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Measurement error is pervasive in epidemiologic research. Epidemiologists often assume that mismeasure-
ment of study variables is nondifferential with respect to other analytical variables and then rely on the heuristic
that “nondifferential misclassification will bias estimates towards the null.” However, there are many exceptions
to the heuristic for which bias towards the null cannot be assumed. In this paper, we compile and characterize 7
exceptions to this rule and encourage analysts to take a more critical and nuanced approach to evaluating and
discussing bias from nondifferential mismeasurement.

bias (epidemiology); epidemiologic methods; information bias; measurement error; nondifferential
misclassification; statistics

Abbreviation: RR, risk ratio.

Editor’s note: An invited commentary on this article
appears on page 1496, and the authors’ response appears
on page 1498.

Epidemiologic data are rarely collected without errors in
measurement, a potentially important source of systematic
error in estimates of effect. Rather than quantify the poten-
tial impact such errors may have on study results (1–9),
epidemiologists often assume that any mismeasurement of
study variables is nondifferential with respect to other ana-
lytical variables and rely on the heuristic that “nondifferen-
tial misclassification biases estimates towards the null.” We
suspect that this is one of the most cited heuristics in the
Discussion sections of published articles. It is often used
to conclude that study findings are “conservative,” so the
unbiased estimate of effect would have been further from
the null than what was observed. Therefore, a thorough
understanding of the limitations of this heuristic is essential
to prevent its suboptimal use.

Bias towards the null is not always “conservative.” What
is “conservative” depends on the value systems of the inter-
ested parties. When an association between air pollution

and the health of the local community is biased towards the
null by nondifferential mismeasurement of exposure to the
pollution, the bias “conserves” the profits of the polluting
industry at the expense of the health of the community,
which might have otherwise been protected by industry
regulation. In this example and others like it, the size of the
bias is critically important but is missing completely from
the heuristic. Thus, there are fundamental concerns about
the widespread use of the heuristic when making inferences
from epidemiologic research.

Leaving this aside, however, it is important to realize that
there are many exceptions to the heuristic for which bias
towards the null cannot be assumed. While these exceptions
have been previously documented, they have not (to our
knowledge) been compiled in one reference text that allows
for a more complete picture of the potential pitfalls of relying
on this heuristic. In this paper, we compile and characterize
7 exceptions to this rule and encourage analysts to take
a more critical and nuanced approach to evaluating and
discussing bias from nondifferential mismeasurement. Our
aim is to provide a resource for considering the potential
impact of information bias in epidemiologic studies. We do
not claim that this list is comprehensive; there may be other
exceptions.
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INFORMATION BIAS: A BRIEF OVERVIEW

Information bias occurs when there is misclassification of
binary or categorical variables or mismeasurement of con-
tinuous variables. When we discuss these concepts together,
we call them “measurement error.” The mechanism of mea-
surement error can be characterized according to 2 axes:
1) whether the design suggests an expectation of differential
or nondifferential measurement error and 2) whether the
design suggests an expectation of dependent or independent
measurement error. See Hernán and Cole (10) for examples
of these misclassification mechanisms presented in causal
diagrams.

Taking the case of misclassification of an exposure, dif-
ferential misclassification occurs when the probability of
exposure misclassification is expected by design to depend
on the true status of another analytical variable, typically
the outcome, whereas nondifferential exposure misclassi-
fication occurs when the error is not expected to depend
on the true outcome status (i.e., Pr(E∗ = 1|E = e, D =
1) = Pr(E∗ = 1|E = e, D = 0), where E is the true
exposure, E∗ is the classified exposure, and D is the true
outcome status). Likewise, outcome misclassification can be
expected to be nondifferential or differential with respect to
other analytical variables, typically the exposure. Misclassi-
fication of 2 variables is considered dependent if the factors
that predict misclassification of one variable are expected by
design to also predict misclassification of the other variable.
This misclassification is also referred to as common source
bias or correlated errors. If the mechanisms of misclassifica-
tion of the 2 variables are not related, the misclassification
is expected to be independent. That is, misclassification
is independent if the probability of joint misclassification
is equal to the product of the individual misclassification
probabilities: Pr(E∗D∗|ED) = Pr(E∗|ED) × Pr(D∗|ED),
where E∗ and D∗ are the classified exposure and outcome
status, respectively, and E and D are the true exposure and
outcome status, respectively.

EXCEPTION 1: DEVIATION OF REALIZED
MISCLASSIFICATION FROM EXPECTATION

Estimates of the magnitude and direction of bias represent
an expectation under a model of the data that would be
generated given the misclassification mechanisms expected
by design. The actual study is a single realization of the data
obtained by the data-generating mechanism, and so is vul-
nerable to random deviation from the expectation (11–13).
Though information bias is systematic rather than random,
the magnitude and direction of bias depends upon the sen-
sitivity and specificity of the misclassified variable and the
application of these classification parameters to the individ-
ual data records. Sensitivity and specificity are probabilities
that pertain to the classification scheme in expectation but
operate at an individual level (14). For example, if 100
persons are going to be classified into an exposed category
with 70% sensitivity, the expectation is that 70 persons will
be classified as exposed. In a single study’s realization of
this data-generating mechanism, anywhere between 0 and
100 people will be classified as exposed. It follows that in

Table 1. Hypothetical True Data Sets With Varying Sizes but the
Same Distribution of the Exposure (E) and Outcome (D)

Outcome Status (n)

Data Set
D+ D−

RR

n = 100 2.0

E+ 10 40

E− 5 45

n = 1,000 2.0

E+ 100 400

E− 50 450

n = 10,000 2.0

E+ 1,000 4,000

E− 500 4,500

Abbreviation: RR, risk ratio.

any given study where the mechanism of misclassification
is expected to be nondifferential, the observed errors may
not be exactly nondifferential. Even when the expected
bias is towards the null, the observed estimate may lie on
either side of the unbiased value due to this deviation from
expectation. As with any random process, the probability of
large deviations from expectation will grow smaller as the
sample size increases. Simulation studies have shown that in
some scenarios, even slight deviations from the expectation
of nondifferentiality can create bias away from the null in
a substantial proportion of simulated iterations of the data-
generating mechanism (15). Therefore, both the expectation
for the direction and amount of bias implied by the bias
parameters and design and the probabilistic nature of the
application of those parameters must be considered when
evaluating the potential impact of misclassification bias on
research findings.

To illustrate random deviations from nondifferentiality,
we simulated nondifferential misclassification at the record
level (as opposed to using summary-level data), representing
3 hypothetical true data sets of varying sizes, but with the
true risk ratio (RR) equal to 2.0 and the same distribution of
the exposure and outcome in each, as shown in Table 1.

For each data set, we simulated a classified version of
the exposure variable as a 0/1 indicator variable with a
specificity of 0.9 and a sensitivity of either 0.6, 0.7, or 0.8
(in 3 different simulations). For truly exposed individuals,
we classified the exposure by drawing from a binomial
distribution with a probability equal to the sensitivity for the
simulation (0.6, 0.7, or 0.8). For truly unexposed individuals,
we classified the exposure by drawing from a binomial dis-
tribution with a probability equal to 1 minus the specificity
for the simulation (i.e., the probability of a false-positive
exposure status: (1 − 0.9) = 0.1).

We ran each simulation 10,000 times and plotted the
densities of the observed, misclassified RRs for each spec-
ified sensitivity: 0.8 (Figure 1A), 0.7 (Figure 1B), and 0.6
(Figure 1C). We also visualized the realized sensitivities and
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specificities in Web Figure 1 (available at https://doi.
org/10.1093/aje/kwac035). The specified values for sen-
sitivity and specificity determined the expectation of the
observed results, while the sample size determined the
spread of the distribution. Taken together, these parameters
determined how likely it was that a result would be biased
towards or away from the null. The proportion of simulations
in which the observed RR was biased away from the null
was 21%, 23%, and 27% when sensitivity was 60%, 70%,
and 80%, respectively, and the sample size was 100. When
the sample size was 1,000, the proportion of simulations
biased away from the null was 0.5%, 1.0%, and 2.0%, for
sensitivities of 60%, 70%, and 80%, respectively. When
the sample size was 10,000, there was no simulation in
which the RR was biased away from the null. The plots in
Figure 1 demonstrate that when the sample size is smaller
and when there is less misclassification (i.e., the center of
the distribution of misclassified RRs is closer to the true
effect), results are more likely to be biased away from the
null because of chance. Other aspects of the simulation will
influence the result, including the risk in the unexposed, the
strength of association, and exposure prevalence. Note that
simulations with smaller sample sizes are more sensitive to
the discrete nature of the binomial distribution, which was
used to classify exposure. For example, the mode of the
density distribution for simulations with 100 participants is
slightly shifted in comparison with simulations with 1,000
or 10,000 participants because binomial sampling does not
allow for decimal fractions (Figure 1). Similarly, this causes
the density distribution of the actualized, disease-specific
exposure sensitivity and specificity from simulations with
100 participants to appear bumpy (Web Figure 1).

Note that the bias in these examples is towards the null,
because the direction of bias is described in terms of its
expectation. However, any one study is a single realization
of the data-generating mechanism and may deviate from
expectation.

EXCEPTION 2: NONDIFFERENTIAL
MISCLASSIFICATION OF A MULTILEVEL EXPOSURE
VARIABLE

Nondifferential misclassification of a categorical expo-
sure variable with more than 2 levels can result in an expec-
tation of bias away from the null in at least 1 of the middle
category comparisons with the reference group by mixing
risk across levels (16), and it can result in no bias in the
highest exposure category if there is no mixing of other
exposure categories with it. These bias patterns depend on
the location of the misclassification (i.e., across adjacent
and/or nonadjacent categories), the size of the true effects,
the dose-response pattern, and the degree of misclassifica-
tion. Consider a hypothetical study in which data on smoking
are collected as never smoker (reference category), former
smoker, and current smoker. Misclassification of current
smokers as former smokers (i.e., across adjacent categories)
results in bias away from the null when examining the risk
of lung cancer in former smokers compared with never
smokers. Because the only mixing is of current smokers with

former smokers, the estimate comparing current smokers
with never smokers is unbiased. When misclassification
occurs across nonadjacent categories (a situation that may
be uncommon), the bias can cause the estimate to cross the
null. In Table 2, we present example data to demonstrate the
impact of nondifferential miclassification across adjacent
and nonadjacent exposure categories with both high and
moderate amounts of misclassification.

In the presence of a true strictly monotonically increasing
dose-response association between exposure and outcome,
misclassification occurring in both directions can result in
a spurious inverse dose-response relationship. For example,
if never smokers are misclassified as current smokers and
current smokers are misclassified as never smokers, the
observed risk of lung cancer in the reference group would
be greater than the truth, whereas the observed risk among
current smokers would be less than the truth. However, in
most cases, a high degree of misclassification (e.g., >50%)
is necessary for this inverse dose-response relationship to
appear. Example data for this scenario are presented in Web
Table 1.

In each of these examples, the expected magnitude of
bias depends partially on how much the risk of disease
differs across exposure groups. Typically, if the true effects
comparing current and former smokers with never smokers
are large, the potential extent of bias away from the null will
be greater than if the true effects were small. In addition,
as the proportion of misclassified subjects increases, the
expected extent of bias will increase.

It is also possible to induce bias away from the null by
collapsing 2 or more exposure categories that are nondiffer-
entially misclassified. In this case, collapsing exposure cate-
gories can induce differential misclassification, resulting in
bias away from the null or even a reversal of the association
(17). For example, if smoking affects the outcome risk, if
current smokers are nondifferentially misclassified as never
smokers, and if current and former smoking are collapsed to
“ever smoking,” there could be differential misclassification
of ever smoking versus never smoking with respect to the
outcome. In Table 3, we present data where 30% of indi-
viduals with truly high exposure are misclassified as having
low exposure. After collapsing the exposure categories to
any (low or high) versus none, the sensitivity of exposure
classification was 77% in the D+ group and 83% in the D−
group. This deviation from nondifferentiality caused the RR
to cross the null, from 1.86 (true) to 0.95 (observed). Note
that using these hypothetical data, the effect estimate crossed
the null only when there was at least 25% misclassification.

EXCEPTION 3: NONDIFFERENTIAL BUT DEPENDENT
MISCLASSIFICATION OF EXPOSURE

Dependent misclassification occurs when the rate at
which subjects who are misclassified with respect to 2 key
variables differs from what would be expected based on the
rates of misclassification of each variable alone (18–20). In
most cases, the focus is on dependency between exposure and
outcome. In this scenario, the probability of being doubly
misclassified is not equal to the product of the probabilities
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Figure 1. Results from an observation-level simulation of nondifferential exposure misclassification, using 3 example data sets of varying sizes
(Table 1) and a range of sensitivities. The figure shows density plots of the misclassified risk ratios (RRs) from 10,000 simulations. We simulated
the classified version of exposure by drawing from binomial distributions with probabilities equal to the specified specificity and sensitivity. Each
analysis was repeated at 3 different sample sizes but with the true RR equal to 2.0 and the same distribution of the exposure and outcome in
each. A) Exposure specificity = 90%; exposure sensitivity = 80%; true RR = 2.0. B) Exposure specificity = 90%; exposure sensitivity = 70%; true
RR = 2.0. C) Exposure specificity = 90%; exposure sensitivity = 60%; true RR = 2.0. The vertical dashed line denotes the true RR (RR = 2.0)
in each panel. The mode of the density distribution for simulations with 100 participants is slightly shifted compared with simulations with 1,000
or 10,000 participants because binomial sampling does not allow for decimal fractions; smaller sample sizes are more sensitive to the discrete
nature of the binomial distribution.

of being singly misclassified with respect to exposure and
outcome. Even small amounts of dependent nondifferential
misclassification of exposure and outcome can create strong
bias away from the null, depending on the exposure and
outcome distribution (18). However, bias arising from
dependent misclassification is challenging to predict. Quan-
tifying the potential extent of dependent misclassification

requires specification of the individual probabilities of
misclassification in every possible direction (i.e., 12 proba-
bilities, each corresponding to the arrows in Figure 2 (18)).

Lash and Fink (21) presented a motivating example of de-
pendent nondifferential misclassification using data from a
study by Balfour and Kaplan (22). In that study, data on
neighborhood environment (exposure) were collected using
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Table 2. Example of Nondifferential Misclassification Across Adjacent and Nonadjacent Categories of a Multilevel Exposure Variable

Outcome Status (n)

Exposure Status
D+ D−

Total (n) Riska RR

Correctly classified data

High 300 4,700 5,000 0.06 6.00

Low 100 4,900 5,000 0.02 2.00

None 50 4,950 5,000 0.01 1.00b

30% exposure misclassification across
adjacent categories (high to low)c

High 210 3,290 3,500 0.06 6.00

Low 190 6,310 6,500 0.03 2.92

None 50 4,950 5,000 0.01 1.00b

15% exposure misclassification across
adjacent categories (high to low)d

High 255 3,995 4,250 0.06 6.00

Low 145 5,605 5,750 0.03 2.52

None 50 4,950 5,000 0.01 1.00b

30% exposure misclassification across
nonadjacent categories (high to none)e

High 210 3,290 3,500 0.06 2.79

Low 100 4,900 5,000 0.02 0.93

None 140 6,360 6,500 0.02 1.00b

5% exposure misclassification across
nonadjacent categories (high to none)f

High 285 4,465 4,750 0.06 4.85

Low 100 4,900 5,000 0.02 1.62

None 65 5,185 5,250 0.01 1.00b

Abbreviation: RR, risk ratio.
a Risk = number in D+/total number.
b Referent.
c 30% of people with truly high exposure are misclassified as having low exposure. In this example, the RR for high exposure versus no

exposure is unchanged, but the RR for low exposure versus no exposure is biased away from the null.
d 15% of people with truly high exposure are misclassified as having low exposure. In this example, the RR for high exposure versus no

exposure is unchanged, but the RR for low exposure versus no exposure is biased away from the null.
e 30% of people with truly high exposure are misclassified as having no exposure. In this example, the RR for high exposure versus no

exposure is biased towards the null, and the RR for low exposure versus no exposure crosses the null.
f 5% of people with truly high exposure are misclassified as having no exposure. In this example, the RRs for both high exposure versus no

exposure and low exposure versus no exposure are biased towards the null.

a survey administered to older adults, and self-reported
decline in physical function (outcome) was ascertained after
1 year of follow-up. The observed crude RR was 2.8 for the
association between neighborhood problems and reporting
a decline in overall function. Lash and Fink hypothesized
that dependent misclassification could arise if individuals
had varying “thresholds” for reporting their exposure and
outcome status. For example, some participants may be more
likely to overstate their neighborhood problems as well as
their declining physical function. Using equations presented
by Kristensen (18), Lash and Fink quantified the degree
of dependent misclassification that would be necessary to
completely explain away the observed RR. Under a truly null

association, a spurious RR of 2.8 could be observed if only
1.6% of participants systematically over- or understated their
exposure and outcome.

We demonstrate this with a different example, in which
a true null association is biased upwards due to dependent
misclassifcation of exposure and outcome (Table 4). With
only 1% dependent error, we observe a spurious RR equal to
1.2. The movement between each cell, depicted graphically
in a general sense in Figure 2, is described numerically in
Table 5.

Dependent misclassification is most likely to occur when
the same instrument is used to measure the exposure and the
outcome, particuarly when the exposure and outcome are

Am J Epidemiol. 2022;191(8):1485–1495
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Table 3. Example of a Reversal of Association When Nondifferentially Misclassified Exposure Categories Are
Collapsed

Outcome Status (n)

Exposure Status
D+ D−

Total (n) Riska RR

Correctly classified data

High 200 7,800 8,000 0.03 2.50

Low 60 5,940 6,000 0.01 1.00

None 20 1,980 2,000 0.01 1.00b

Low or high 260 13,740 14,000 0.02 1.86

30% exposure misclassified across
adjacent categories (high to low)c

High 140 5,460 5,600 0.03 1.38

Low 60 5,940 6,000 0.01 0.55

None 80 4,320 4,400 0.02 1.00b

Low or high 200 11,400 11,600 0.02 0.95

Abbreviation: RR, risk ratio.
a Risk = number in D+/total number.
b Referent.
c 30% of people with truly high exposure are misclassified as having low exposure. In this example, the RR for

any exposure versus no exposure crosses the null (the direction of the association is reversed).

subjective. If both exposure and outcome are perceived to be
harmful, the exposed-diseased and unexposed-nondiseased
cells will be inflated at the expense of the exposed-
nondiseased and unexposed-diseased cells. This pattern
can result in large amounts of bias, particularly when the
true prevalence of exposure and outcome are low. However,
dependent error can be avoided during the design phase of
a study by collecting exposure and outcome information
using separate methods. In the example of neighborhood
function and physical function, data were collected using
different questionnaires, but both exposure and outcome

collection relied on self-report. Use of separate and different
instruments (e.g., questionnaire and registry, or biomarker
and medical record data) would, in most cases, remove the
dependency in the misclassifiation. However, it is unrealistic
to expect researchers to collect data on every important study
variable (including confounders and effect modifiers) using
separate instruments. In particular, exposure and confounder
information are often collected jointly via questionnaires (3,
19, 23, 24). Thus, investigators should consider the potential
influence of both exposure-outcome and exposure-covariate
dependent misclassification on their results.

Table 4. Example of Upwards Bias Due to Nondifferential, Dependent Exposure Misclassification

Outcome Status (n)

Exposure Status
D+ D−

Total (n) Riska RR

Correctly classified data

Exposed 20 180 200 0.10 1.00

Unexposed 60 540 600 0.10 1.00b

Exposure and outcome misclassified
with 1% dependent errors

Exposed 25 180 205 0.12 1.22

Unexposed 60 535 595 0.10 1.00b

Abbreviation: RR, risk ratio.
a Risk = number in D+/total number.
b Referent.

Am J Epidemiol. 2022;191(8):1485–1495
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Table 5. Expected Movement Between True and Classified Data Cells to Produce the Hypothetical Data in
Table 4a

True Status
No. of Persons Truly in
Each E/D Combination

Classification
Expected No. of Persons Classified

in Each E/D Combination

E+D+
true 20 E+D+ 19.8

E+D− 0.0

E−D+ 0.0

E−D− 0.2

E+D−
true 180 E+D+ 0.0

E+D− 180.0

E−D+ 0.0

E−D− 0.0

E−D+
true 60 E+D+ 0.0

E+D− 0.0

E−D+ 60.0

E−D− 0.0

E−D−
true 540 E+D+ 5.4

E+D− 0.0

E−D+ 0.0

E−D− 534.6

a In this example, there is only movement between the E+D+ and E−D− cells. The number classified as E+D+
is equal to [(%de × E−D−

true) + ((1 − %de) × E+D+
true)], where %de is the percentage of dependent error. The

number classified as E−D− is equal to [(%de × E+D+
true) + ((1 − %de) × E−D−

true)].

EXCEPTION 4: NONDIFFERENTIAL
MISCLASSIFICATION OF ECOLOGICALLY MEASURED
EXPOSURE

Though epidemiologists are typically cautioned against
making individual-level inferences using ecological data
(i.e., the “ecological fallacy”), it is possible to infer

E+ E− 

D+ 

D− 

a b 

c d 

Figure 2. Rearrangement of exposure and outcome classification
in a 2 × 2 table resulting from both exposure and outcome misclas-
sification. Adapted from Kristensen (18).

individual-level rate ratios under certain assumptions (25).
Consider an ecological study of the risk of death from an
exposure using mortality rates and exposure prevalences in
2 distinct populations. The ratio of the predicted mortality
rates for the extreme cases (i.e., everyone is exposed vs.
everyone is unexposed) will be equivalent to the individual-
level rate ratio estimating the exposure-outcome association,
assuming that 1) the background mortality rate and the expo-
sure effect do not vary across the populations and 2) there is
no confounding of the exposure-outcome relationship within
the populations. In an ecological study, nondifferential
misclassification of exposure occurs when the observed
population-specific exposure prevalences differ from the
true exposure prevalences. Unlike the case in individual-
level studies, nondifferential exposure misclassification in
ecological studies induces an expected bias away from the
null for both rate ratios and rate differences (26). This bias
can occur even at relatively small deviations from perfect
sensitivity and specificity, and generally is worse with larger
true effects.

EXCEPTION 5: OUTCOME MISCLASSIFICATION

When outcome specificity is perfect and sensitivity is
nondifferentially misclassified with respect to the exposure,
the RR will be unbiased and the risk difference will be biased
towards the null by a factor equal to the sensitivity. This

Am J Epidemiol. 2022;191(8):1485–1495
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Table 6. Example of Outcome Misclassification Yielding an Unbiased Risk Ratio

Outcome Status (n)
Exposure Status

D+ D−
Total (n) Riska RR RD

Correctly classified data

Exposed 100 400 500 0.20 2.00 0.10

Unexposed 50 450 500 0.10 1.00b 1.00b

Outcome misclassified with perfect specificity
and imperfect 60% sensitivityc

Exposed 60 440 500 0.12 2.00 0.06

Unexposed 30 470 500 0.06 1.00b 1.00b

Abbreviations: RD, risk difference; RR, risk ratio.
a Risk = number in D+/total number.
b Referent.
c 40% of individuals with the disease are misclassified as not having the disease, in both the exposed and unexposed groups. In this example,

the RR for exposed versus unexposed is unchanged, but the RD is biased towards the null by 40%.

pattern arises because the observed incidence of the outcome
(Iobs) in the absence of false-positive outcomes is equal to
the true incidence (Itrue) multipled by the sensitivity (Se),
such that Iobs = Se × Itrue. If the sensitivity of outcome
classification is the same in the exposed and unexposed,
then the observed RR is equal to the true RR (RRobs =
(Se × Itrue,E+)/(Se × Itrue,E−) = RRtrue) while the observed
risk difference is equal to RDobs = (Se × Itrue,E+) − (Se ×
Itrue,E−) = Se × RDtrue. For example, if 50% of individuals
who have the outcome in the exposed group are misclassi-
fied as disease-negative and 50% of individuals who have
the outcome in the unexposed group are misclassified as
disease-negative, then the observed risk of disease at each
level of exposure will be halved relative to the true risks. The
RR will remain unchanged, but the risk difference will be
halved. We demonstrate this using example data in Table 6.

The potential impact of outcome misclassification is par-
ticularly relevant for hospital-based case-control studies, in
which misclassification of cases can affect both precision
and validity. For example, low sensitivity due to a very
restrictive case definition with high specificity may lead to
reduced precision if few cases are identified (27). However,
especially with rare outcomes, losses in specificity tend
to have a more substantial impact on validity than losses
in sensitivity, which will bias the odds ratio only when
specificity is also imperfect. Given that investigators must
often prioritize either sensitivity or specificity, specificity
should be favored to optimize validity. Near-perfect outcome
specificity with nondifferential sensitivity will yield only
negligible bias in ratio measures. See Jurek et al. (28) for
important caveats for bias adjustment of misclassified case
and control status.

EXCEPTION 6: COVARIATE MISCLASSIFICATION

Nondifferential misclassification of a confounder biases
the expected relative risk due to confounding (the ratio of

the crude to the adjusted estimate) towards the null, resulting
in incomplete control for confounding (3). Thus, the effect
estimate will be biased in the direction of the original con-
founding. For example, nondifferential misclassification of
a confounder whose lack of control results in bias away from
the null will result in a bias away from the null. The reverse
is true for a confounder that acts in the opposite direction.
The magnitude of this bias will depend on the strength of
the confounder and the degree of misclassification: typically,
a stronger and more heavily misclassified confounder will
result in a greater degree of residual confounding in the
effect estimate.

When evaluating potential effect modification, nondiffer-
ential misclassification of the stratification variable results
in an unpredictable bias. This misclassification can create
a spurious appearance of effect modification or mask true
effect modification, on either the relative or absolute scale
(3). In Table 7, we present an example where the covariate
C is a confounder of the exposure-disease relationship, but
it is not an important effect-measure modifier on the relative
scale (RRC+ = 0.70 and RRC− = 0.69). Misclassification of
C that is nondifferential with respect to the exposure and
outcome results in an adjusted effect estimate (RR = 1.13)
that is between the true (RR = 0.70) and crude (RR = 1.23)
estimates, and it also induces spurious heterogeneity across
strata of C (RRC+ = 1.21 and RRC− = 1.03).

EXCEPTION 7: MISMEASUREMENT OF CONTINUOUS
VARIABLES

Mismeasurement of continuous variables, which may be
the exposure, the outcome, or a covariate, generally has the
same exceptions as described above for misclassification
of discrete variables. There are, however, some important
additional nuances that lead to additional exceptions to the
heuristic. First, for exposures and covariates measured on
a continuous scale, the continuous measures are sometimes
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Table 7. Example of Incomplete Confounding Adjustment and Spurious Effect Modification on the Relative Scale
Due to Covariate Misclassification

Outcome Status (n)
Total (n) Riska RR

Adjusted
RR (SMR)

Data Set
D+ D−

Correctly Classified Data

Total 0.70

E+ 60 270 330 0.18 1.23

E− 130 750 880 0.15 1.00b

C+
E+ 45 70 115 0.39 0.70

E− 50 40 90 0.56 1.00b

C−
E+ 15 200 215 0.07 0.69

E− 80 710 790 0.10 1.00b

Covariate Misclassified With 80% Specificity and 70% Sensitivityc

Total 1.13

E+ 60 270 330 0.18 1.23

E− 130 750 880 0.15 1.00b

C+
E+ 34.5 89 123.5 0.28 1.21

E− 51 170 221 0.23 1.00b

C−
E+ 25.5 181 206.5 0.12 1.03

E− 79 580 659 0.12 1.00b

Abbreviations: RR, risk ratio; SMR, standardized mortality ratio.
a Risk = number in D+/total number.
b Referent.
c Misclassification of the confounder, C, is nondifferential with respect to both the exposure and the outcome,

with 80% specificity and 70% sensitivity. In this example, the true unbiased RR is 0.70, the crude RR is 1.23, and
the RR adjusted for the misclassified variable C is 1.13. While there is no evidence of effect modification on the
relative scale in the correctly classified data, the stratum-specific RRs in the misclassified data are 1.03 and 1.21,
falsely suggesting effect modification by C.

grouped into categories using boundary cutoffs. For exam-
ple, body mass index (weight (kg)/height (m)2) is often
categorized using boundary cutoffs with labels such as
“underweight,” “normal weight,” “overweight,” and “obese.”
Nondifferential mismeasurement of a continuous exposure
does not ensure nondifferential misclassification when the
continuous measure is binned into categories (17, 29).
Second, when the continuous measure is an independent
variable in a general linear model, when the extent of error
is nondifferential with respect to the outcome, and when
the mismeasured variable is a function of the true value
plus error, the association is expected to be biased towards
the null. This is commonly called “classical measurement
error.” When the extent of error is nondifferential with
respect to the outcome and when the true value is a function
of the mismeasured value and a symetrically distributed
error term with mean 0, there is no expected bias (although
there is additional uncertainty). This is commonly called
“Berkson measurement error” (30), and it provides another

exception to the heuristic. Likewise, classical measurement
error affecting the outcome yields an expectation of no bias,
but with additional uncertainty.

CONCLUSION

In this paper, we describe notable exceptions to the heuris-
tic that “nondifferential misclassification biases toward the
null.” First, misclassification is stochastic and can deviate
from expectation. Even when the mechanism of misclas-
sification of a binary exposure variable is nondifferential
and independent and there are no other sources of bias, the
observed estimate may be biased away from the null simply
due to chance. This deviation from expectation is more
likely in studies with sparse data than in more statistically
efficient analyses. Second, nondifferential misclassification
of a multilevel exposure variable can result in bias away
from the null in the middle dose categories, no bias in the
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highest dose category or, in some extreme cases, a spurious
inverse dose-response relationship. Collapsing nondiffer-
entially misclassified exposure categories can also induce
the appearance of differential misclassification, and thus
lead to unpredictable bias. Third, nondifferential but depen-
dent misclassification of an exposure variable can create
unpredictable bias, and even small amounts of dependent
misclassification can create strong bias away from the null.
Fourth, individual-level rate ratios estimated using ecolog-
ical data will generally be biased away from the null due
to nondifferential misclassification of the exposure variable.
Fifth, nondifferential outcome misclassification can yield an
unbiased RR when specificity is perfect. Sixth, misclassifi-
cation of a confounder results in an observed estimate that is
somewhere between the true estimate and the crude estimate,
and can either induce or mask the presence of heterogenity
across stratum-specific estimates. Last, nondifferential mis-
measurement of a continuous variable can result in differ-
ential misclassification if the continuous variable is binned,
nondifferential misclassification of a continuous exposure
results in no bias of an exposure-outcome association when
the error structure is Berksonian, and nondifferential mis-
classification of a continuous outcome results in no bias of
the exposure-outcome association when the error structure
is classical.

Taking these examples into consideration, epidemiolo-
gists should not rely on the “nondifferential misclassifi-
cation” heuristic as justification for why an association is
biased towards the null. There are too many exceptions to the
heuristic to rely on it for inference about the direction of bias.
Instead, we encourage investigators to consider all possible
mechanisms of measurement error and to implement quan-
titative bias analysis whenever possible to better understand
the direction, magnitude, and uncertainty resulting from the
measurement error.
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