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In the United States, concentrations of criteria air pollutants have declined in recent decades. Questions remain
regarding whether improvements in air quality are equitably distributed across subpopulations. We assessed
spatial variability and temporal trends in concentrations of particulate matter with an aerodynamic diameter
≤2.5 μm (PM2.5) and ozone (O3) across North Carolina from 2002–2016, and associations with community
characteristics. Estimated daily PM2.5 and O3 concentrations at 2010 Census tracts were obtained from the Fused
Air Quality Surface Using Downscaling archive and averaged to create tract-level annual PM2.5 and O3 estimates.
We calculated tract-level measures of: racial isolation of non-Hispanic Black individuals, educational isolation of
non–college educated individuals, the neighborhood deprivation index (NDI), and percentage of the population
in urban areas. We fitted hierarchical Bayesian space-time models to estimate baseline concentrations of and
time trends in PM2.5 and O3 for each tract, accounting for spatial between-tract correlation. Concentrations of
PM2.5 and O3 declined by 6.4 μg/m3 and 13.5 ppb, respectively. Tracts with lower educational isolation and higher
urbanicity had higher PM2.5 and more pronounced declines in PM2.5. Racial isolation was associated with higher
PM2.5 but not with the rate of decline in PM2.5. Despite declines in pollutant concentrations, over time, disparities
in exposure increased for racially and educationally isolated communities.

air pollution; disparities; environmental justice; ozone; PM2.5; segregation

Abbreviations: CrI, credible interval; EI, educational isolation; EPA, Environmental Protection Agency; NHB, non-Hispanic
Black; NDI, Neighborhood Deprivation Index; O3, ozone; PM2.5, particulate matter with an aerodynamic diameter ≤2.5 μm; RI,
racial isolation; SES, socioeconomic status; WAIC, Watanabe-Akaike information criterion.

An extensive literature has demonstrated that exposure to
ambient air pollution is harmful to health (1). Exposures
to ozone (O3) and particulate matter with an aerodynamic
diameter ≤2.5 μm (PM2.5) are linked with adverse health
outcomes, including mortality (2–4), cardiovascular (5, 6)
and respiratory disease (7, 8), hospital admissions (9, 10),
and adverse pregnancy outcomes (11–13), among others.
However, exposure to air pollutants and health impacts at
a given level of exposure are not necessarily uniform across
all communities and subpopulations.

In the United States, racial/ethnic minorities and low–
socioeconomic status (SES) communities may be dispro-
portionately exposed to specific air pollutants (14, 15).
Studies have demonstrated that ambient PM2.5 concen-

trations tend to be higher in communities with higher
proportions of non-Hispanic Black (NHB) or Hispanic
residents, higher poverty levels, and greater degrees of
racial segregation and urbanicity (16–18); these community
characteristics are also linked with health outcomes (19–
21). A 2019 study showed a decline in PM2.5 exposure
in the United States between 2005 and 2015 but found
that pollution inequity, or the difference between the
environmental health damage caused by a racial/ethnic
group and the damage that group experiences, remained
high for NHB and Hispanic persons (22). In addition to
differential exposures, some populations may be more
susceptible to health effects associated with air pollution.
A recent study observed a more pronounced mortality
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risk associated with PM2.5 exposure among racial/ethnic
minorities and low-income individuals (23).

Overall concentrations of criteria air pollutants in the
United States have declined in recent decades. The US Envi-
ronmental Protection Agency (EPA) estimated that daily 8-
hour maximum O3 concentrations declined by 22% between
1990 and 2017, while 24-hour average PM2.5 concentrations
declined by 40% between 2000 and 2017 (24). Despite these
improvements, 120 million Americans resided in areas with
PM2.5 or O3 concentrations above the level specified by the
National Ambient Air Quality Standards (NAAQS) in 2021
(25, 26). Furthermore, while the increased health risks at
concentrations in excess of the NAAQS are well-established
(25), there is a growing body of evidence that air pollu-
tion is detrimental to health even at lower concentrations
(23, 27). Associations between PM2.5 and O3 exposure and
health outcomes, specifically all-cause, cardiovascular-, and
respiratory-related hospitalizations (27) and mortality (23),
persist at concentrations below the NAAQS.

Despite national/overall improvements in air quality, it is
unclear how consistently the air quality is improving across
communities/populations, where the greatest improvements
are, and thus who benefits. It is also unclear whether the
magnitude/pace of the decline is similar across communities,
or whether some populations are experiencing a slower
decline in pollution and, therefore, an attenuated risk reduc-
tion. Disparities in air pollution exposure may in fact widen
if air quality is improving more rapidly in areas that already
have lower levels. These issues raise questions of environ-
mental (in)justice, which is a complex concept with multiple
definitions involving exposures, outcomes, and processes
related to the experience of different subpopulations (28).

To address these questions, we first described levels and
temporal trends in PM2.5 and O3 concentrations across
North Carolina over 15 years (2002–2016). We then
evaluated whether baseline levels and temporal trends in
PM2.5 and O3 concentrations related to community-level
characteristics, including measures of racial isolation (RI),
educational isolation (EI), neighborhood deprivation, and
urbanicity. Measures of RI, EI, neighborhood deprivation,
and urbanicity were selected because previous work has
demonstrated associations between: 1) urbanicity, SES,
and air pollutants, specifically O3 and PM2.5 (29, 30);
and 2) RI and PM2.5, even after controlling for urbanicity
(16). As a recently developed measure, less is known
about relationships between EI, air pollution, and health,
but educational attainment is often used as a proxy for
SES that is also associated with health outcomes (30–
32). Overall—across all metrics—we hypothesized that
communities with higher air pollutant concentrations (of
either air pollutant) were more likely to have larger declines
in pollutant concentrations, because such communities have
more “room for improvement.”

METHODS

Data

Air pollution data. Estimated concentrations of PM2.5 and
O3 in North Carolina were obtained for 2002–2016 from

the publicly available EPA Fused Air Quality Surface Using
Downscaling (“downscaler”) data. The downscaler utilizes a
hierarchical Bayesian space-time modeling framework that
combines gridded output from the Community Multiscale
Air Quality model with monitoring data from the National
Air Monitoring Station and State and Local Air Monitoring
Station networks to produce daily point-level concentra-
tion estimates at the 2010 Census-tract centroids across the
United States (33–35). Archived daily downscaler surfaces
are available from the US EPA. Detailed descriptions of
the downscaler modeling technique and performance are
provided elsewhere (34). Downscaler output includes esti-
mates of 24-hour average PM2.5 and 8-hour maximum O3
concentrations at census-tract centroids for each day in
the study period (2002–2016). We averaged daily values
to generate an annual average PM2.5 and 6-month (April–
September) average O3 concentration estimates for each
tract. Six-month averages of O3 were calculated for April–
September because this warm season is when O3 concentra-
tions tend to be highest, and when the most O3 monitors are
typically operational.

Racial isolation of non-Hispanic Black individuals. Massey
and Denton (36) identified 5 dimensions of racial residential
segregation, namely, evenness/dissimilarity, exposure/isola-
tion, concentration, centralization, and clustering. Later, it
was determined that clustering, centralization, and concen-
tration were also measures of evenness, thus simplifying the
conceptual framework to evenness and exposure/isolation
(37, 38). Additionally, a review of segregation and health
noted that studies had conceptualized segregation in one of 2
ways (39): 1) a formal measure of geographical segregation
of racial groups with indices reflecting either exposure/
isolation, evenness, concentration, centralization, or cluster-
ing (36); and 2) a proxy measure (e.g., Black racial compo-
sition, % NHB). Prior assessments of segregation and health
have found it conceptually problematic to conflate formal vs.
proxy measures. Thus, we chose to employ a formal measure
of RI because of the importance of isolation as one of the 5
domains of racial residential segregation long defined in the
literature, and the domain that may be most closely related
to adverse and disparate outcomes for racially, economically,
and educationally minoritized populations (19, 40).

Using 2010 US Census data on the percentage of tract
population self-identifying as NHB, we use a local spatial
measure of RI to quantify geographic separation of NHB
from other racial groups (41). The RI index is calculated
based on the racial composition (e.g., % NHB) of tracts
neighboring a given index tract i. We defined “neighbor” by
adjacency, such that neighbors are tracts sharing a border
or vertex with index tract i. The RI index ranges from 0
to 1 and represents a weighted average proportion of NHB
in the local environment. For example, individuals in a
neighborhood environment (i.e., index tract and neighboring
tracts) that is predominantly non-NHB will have an RI value
close to 0. In contrast, individuals living in a neighborhood
environment that is nearly all NHB will have an RI value that
is close to 1. The RI index was computed for all tracts within
the study area with non-zero population in the neighborhood
environment of the index tract. Based on previous work (16),
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we hypothesized that higher RI communities may have
higher PM2.5 concentrations but not necessarily higher O3
concentrations.

Educational isolation of non–college educated individuals.
Using 2010 US Census data on the percentage of tract
population aged 25 years or older with a college degree, we
use a local, spatial measure of EI to quantify the geographic
separation of non–college educated individuals from college
educated individuals. This index is calculated in the same
way as RI, and results in a weighted average proportion of
non–college educated individuals in the local environment.
The EI index ranges from 0 to 1: Individuals living in a
neighborhood environment that is predominantly of college
educated individuals will have an EI value close to 0. In
contrast, individuals living in a neighborhood environment
that is nearly all non–college educated individuals will have
an EI value that is close to 1. EI was computed for all
tracts within the study area with non-zero population in the
neighborhood environment of the index tract. We hypoth-
esized that higher EI communities may have lower PM2.5
and O3 concentrations, in part because EI may be higher in
areas with less industry and lower population density (the
correlation between EI and urbanicity is −0.46), in addition
to census tracts in central parts of urban areas (32). The
correlation between EI and RI in the United States is around
0.21 (32), and in North Carolina, it is 0.23.

The construction of the spatial measures of neighborhood-
level RI (41) and EI (32) are described in detail elsewhere
and summarized in Web Appendixes 1 and 2 (available at
https://doi.org/10.1093/aje/kwac059), respectively.

Neighborhood deprivation. Tract-level data from the 2010
Census were utilized to calculate a previously developed
Neighborhood Deprivation Index (NDI) (42). The NDI was
calculated using the first factor loadings from a principal
components analysis of the following census variables: per-
centage of households in poverty, percentage of female-
headed households with dependents, percentage with annual
household income below $30,000, percentage of house-
holds on public assistance, percentage of male persons in
management/professional occupation, percentage living in
crowded housing, percentage unemployed, and percentage
without a high-school education. Larger NDI values indicate
more severe deprivation. NDI is typically used in urban
settings; it is unclear how relevant it is for statewide analyses
like those presented here. Nevertheless, because a measure
of socioeconomic status is used so commonly in disparities
analyses, we included NDI in our analysis.

Urbanicity. Urbanicity was estimated based on the tract-
level percentage of the population residing in urban settings
that is available as a continuous variable (range: 0%–100%)
in the 2010 Census data. An urban area comprises a densely
settled core of census tracts and/or census blocks that meet
minimum population density requirements, along with adja-
cent territory containing nonresidential urban land uses as
well as territory with low population density included to
link outlying densely settled territory with the densely set-
tled core. Specifically, to qualify as urban, the territory
identified must encompass at least 2,500 people, at least

1,500 of whom reside outside institutional group quarters.
“Rural” encompasses all population, housing, and territory
not included within an urban area (43).

Statistical analysis

To evaluate whether and how air pollution concentrations
were changing over the study period, we plotted tract-
level annual average PM2.5 and annual 6-month (April–
September) average O3 concentrations over time and
mapped PM2.5 and O3 concentrations at the beginning
(2002), midpoint (2009), and end (2016) of the study period.
We refer to 2002 levels as “baseline” conditions for the
purposes of this study.

To estimate overall (i.e., statewide) and tract-specific
baseline air pollutant concentrations as well as statewide and
tract-specific temporal trends in air pollutant concentrations,
we fitted a model that estimates separate but spatially
correlated linear time trends for each census tract. This
model is a modification of that proposed by Bernardinelli et
al. (44) and takes the form:

Yit = (β0 + φi) + (α + δi) × yeart + εit, (1)

where Yit is the annual average PM2.5 (or O3) concentra-
tion in census tract i in year t; β0 represents the statewide
intercept; φi is a census tract–level random effect that allows
for differences in baseline concentrations; α represents the
statewide temporal trend in air pollution over the study
period; δi is a tract-level random effect that represents the
tract-specific differential temporal trend; and εit ∼ N(0, σ2).
Thus, each census tract i has its own linear time trend, with
a spatially varying intercept, β0 +φi, and a spatially varying
slope, α + δi.

Each set of random effects φ = (φ1, . . . . . . , φI) and
δ = (δ1, . . . . . . , δI) are modeled using independent condi-
tional autoregressive prior distributions proposed by Leroux
et al. (45), allowing for the possibility of spatial correla-
tion between these spatially-varying parameters. Specifi-
cally, one of these random effect parameters is assumed a
priori to be normally distributed, conditional on the param-
eters from all other tracts, and centered at the weighted
average of neighboring values such that

φi | φ−i, W ∼ N

(
ρφ

∑I
j=1wijφj

ρφ

∑I
j=1wij + 1 − ρφ

,
τ2

φ

ρφ

∑I
j=1wij + 1 − ρφ

)
,

where φ−i = (φ1, ..., φi−1, φi+1, ..., φI)
T (i.e., a vector of

random effects with the ith entry removed), and wij is equal
to 1 if tracts i and j are neighbors (i.e., share a border or
vertex) and 0 otherwise. The δi parameters are defined in a
similar way, using ρδ and τ2

δ , and thus not shown. This flex-
ible specification allows for several spatial patterns during
modeling. For example, a small random effect variance, τ2,
indicates that there is less variability in that set of parameters
with many values near zero, and that a single statewide
intercept or slope may adequately describe variability in the
air pollution concentrations. In the case of a larger τ2 value,
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ρ, the spatial dependence parameter, indicates whether the
variability is closer to independence (ρ near zero) or spatially
correlated (ρ near 1). To ensure that we do not influence
these choices before seeing the data, we specify weakly
informative prior distributions for the model parameters to
allow the data to drive the inference rather than our prior
beliefs. Specifically:

σ2, τφ, τδ ∼ Inverse − Gamma (1, 0.01) ,

ρφ, ρδ ∼ Uniform (0, 1) ,

α, β0 ∼ N(0, 1002).

To explore whether and how air pollution levels and tempo-
ral trends in pollutant concentrations are related to tract-level
characteristics, we extended equation 1 to include a vector
of variables for urbanicity, RI of NHB, EI of non–college
educated individuals, and NDI that are specific to census
tract i (xi) such that

Yit = (
β0 +φi +xT

i γ0
)+ (

α+ δi +xT
i γ1

)× yeart + εit. (2)

Equation 2 allows us to evaluate how baseline levels of air
pollution relate to tract-level RI, EI, NDI, and urbanicity, and
whether the variability in the intercepts can be explained by
these tract-level covariates. The term for interaction between
these covariates and time allows us to assess whether and
how tract-level characteristics relate to temporal trends in
air pollution, and whether the variability in the slopes can
be explained by these covariates. To evaluate whether the
covariates included in equation 2 have explained any vari-
ability, we can compare the τ2

φ and τ2
δ from equations 1

and 2 and more formally compare the model fits using the
Watanabe-Akaike information criterion (WAIC). Smaller
WAIC values indicate an improved balance of model fit
and complexity among a group of competing models fit to
the same data set (46). The same prior distributions from
the previous model were used in this analysis, with the
newly added regression parameters specified as γ0j, γ1j ∼
N(0, 1002).

Models were fitted separately for PM2.5 and O3. For
each pollutant, we fitted models with random slopes and
random intercepts as well as models with random intercepts
only. The WAIC was used to select the most appropriate
model specification (i.e., with or without random slopes)
(46). For each model, 50,000 posterior samples were col-
lected from the joint posterior distribution after a burn-
in period of 10,000 iterations using the car.linear function
in CARBayesST (47) or the S.CARmultilevel function in
CARBayes (48) for models with and without random slopes,
respectively. We thinned the collected samples by a factor
of 5 in order to reduce posterior autocorrelation, resulting
in 10,000 posterior samples for inference. Visual inspec-
tion of individual parameter trace plots and calculation of
the Geweke diagnostic (49) suggested no obvious signs of
nonconvergence of the models. Statistical analyses were
performed using R, version 3.5 (50).

RESULTS

Descriptive statistics

There were 2,163 census tracts in the study area. Average
concentrations of PM2.5 and O3 in 2002, the start of the
study period, were 13.5 μg/m3 and 56.6 ppb, respectively.
To visualize how air pollution concentrations changed in
North Carolina over the 15-year study period, we plotted
tract-level annual average PM2.5 (Figure 1A) and 6-month
average O3 concentrations (Figure 1B). Both PM2.5 and
O3 levels decreased between 2002 and 2016, although the
decline was not monotonic for either pollutant. For both
PM2.5 and O3, there were no tracts in which concentrations
increased between the beginning and end of the study period.
Within-tract declines in concentrations, measured as percent
change between the beginning and end of the study period,
ranged from 20.8% to 45.1% for PM2.5 and 19.4% to 32.7%
for O3.

We also mapped tract-level PM2.5 and O3 concentrations
at the beginning, midpoint, and end of the study period
(Web Figures 1–2, respectively), as well as community-
level covariates, namely RI, EI, NDI, and urbanicity
(Web Figures 3–6, respectively). Descriptive statistics of
community-level covariates (e.g., mean, standard deviation,
range) are provided in Web Table 1. Correlations between
each community-level characteristic ranged from −0.46
(urbanicity and EI) to 0.58 (EI and NDI) (Web Table 2).

Model selection

For both PM2.5 and O3, we fitted models (null and with
adjustments) with random slopes and random intercepts as
well as models with random intercepts only (WAIC values
are provided in Web Table 3). Based on the WAIC results, we
present adjusted PM2.5 models with random intercepts and
slopes, and adjusted O3 models with random intercepts only.
Variance inflation factors (VIFs) in the adjusted models,
which included all 4 community characteristics (RI, EI, NDI,
and urbanicity), ranged from a minimum of 1.45 (RI) to a
maximum of 2.10 (EI) in the PM2.5 and O3 models. VIFs in
excess of 5 are generally a cause for concern (51, 52), and
some researchers have argued for use of a more conservative
threshold of 2.5 (53).

Statistical analysis

Particulate matter with an aerodynamic diameter ≤2.5 μm.
We estimated tract-level baseline PM2.5 concentrations and
temporal trends in PM2.5 concentrations after adjustment for
RI, EI, NDI, and urbanicity and including a term for interac-
tion between these characteristics and year, as described in
equation 2. The tract-specific intercepts (β0 + φi) from the
adjusted model are shown in Figure 2A (these values also
represent the fitted concentrations from 2009, the midpoint
of the study period). The fitted, statewide average PM2.5
concentration was 11.2 μg/m3 in 2009, and the statewide
slope (α) was −6.37 μg/m3. The highest PM2.5 concentra-
tions (yellow) were observed in central and south-central
North Carolina, particularly in and extending outward from
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Figure 1. Downscaler-estimated air pollution concentrations, North Carolina, 2002–2016. A) Tract-specific annual average concentrations of
particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), μg/m3; B) tract-specific annual average concentrations of ozone (O3), ppb.

Charlotte (Mecklenburg County), North Carolina. Lower
PM2.5 concentrations (dark blue) were observed in tracts
in far western and eastern parts of the state, represent-
ing the Appalachian Mountains and Coastal Plain region,
respectively.

Modeled temporal trends in PM2.5, specifically the tract-
specific slopes (α + δi) in the adjusted model, are shown
in Figure 2B. Tracts with smaller-than-average declines in
PM2.5 concentrations are shown in yellow, while tracts with
larger-than-average declines in PM2.5 are shown in in dark
blue. Tracts with larger declines in PM2.5 tend to be con-
centrated in central North Carolina, particularly western-
central North Carolina. This coincides to some extent, but
not completely, with the areas that had the highest baseline
levels of PM2.5.

Associations between the tract-level variables and PM2.5
concentrations (baseline levels and change over time) are
reported in Table 1. A 1-standard-deviation increase in RI

(0.17) was associated with a 0.11 μg/m3 (95% credible
interval (CrI): 0.06, 0.15) increase in PM2.5 at baseline. A
1-standard-deviation increase in the percent of population
in urban settings (30.1%) was associated with a 0.21 μg/m3

(95% CrI: 0.17, 0.26) increase in PM2.5 concentration at
baseline. In contrast, 1-standard-deviation increase in EI
(0.15) was associated with a 0.10 μg/m3 (95% CrI: 0.04,
0.15) decrease in PM2.5 concentration at baseline. This com-
bination of results is sensible in that RI tends to be highest
in urban areas, and EI tends to be higher in rural areas (e.g.,
Web Figures 3 and 4).

Terms for interaction with year were statistically signif-
icant and negative for both urbanicity and EI, although the
significance on EI was marginal. Interaction terms can be
interpreted as location-specific slopes. For example, com-
munities (census tracts) with higher urbanicity values have
smaller (more negative) slopes than communities with lower
urbanicity values. That is, the decline in PM2.5 over time
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Figure 2. Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) concentrations, North Carolina, 2002–2016. A) Tract-specific
variations in average PM2.5 concentration; B) tract-specific variations in change in PM2.5 concentration.

is steeper in more-urban areas than in less-urban areas.
Similarly, communities with higher EI values have more-
negative slopes than communities with lower EI values, such
that the decline in PM2.5 over time is steeper in more edu-
cationally isolated communities than in less educationally
isolated communities.

For example, an “average” tract would have a baseline
PM2.5 concentration of 13.5 μg/m3 and a change in PM2.5
over the study period of −6.4 μg/m3. A tract that is 2
standard deviations above the average in terms of urbanicity,
holding other variables constant, would have a baseline
PM2.5 concentration of 13.9 μg/m3 and a change in PM2.5
over the study period of −6.7 μg/m3. That is, for a tract with
higher urbanicity, the baseline PM2.5 concentration is higher,
but the decline in PM2.5 is also steeper. In contrast, a tract
that is 2 standard deviations above the average in terms of
RI, holding other variables constant, would have a baseline
PM2.5 concentration of 13.7 μg/m3 (higher than average)
and a change in PM2.5 over the study period of −6.4 μg/m3

(same as the average).
These findings indicate that there are existing disparities

in PM2.5 exposure with respect to RI, EI, and urbanicity,
with more-urban and higher-RI tracts having higher baseline

PM2.5 exposures, and higher-EI tracts having lower baseline
PM2.5 exposures. Time trends in PM2.5 concentrations dif-
fered by urbanicity and EI only. In contrast to more-urban
communities, which have high PM2.5 levels that are improv-
ing more markedly over time, high-RI communities have
high PM2.5 levels that do not show such an improvement.

Posterior median estimates of τ2
φ, reported in Web Table

4, declined from the null model (1.93) to the adjusted model
(1.58), suggesting that some of the variability in baseline
PM2.5 values is explained by the covariates in the adjusting
model. The posterior median estimate of τ2

δ also declined
between the null (0.72) and adjusting (0.69) model.

Ozone. As with PM2.5, we estimated baseline O3 con-
centrations and temporal trends in O3 concentrations after
adjustment for RI, EI, NDI, and urbanicity, and including a
term for interaction between these characteristics and year
(as described by equation 2). The tract-specific intercepts
(β0 + φi) from the adjusted model are shown in Figure 3
(these values also represent the fitted concentrations from
2009, the midpoint of the study period). Tract-specific slopes
are not presented in Figure 3 because, for O3, the model
selected based on WAIC included only random intercepts;
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Table 1. Associations Between Tract-Level Social and Demographic Variables and Baseline Levels and Time Trends in PM2.5 Concentrations,
North Carolina, 2002–2016a

Variableb

Main Effect Interaction With Time

Posterior Median 95% CrI Posterior Median 95% CrI

RI of non-Hispanic Black
individuals

0.11 0.061, 0.15 −0.015 −0.064, 0.034

EI of non–college
educated individuals

−0.10c −0.15, −0.044 −0.067c −0.13, −0.0085

Percentage of population
in urban settings

0.21c 0.17, 0.26 −0.12c −0.17, −0.074

NDI −0.011 −0.039, 0.017 −0.0031 −0.029, 0.024

Abbreviations: CrI, credible interval; EI, educational isolation; NDI, Neighborhood Deprivation Index; PM2.5, particulate matter with an
aerodynamic diameter of ≤2.5 μm; RI, racial isolation.

a Models adjusted for all community-level characteristics (i.e., RI, EI, urbanicity, and NDI); separate models were not fitted for each community-
level characteristic. Values are shown to 2 significant digits.

b Correlations between demographic variables ranged from −0.46 (between EI and urbanicity) to 0.58 (between EI and NDI); ranges of
variable values and correlations between all variables are provided in Web Tables 1–2.

c Coefficients for which the 95% CrI does not include zero.

however, a map of tract-specific slopes from the O3 model
with random slopes and intercepts is provided in the Web
Figure 7. The statewide average O3 concentration was 48.1
ppb in 2009, and the statewide slope (α) was −13.5 ppb
(over the entire study period). Similar to PM2.5, the highest
O3 concentrations were observed in south-central North
Carolina, in and extending outward from Charlotte (Meck-
lenburg County), North Carolina. The lowest O3 concentra-
tions were observed in the coastal plains, particularly the
southeastern part of the state.

Associations between the tract-level variables and O3
concentrations (baseline levels and change over time) are
reported in Table 2. Urbanicity and NDI were associated
with baseline O3 concentrations. A 1-standard-deviation
increase (30.1%) in the percent of population in urban
settings was associated with a 0.38 ppb (95% CrI: 0.30,
0.47) increase in O3 concentration. A 1-standard-deviation
increase in NDI (2.1) was associated with a 0.061 ppb (95%
CrI: 0.11, 0.017) decrease in O3 concentration.

Additionally, terms for interaction with year were sta-
tistically significant for RI and EI but had differing signs,
indicating that the change in O3 concentration over time
is modified by the degree of RI and EI. Specifically, com-
munities (census tracts) with higher RI have smaller (more
negative) slopes than locations with lower RI. This indi-
cates that the decline in O3 over time is steeper in more
racially isolated communities than in less racially isolated
communities. In contrast, communities with higher EI values
have larger (less negative) slopes than communities with
lower EI values, such that the decline in O3 over time is
shallower in more educationally isolated communities than
in less educationally isolated communities.

As an example, for O3, an “average” tract would have a
baseline O3 concentration of 56.6 ppb and a change in O3
over the study period of −13.5 ppb. A tract that is 2 standard
deviations above the average in terms of urbanicity, holding
other variables constant, would have a baseline O3 concen-
tration of 57.4 ppb but the same change in O3 over the study

Ozone, ppb
44.2 – 47.3
47.4 – 47.9
48.0 – 48.4
48.5 – 49.2
49.3 – 51.5
No data

N

100 km

Figure 3. Tract-specific variations in average ozone (O3) concentrations, North Carolina, 2002–2016.
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Table 2. Associations Between Tract-Level Social and Demographic Variables and Baseline Levels and Time Trends in Ozone Concentrations,
North Carolina, 2002–2016a

Variableb
Main Effect Interaction With Time

Posterior Median 95% CrI Posterior Median 95% CrI

RI of non-Hispanic Black
individuals

−0.065 −0.15, 0.019 −0.63c −0.78, −0.47

EI of non–college
educated individuals

0.023 −0.077, 0.12 0.54c 0.35, 0.73

Percentage of population
in urban settings

0.38c 0.30, 0.47 0.084 −0.079, 0.25

NDI −0.061c −0.11, −0.017 0.078 −0.0080, 0.17

Abbreviations: CrI, credible interval; EI, educational isolation; NDI, Neighborhood Deprivation Index; RI, racial isolation.
a Models adjusted for all community-level characteristics (i.e., RI, EI, urbanicity, and NDI); separate models were not fitted for each community-

level characteristic. Values are shown to 2 significant digits.
b Correlations between demographic variables ranged from −0.46 (between EI and urbanicity) to 0.58 (between EI and NDI); ranges of

variable values and correlations between all variables are provided in Web Tables 1–2.
c Coefficients for which the 95% CrI does not include zero.

period (−13.5 ppb). A tract that is 2 standard deviations
above the average in terms of EI, holding other variables
constant, would have a baseline O3 concentration of 56.6
ppb (same as the average) and a change in O3 over the study
period of −12.4 ppb (below-average improvement). These
exposure differences and changes in exposure differences
over time may seem small, but they apply to a large number
of people, and differences in the rates of change over time
suggest that there is potential for disparities to worsen, or
develop.

These findings suggest that there are existing disparities
in O3 exposure with respect to urbanicity and NDI, with
more-urban and lower-NDI tracts having higher baseline O3
exposures. In contrast, O3 concentrations at baseline did not
differ by RI or EI, but trends over time did. Specifically,
declines in O3 concentrations over time were steeper in high-
RI tracts compared with low-RI tracts, and shallower in
high-EI tracts compared with low-EI tracts. Should these
trends of differential rates of decline in O3 concentration
by community-level EI and RI continue (or accelerate),
disparities in O3 exposure by EI and RI may emerge.

Posterior median estimates of τ2
φ declined from the null

model (5.99) to the adjusted model (5.37) (Web Table 4),
indicating that some variability in baseline O3 concentra-
tions was explained by the covariates.

DISCUSSION

Although average levels of PM2.5 and O3 have declined
over the past 2 decades in the United States (24), it is unclear
where improvements in air quality are concentrated and
what populations are benefiting most from improvements.
Moreover, an overall improvement in air quality could, in
fact, mask widening disparities based on geographic, social,
or demographic factors. Here, we describe baseline levels
and temporal trends in PM2.5 and O3 concentrations in the

state of North Carolina during 2002–2016. We evaluated
whether baseline concentrations and temporal trends related
to tract-level community characteristics, including measures
of racial and educational isolation, deprivation, and urbanic-
ity.

Areas with higher baseline PM2.5 concentrations have
more “room for improvement” compared with areas that
had lower baseline PM2.5 concentrations, making it intuitive
for higher-exposure areas to have more marked declines
(improvement) in PM2.5 compared with lower-exposure
areas. In fact, we observed this with urban tracts, which had
both higher baseline PM2.5 values and more pronounced
declines in PM2.5 over time. That is, over the study
period, disparities in PM2.5 exposure were reduced in
more-urban compared with less-urban areas. In contrast,
a different relationship was observed for RI. More racially
isolated tracts also had higher than average baseline PM2.5
concentrations, but unlike urban tracts, high-RI tracts did
not exhibit more marked declines in PM2.5 over time. This
finding suggests a disparity in who benefits from declines
in PM2.5 concentrations and associated improvements in air
quality. In fact, it suggests that areas with higher RI may
actually experience an increase in PM2.5 exposure disparity
over time, despite an overall decline in PM2.5 levels. Some
tracts, such as more educationally isolated tracts, had
lower baseline PM2.5 values, but also more pronounced
declines in PM2.5 over the study period, compared with less
educationally isolated tracts. Thus, areas with low EI may
also experience an increase in PM2.5 exposure disparity over
time (compared with areas with high EI).

Different patterns were observed for O3 compared with
PM2.5. We did not observe that “high exposure” areas had
more pronounced declines (improvement) in O3 concen-
trations compared with “low exposure” areas. Specifically,
more-urban and less-deprived areas had higher baseline O3
levels but declines in O3 were similar across urbanicity
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and deprivation values. RI and EI were not associated with
baseline O3 concentrations but did exhibit interactions with
time. Specifically, high-RI tracts exhibited steeper declines
in O3 concentrations over the study period, while high-EI
tracts had shallower declines in O3 levels. That is, there
was more improvement in O3 concentrations in high-RI
tracts compared with low-RI tracts over the study period,
and less improvement in O3 concentrations in high-EI tracts
compared with low-EI tracts. This suggests that, over time,
disparities in O3 exposure may be widening for high-EI vs.
low-EI areas, despite an overall time trend of improving O3
concentrations.

We observed differences in patterning of PM2.5 and O3
exposure according to sociodemographic characteristics,
which is interesting but not necessarily unexpected. Previous
work has also observed differences in PM2.5 and O3
exposure patterns by racial isolation and urbanicity (16) but
did not consider how exposures are changing over time. The
differences in spatial and/or sociodemographic patterning of
these pollutants may relate to the sources of these pollutants
and/or their behavior and formation in the atmosphere.
PM2.5 is a primary pollutant that is often emitted as a
by-product of combustion (e.g., in automobile engines,
industrial processes), while O3, a secondary pollutant,
is formed in light-catalyzed reactions between precursor
pollutants, namely nitrogen oxides and volatile organic
compounds (54). Ozone concentrations are typically higher
where there is a mixture of precursor pollutants in the
atmosphere, which may have anthropogenic or biogenic
sources (e.g., vegetation such as trees), some of which may
be more common in suburban or rural locations as compared
with urban areas (55). Moreover, there are documented
patterns of siting hazardous waste sites, polluting industrial
facilities, and other undesirable activities or contaminated
land-use types disproportionately in communities with lower
SES and a higher proportion of racial/ethnic minorities (56).
Thus, type and density of emission sources of PM2.5 and O3
precursors, and resulting ambient concentrations, may differ
depending on community-level characteristics such as RI,
EI, NDI, and urbanicity, among others.

This study has several limitations. The models used here
assume a linear trend in air pollution concentrations over
time. This is an oversimplification of the temporal trend
in pollutant concentrations, but there is a clear decline in
concentration of both pollutants between the beginning
and end of the study period (e.g., Figure 1). Air pollutant
concentrations were obtained from the Fused Air Quality
Surface Using Downscaling (“downscaler”) data archive
and represent predictions from a statistical model as opposed
to observed (monitored) concentrations. These predictions
enabled us to conduct this study because: 1) air pollution
concentrations were available across the study area, creating
a continuous spatial surface for fitting spatial models; and
2) estimates of ambient air pollution concentrations were
available across census tracts with differing levels of the
sociodemographic covariates of interest. This second point
is particularly salient since air pollutant monitors are more
often located in urban areas (57). Some evidence also
suggests that racial/ethnic minorities may reside closer to
pollution sources and farther from monitoring locations (58).

Thus, there may be greater uncertainty in downscaler-
derived ambient concentration estimates for specific types of
communities (e.g., less urban). In forthcoming research, we
examine whether uncertainty characterizing the downscaler-
estimated concentrations differed by community charac-
teristics such as SES, urbanicity, and RI, among others.
Briefly, we observe some disparities in uncertainty of
downscaler-derived PM2.5 and O3 that relate to community
characteristics such as SES and RI.

We selected to adjust for RI, EI, NDI, and urbanicity
because these characteristics may be relevant to health out-
comes, and there is evidence that some of them are corre-
lated with pollution levels as well. RI and urbanicity are
associated with air pollution levels, specifically PM2.5 (16),
as well as health outcomes (59). EI is a newly developed
measure of isolation that may be associated with health and
developmental outcomes (32). Associations between NDI
and health have been observed, even after controlling for
air pollution exposure (60). However, there are multiple
approaches to assessing neighborhood conditions, including
segregation and SES, and no one measure is perfect. Here,
we chose to calculate EI comparing college educated with
non–college educated groups because there are large and
growing gaps in health outcomes between college and non–
college educated individuals, and although there is consider-
able local variability, the majority of the US population has
at least a high-school degree (61, 62). We chose to calculate
RI with respect to NHB because of the existing literature
that examines segregation of Black persons, elevated envi-
ronmental exposures, and health outcomes (16, 63); a long,
particular history of social, political, and economic forces
conspiring to specifically segregate NHB from the majority
White population (64); and, proportionally, NHB repre-
sent the largest racial/ethnic minority group in North Car-
olina (65). Potentially important avenues for future research
include examining relationships between air pollution and:
1) EI calculated for those with vs. without a high-school
degree (instead of college degree); 2) RI calculated for
other racial/ethnic groups, such as Hispanic persons; and
3) alternative metrics or additional metrics of segregation,
racial composition, and socioeconomic status.

Despite limitations, this study has important strengths. It
is a statewide analysis of air pollution trends over a period of
15 years. The simulated air pollution data used to evaluate
trends in PM2.5 and O3 concentrations over time provide
excellent temporal and spatial coverage and have been used
in previous studies of air pollution exposure and health (12,
66). This work provides information on, geographically,
where PM2.5 and O3 levels are highest and lowest, and
where PM2.5 and O3 levels are declining more vs. less
rapidly. Moreover, this research identifies the sociodemo-
graphic populations in North Carolina with higher vs. lower
ambient air pollution exposures, and identifies populations
for which ambient air pollution exposures are declining
more vs. less rapidly. North Carolina is home to Warren
County, considered by many to be the birthplace of the US
environmental justice movement in the 1980s (67, 68). It
is located in the American South, which is unique among
regions in the United States in that there are high-RI com-
munities in both urban and rural areas; in much of the rest
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of the United States, NHB individuals reside predominantly
in urban and suburban communities (32). Compared with
the United States overall, North Carolina has a higher than
average percentage of the population identifying as NHB
(22.2% vs 13.4%) and also has a higher poverty rate (13.6%
vs. 11.4%), although both of these variables exhibit consid-
erable heterogeneity across the state (65). However, a key
contribution of this work is the approach and framework
it provides for examining whether disparities are widening
or narrowing over time, and which types of communities
have higher air pollution levels and/or more rapidly declin-
ing air pollution levels. Importantly, we show that despite
overall PM2.5 declines across North Carolina during the
study period, areas with high EI and urbanicity exhibited
greater declines, while areas with high RI showed lesser
declines. These findings suggest that communities are not
all benefiting equally from air quality improvements, and
that disparities in exposure may be widening for specific
populations.
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