997 (phase 2)

NCT03173950 (phase 2)

NCT04659811 (phase 2)
NCT03279692 (phase 2)

NCT03016091 (phase 2)

NCT03267836 (phase 1)

Panobinostat (+ stereotactic
radiation)

Nivolumab =+ ipilimumab
(+ stereotactic radiosur-
gery)

Nivolumab monotherapy
(cohort 1)

Nivolumab + ipilimumab
after radiation (cohort 2)

Nivolumab

Pembrolizumab (+ stereo-
tactic radiosurgery)

Pembrolizumab

Pembrolizumab

Avelumab (neoadjuvant in
combination with proton
radiation therapy followed
by surgery)

Histone deacetylase inhibi-
tor

monoclonal anti-PD-1 and
anti-CTLA-4 antibodies

monoclonal anti-PD-1 and
anti-CTLA-4 antibodies

monoclonal anti-PD-1
antibody

monoclonal anti-PD-1
antibody

monoclonal anti-PD-1
antibody

monoclonal anti-PD-1
antibody

monoclonal anti-PD-L1
antibody

tumors of all grades
(including glioma, men-
ingioma, ependymoma,
primary central nervous
system lymphoma)

Recurrent gliomas, high-
grade meningiomas, and
brain metastases

Recurrent WHO grade 2-3
meningioma

Recurrent/progressive WHO
grade 2-3 meningioma

Recurrent rare primary brain
tumors (including WHO
grade 2-3 meningioma,
medulloblastoma, epend-
ymoma, pineal region and
choroid plexus tumors)

Recurrent WHO grade 1-3
meningioma

Recurrent WHO grade 2-3
meningioma

Recurrent WHO grade 2-3
meningioma or hemangio-
pericytoma

Recurrent or progressive
WHO grade 1-3 menin-
gioma

Terminated, no results
published

Recruiting

Recruiting

Recruiting

Recruiting
Active, not recruiting

Unknown

Active, not recruiting

the encoded protein KLF4 is involved in stem cell renewal
and differentiation. Both TRAF7 and KLF4 alterations in
meningioma are loss-of-function mutations and therefore
not directly targetable. Thus, further research is needed to
elucidate the pathogenetic implications of these mutations
and identify potentially druggable downstream targets. Of
note, KLF4-mutated meningiomas exhibit higher sensitivity
to mTOR inhibitors such as temsirolimus [48], underlin-
ing the potential role of the PI3K/AKT/mTOR pathway as
potential treatment target in meningioma.

@ Springer

AKT serine/threonine kinase 1 (AKT1)
and phosphoinositide-3-kinase (PI3K)

The AKT1 E17K mutation is a known oncogenic alteration
which was detected in about 8-13% of meningiomas [42,
43], especially those located in the skull base where 31% of
tumors were found to display this alteration [49, 50]. Indeed,
this specific mutation occurs in a small subset of breast,
uterine, ovarian, cervical, lung, prostate, as well as colorec-
tal cancers, and specific inhibitors such as capivasertib are
under investigation [51]. In the above-mentioned multi-arm
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phase 2 trial (NCT02523014) of patients with progressive
NF2-altered meningioma, capivasertib has been included as
one of four experimental treatments for patients with AKT
mutant meningiomas. Similar to NF2 and KLF4, AKT muta-
tions lead to a functional upregulation of the PI3K/AKT/
mTOR pathway. In addition, also mutations of the gene
encoding for the PI3K catalytic subunit alpha (PIK3CA)
have been found in about 7% of non-NF2-altered menin-
giomas [52]. PIK3CA mutations are also known in other
solid tumors such as breast cancer where the PI3K inhibitor
alpelisib is currently approved for treatment hormone recep-
tor-positive, HER2-negative disease with progression after
first-line therapy [53]. The combination of alpelisib and the
MEK inhibitor trametinib is currently studied in a phase 1
trial in progressive refractory meningioma (NCT03631953)
based on unpublished preclinical results that trametinib may
induce apoptosis in meningioma cell lines. Like TRAF7/
KLF4-mutated meningiomas, also AKT/-mutated tumors
are frequently found in the skull base. As these lesions are
characterized by a comparably favorable prognosis, the fea-
sibility of clinical trials in these meningiomas is limited by
the relatively low occurrence of clinically relevant tumor
progression.

Smoothened, frizzle class receptor (SMO)

SMO mutations occur in about 5% of meningiomas which
do not show alterations in NF2, AKTI and KLF1 [42, 43].
The encoded protein is a receptor activating the sonic hedge-
hog signaling (SHH) pathway which is involved in multiple
cellular processes such as differentiation and proliferation.
Alterations have been described in a wide array of solid
tumors including breast cancer, pancreatic cancer, colorectal
cancer, gastric cancer, hepatocellular cancer, cholangiocar-
cinoma, lung cancer, and medulloblastoma [54]. Moreover,
the SHH pathway is involved in the pathogenesis of basal
cell carcinoma, where the specific inhibitor vismodegib is
approved in Europe and the US. Vismodegib is being evalu-
ated in the multi-arm trial described above (NCT02523014)
in progressive meningioma. However, a recent publication
suggests that SMO mutations may not be associated with an
activation of the SHH pathway in preclinical models of men-
ingioma, potentially challenging the efficacy of vismodegib
in these tumors [55].

Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B)

With the recent 2021 update of the WHO Classification of
Central Nervous System Tumours, homozygous deletions
of CDKN2A/B are sufficient to designate meningiomas as
CNS WHO grade 3 tumors regardless of histological grad-
ing [2]. Previously, CDKN2A/B alterations had been mainly
described in anaplastic meningiomas [56]. Meningiomas

harboring homozygous deletions of CDKN2A/B are charac-
terized by high recurrence rates independently from WHO
grade, DNA methylation class, sex, age and tumor location
[57]. In addition, also heterozygous loss, mutations, and
promoter methylation of CDKN2A was found to be strongly
related to recurrent meningiomas and a high Ki-67 index
[56]. Physiologically, the proteins encoded by CDKN2A/B
halt the cell cycle; consequently, homozygous loss leads
to dysregulated cell cycle progression and uncontrolled
proliferation.

Pharmacological inhibition of cyclin-dependent kinases
CDK4/6 could represent a particularly promising strategy in
higher-grade meningiomas with high mitotic activity inde-
pendently from CDKN2A/B status. The CDK4/6 inhibitors
palbociclib, ribociclib and abemaciclib are approved for use
in hormone receptor-positive breast cancer in combination
with endocrine therapy. In preclinical models of meningi-
oma, palbociclib with radiation has shown decreased pro-
liferation and in vivo tumor size [58]. However, data from
clinical trials are to be awaited. Currently, the multi-arm
trial NCT02523014 is evaluating abemaciclib in recurrent
meningioma harboring CDK pathway or NF2 alterations.
Moreover, abemaciclib is being assessed in a tissue-agnos-
tic phase 2 trial in patients with recurrent brain tumors
(NCT03220646).

The epigenetic landscape of meningioma
as potential treatment target?

Analysis of the DNA methylome is increasingly being used
as an additional tool in the diagnosis of CNS malignancies as
it defines biologically homogenous subgroups [59]. In men-
ingioma, a large study based on 497 samples has revealed
six distinct methylation clusters (benign 1-3, intermedi-
ate A/B and malignant) which also correlated with clinical
factors such as sex, tumor location and prognosis [60, 61].
Another publication defined a prognostically relevant meth-
ylation signature, where certain CpG sites displayed a higher
degree of methylation in tumors of patients with worse sur-
vival [62]. In addition, some meningiomas show mutations
in KDM5C, KDM6A, SMARCB1, and SMARCEI1 which
encode for histone demethylases (KDM5C, KDM6A) or pro-
teins involved in transcription-related chromatin remodeling
(SMARCBI1, SMARCEL1) [21, 42]. Based on these results,
epigenetic modification could represent a novel therapeutic
approach. Indeed, the histone deacetylase (HDAC) inhibi-
tor vorinostat showed activity in ex vivo models of tumors
with a specific molecular pattern based on DNA methyla-
tion analysis, RNA sequencing, whole-exome sequencing
and copy number alterations [63]. Moreover, in NF2-altered
preclinical meningioma models, the HDAC inhibitor AR-42
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showed some antitumoral activity [64, 65]. These results
were evaluated in a phase 1 pilot trial of AR-42 in NF2-asso-
ciated vestibular schwannomas and meningiomas [66] with
mixed results, but further data are needed. In this regard, a
phase 1 trial is currently evaluating the histone deacetylase
inhibitor panobinostat with stereotactic radiation in patients
with high-grade meningioma, recurrent glioma and brain
metastases (NCT01324635).

Immune-modulating approaches

In the last decades, the cytokine interferon alpha (IFN-a) has
been evaluated as potential treatment option in meningioma.
Indeed, case reports and small clinical trials have suggested
antitumoral activity of IFN-a [67, 68]. IFN-a likely exerts
a antiproliferative activity, but antiangiogenic and immune-
modulatory properties have also been postulated [69]. How-
ever, another retrospective case series failed to show clini-
cally meaningful efficacy in higher-grade meningioma [70].

Immune checkpoint inhibitors (ICI) have revolution-
ized the treatment of solid tumors, as durable responses
can be observed in metastatic disease across various his-
tologies with previously dismal prognosis. ICI targeting
the programmed death receptor (ligand) 1 (PD-1/PD-L1)
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
axis are widely applied in solid malignancies such as mel-
anoma, lung cancer, renal cell carcinoma, head and neck
squamous cell carcinoma, among others. Whereas ICI have
shown activity in asymptomatic patients with brain metas-
tases [71-74], clinical trials have failed to show an overall
benefit in primary CNS malignancies such as glioblastoma
both in newly diagnosed disease as well as in the recurrent
setting [75-77].

PD-L1 expression is frequently used as a biomarker pre-
dicting the response towards ICI. However, previous stud-
ies on PD-L1 expression in meningioma are conflicting.
Membranous PD-L1 expression was found in~5 to>80%
of meningeal neoplasms, with higher expression in higher-
grade tumors and mainly on myeloid cells within the tumor
microenvironment [78—81]. In anaplastic meningioma, an
elevated density of FOXP3 + infiltrating lymphocytes was
seen, suggesting a prime role of regulatory T cells in the par-
ticularly immunosuppressive microenvironment in higher-
grade meningioma [81-83]. With regard to clinical trials, the
results of a phase 2 trial evaluating pembrolizumab in WHO
grade 2 and 3 meningiomas at recurrence or progression
have been published recently, demonstrating that the trial
met its primary endpoint [84]. PFS-6 reached 48%, while
median PFS was 7.6 months, with 10 out of 25 patients still
being alive at database lock. Moreover, clinical responses
were also observed in metastatic or extracranial disease.

@ Springer

Biomarker studies have also been included, with an observed
trend for a correlation of clinical benefit with PD-L1 expres-
sion and apparent diffusion coefficients (ADC) as evaluated
in magnetic resonance imaging. Further prospective studies
will be needed to validate these results and define predictive
biomarkers allowing for a rational selection of patients with
meningioma who might benefit from ICIL.

Other trials of ICI in meningeal neoplasms are ongo-
ing. Two NCI-sponsored phase 2 trials aim to evaluate
nivolumab =+ ipilimumab with stereotactic radiosurgery
or external beam radiotherapy in recurrent WHO grade
2-3 meningiomas (NCT03604978, NCT02648997).
Another study is assessing nivolumab alone in recurrent
rare CNS malignancies including WHO grade 2-3 men-
ingioma, ependymoma, pineal region tumors, medullo-
blastoma, and choroid plexus tumors (NCT03173950).
Similar trials are evaluating the ICIs pembrolizumab
(NCTO04659811, NCT03279692, NCT03016091) and ave-
lumab (NCT03267836).

Moreover, the myeloid cell compartment is increasingly
considered as an emerging treatment target, as tumor-asso-
ciated myeloid cells stimulate tumor growth by secreting
growth-promoting factors. Inhibiting chemotactic signals
which are responsible for the recruitment of myeloid cells
to the tumor microenvironment could therefore represent an
interesting therapeutic strategy, especially in tumors such as
meningiomas which are abundantly infiltrated by myeloid
cells hampering antitumoral immune responses. One of
these signals is the colony-stimulating factor 1 (CSF-1) axis.
Indeed, a recent study by Yeung et al. showed a high expres-
sion of CSF-1 receptor on macrophages within the menin-
gioma microenvironment, and treatment with monoclonal
antibodies targeting this signaling pathway was associated
with decreased meningioma growth in murine models [85].

Conclusion and future prospects

Recurrent meningiomas which are not amenable for local
treatment options such as surgery or radiotherapy remain
a therapeutic challenge. Whereas systemic treatments are
frequently considered in these situations, the evidence for
their use is overall scarce as controlled trials are rare and
historical benchmark data on the outcome of higher-grade
meningiomas are limited. Traditional cytotoxic agents are
generally ineffective. However, preclinical data suggest anti-
tumoral activity of the antimetabolite gemcitabine, but clini-
cal trials are pending [86]. Antiangiogenic therapies such
as multi-tyrosine kinase inhibitors or antibodies targeting
the VEGF axis showed promising results in small phase 2
trials and retrospective case series. However, prospective
controlled trials are urgently needed to validate these posi-
tive findings. In addition, the elucidation of the (epi-)genetic
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landscape of glioma by high-throughput landmark studies
has revealed further potential therapeutic targets which are
currently under investigation. Recent genomic studies have
identified novel potential targets, which are being evaluated
in ongoing national studies. Immunotherapeutic approaches
including ICI are also being evaluated, and early results sug-
gest a promising activity in a subset of patients.
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