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Abstract

Loss of epithelial integrity, bronchiolarization, and fibroblast
activation are key characteristics of idiopathic pulmonary fibrosis
(IPF). Prolonged accumulation of basal-like cells in IPF may
impact the fibrotic niche to promote fibrogenesis. To investigate
their role in IPF, basal cells were isolated from IPF explant and
healthy donor lung tissues. Single-cell RNA sequencing was used
to assess differentially expressed genes in basal cells. Basal cell
and niche interaction was demonstrated with the sLP-mCherry
niche labeling system. Luminex assays were used to assess
cytokines secreted by basal cells. The role of basal cells in
fibroblast activation was studied. Three-dimensional organoid
culture assays were used to interrogate basal cell effects on AEC2
(type 2 alveolar epithelial cell) renewal capacity. Perturbation was
used to investigate WNT7A function in vitro and in a repetitive

bleomycin model in vivo. We found that WNT7A is highly and
specifically expressed in basal-like cells. Proteins secreted by basal
cells can be captured by neighboring fibroblasts and AEC2s. Basal
cells or basal cell-conditioned media activate fibroblasts through
WNT7A. Basal cell–derived WNT7A inhibits AEC2 progenitor
cell renewal in three-dimensional organoid cultures. Neutralizing
antibodies against WNT7A or a small molecule inhibitor of
Frizzled signaling abolished basal cell-induced fibroblast
activation and attenuated lung fibrosis in mice. In summary,
basal cells and basal cell–derived WNT7A are key components
of the fibrotic niche, providing a unique non-stem cell function
of basal cells in IPF progression and a novel targeting strategy
for IPF.
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Idiopathic pulmonary fibrosis (IPF) is a
fatal form of interstitial lung disease. The
median survival time from diagnosis is 2–4
years (1, 2), despite the availability of
antifibrotic therapies. It is widely accepted
that repeated alveolar injuries subsequently

lead to the activation of fibroblasts, which
deposit excessive extracellular matrix
(ECM), eventually resulting in irreversible
damage to the lung (2–4). Fibrosis can be
regulated by surrounding cells and cell–cell
interactions (4) in the fibrotic niche.

Macrophages (5) and endothelial cells (6)
participate in the fibrotic niche.
Furthermore, fibroblasts in the fibrotic
niche can be regulated by many signaling
pathways, including paracrine IL-13 (7)
and autocrine IL-11 (8, 9).
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Loss of epithelial integrity is a key
characteristic of IPF pathogenesis (10).
AEC2s (type 2 alveolar epithelial cells)
function as stem cells and can self-renew and
give rise to AEC1s (type 1 alveolar epithelial
cells) to maintain alveolar epithelial
homeostasis and repair during injury (11).
We have reported significant exhaustion
of the regenerative AEC2s in the lungs of
patients with IPF (10), consistent with
reports showing loss of alveolar AEC2s
in IPF (12).

The role of basal cells or basal-like cells
in IPF is unknown. In the airway, basal cells
act as stem cells to generate club cells and
ciliated cells to maintain airway homeostasis
(13). Bronchiolarization, a hallmark of
IPF pathogenesis, is an abnormal
reepithelialization of the alveolar regions
in the lung, which leads to honeycombing
structures in the lungs with IPF (14, 15).
Basal cells or aberrant basal-like cells have
been observed in the bronchiolarization in
IPF pathology (16, 17). Accumulation of
basal cells has been shown to be close to (18)
or overlying fibrotic foci in IPF (19). With
the advent of single-cell RNA sequencing
(scRNA-seq), accumulations of basal-like
cells in IPF were reported by several
laboratories (20–22), including our group
(12, 23, 24). We recently reported that
secretory primed basal cells share similar
molecular signatures with basal cells from
fibrotic regions and are enriched in
honeycomb regions of lungs with IPF (23).
Moreover, a BAL signature of basal cells
was shown to be associated with IPF
mortality (18), and airway basal cells may
participle in pulmonary fibrosis (25). These
studies suggest that basal-like cells may
have a pathogenic role in IPF.

To investigate basal cell function in
IPF, we first analyzed basal cell–specific
expressed genes with an unbiased scRNA-seq
approach.We found that WNT7A is highly
expressed in basal cells and is secreted in

abundance by basal cells. We then adopted
the secretory mCherry niche labeling system
(26) and found that both fibroblasts and
AEC2s can take up secreted proteins
originating from basal cells. With coculture
experiments, we showed that basal cell
supernatants and exposure to basal cells
activated fibroblasts. We further confirmed
that basal cell–derived WNT7A activates
fibroblasts and inhibits AEC2 colony
formation by applying neutralizing
antibodies to the in vitro experiments. Using
the repetitive bleomycin model, we were able
to demonstrate the expansion of basal cells
in mice and blockingWNT7A signaling
withWNT7A-neutralizing antibodies, and
the small molecule inhibitor niclosamide
decreased collagen deposition and improved
AEC2 recovery after bleomycin injury
in vivo. These studies provide the first
evidence from IPF explants that
accumulating basal-like cells participate
in the fibrotic niche and regulate
fibrogenesis through WNT7A.

Methods

Detailed materials andmethods are included
in the data supplement.

Patient Consent
Informed consent was obtained from every
patient before tissue collection, and the study
was approved by the Cedars-Sinai Medical
Center Institutional Review Board protocol
00032727 and UCLA Institutional Review
Board protocol 13-000462-AM-00019.

Statistics
Statistical difference between the two groups
in scRNA-seq data was calculated with the
Wilcoxon signed-rank test, and the P value
adjustment was performed using Bonferroni
correction on the basis of the total number
of genes. For all other data, the results were
shown as mean6 SD, and the statistical
difference was calculated with Prism 8
(GraphPad Software). Student’s two-tailed
t test was used for two-group comparisons,
and one-way ANOVA followed by
Bonferroni’s multiple comparison test was
used for multiple comparisons. Results
were considered statistically significant at
P, 0.05.

Data and Material Availability
Raw data of scRNA-seq can be accessed
via GEO accession number GSE157996.

R code files used for data integration and
analysis are available at https://github.com/
jiang-fibrosis-lab. Other scRNA-seq data
used in this paper can be accessed via
GSE122960 (20), GSE132915 (27),
GSE135893 (22), and GSE136831 (21).
Further information and requests for
resources and reagents should be directed to
Dianhua Jiang (dianhua.jiang@cshs.org).

Results

Basal Cells Are Expanded in Lungs
with IPF
We previously showed that there was a loss of
AEC2s in lungs with IPF, whereas non-AEC2
cells were increased (10). To further study the
subpopulations of lung epithelial cells, we
performed scRNA-seq of flow cytometry-
enriched epithelial cells (Lin2EPCAM1 cells)
from six healthy donors and six lungs with
IPF (Figures E1A and E1B in the data
supplement).We confirmed our previous
findings that AEC2s were decreased in lungs
with IPF (Figure E1B). We also confirmed
that basal cells were significantly increased
in lungs with IPF (Figures E1A–E1C),
consistent with recently published databases
(20–23, 27) (Figures E1D–E1G). In addition,
immunofluorescent staining showed that
KRT51 epithelial cells were intensely
increased in lungs with IPF (Figure E1H),
further confirming the increase of basal cells
in lungs with IPF.

Basal Cells Participate in the Fibrotic
Niche through Secreted Proteins
Basal cells are stem cells that normally
reside within the basal layer of the airway
and are essential for airway epithelial cell
regeneration during homeostasis (13).
However, the accumulation of basal cells is
also found in the alveolar regions of lungs
with IPF (16, 17). We reasoned that basal cells
may participate in the fibrotic niche, either by
activating fibroblasts or by affecting AEC2
renewal activity, or both. To demonstrate the
essential components of the fibrotic niche, we
adapted the secretory mCherry niche labeling
system (26) (Figure 1A). In this system, a
secreted fluorescent protein, sLP-mCherry
(mCherry containing a modified lipid-
permeable transactivator of transcription
peptide), released by the cells can be taken
up by neighboring cells, enabling spatial
identification of the niche components
(Figure 1B). With this system, we showed
that mCherry secreted from basal cells

Clinical Relevance

Basal cells and basal cell–derived
WNT7A are key components of the
fibrotic niche, providing a unique
non-stem cell function of basal cells
in idiopathic pulmonary fibrosis
(IPF) progression and a novel
targeting strategy for IPF.

ORIGINAL RESEARCH

Huang, Liang, Huang, et al.: Basal Cell–derived WNT7A in IPF 303

https://github.com/jiang-fibrosis-lab
https://github.com/jiang-fibrosis-lab
mailto:dianhua.jiang@cshs.org


104103

mCherry
E

P
C

A
M

Fibroblasts treated with starved Basal cell conditioned medium

Starved Basal
in SABM

Change into
new SABM

24 h

***

Immortalized
Healthy fibroblasts

*

*

Starved fibroblasts

Basal cell-fibroblast co-culture

Basal cells

Fibroblasts

Starve in
serum-free DMEM

Change new
serum-free DMEM

1:1 mix Overnight Take supernatant
for ELISA

Basal cells

Fibroblasts

Take supernatant
for ELISA

Basal cells

Fibroblasts

Collect
supernatant

Added into
fibroblasts

sLP-mcherryFibroblasts

Unlabelled

Basal cells

mCherry+GFP+

EF1a sLP-mCherry IRES eGFP FB-only

102

103

104

0

0
0

104103

0 h

102

103

104

0

0.19
0

104

P
er

ce
nt

ag
e 

of
 m

C
he

rr
y+

ce
lls

 (
%

 / 
F

ib
ro

bl
as

ts
)

24 h103

24 h

Co-culture

102

103

104

0

1.10
0

****

0

B
C

 C
M

200F
N

 (
ng

/m
l)

400

600

800
***

Immortalized
IPF fibroblasts

*

*

0

250

500

750

1,000
****

Primary
healthy fibroblasts

**

***

0

250

500

750

1,000
****

Primary
IPF fibroblasts

*
****

250

500

750

1,000

***

Immortalized
Healthy fibroblasts

ns
**

Hea
lth

y
IP

F
Ctrl

0

B
C

100F
N

 (
ng

/m
l)

200

300

400
****

Immortalized
IPF fibroblasts

ns
****

Hea
lth

y
IP

F
Ctrl

0

180

360

540

720
****

Primary
healthy fibroblasts

ns
****

Hea
lth

y
IP

F
Ctrl

0 0

100

200

300

400
****

Primary
IPF fibroblasts

ns
****

Hea
lth

y
IP

F
Ctrl

200

400

600

800

A C

B

D

E

F

G

0 h

1:1 mix

24 h24 h 24 h

1.6

1.2

0.8

0.4

0

Hea
lth

y
IP

F
Ctrl

Hea
lth

y
IP

F
Ctrl

Hea
lth

y
IP

F
Ctrl

Hea
lth

y
IP

F
Ctrl

Figure 1. Basal cells activate fibroblasts. (A) Scheme of EF1a-sLP-mCherry-eGFP lentivirus plasmid. (B) Scheme of sLP-mCherry basal cells
(BCs) cocultured with fibroblasts. sLP-mCherry was released from basal cells and captured by fibroblasts. (C) mCherry1GFP1 basal cells
(13 105) and 13105 unlabeled fibroblasts were mixed at 1:1 and cocultured for 24 hours. Labeled fibroblasts were detected with FACS.
Results are shown as means6SD (n=3; ****P, 0.0001). (D) Scheme of fibroblasts treated with starved basal cell-conditioned media.
(E) Fibroblasts were treated with conditioned media from 33 105 starved healthy and idiopathic pulmonary fibrosis (IPF) basal cells for 24 hours.
Fibronectin content in fibroblast culture supernatants was assayed with ELISA. Results are shown as means6SD (Ctrl n=8, healthy n=6,
IPF n=4; *P, 0.05, **P,0.01, ***P, 0.001, and ****P,0.0001). (F) Scheme of basal cell and fibroblast coculture. (G) A total of 2.53104

fibroblasts were cocultured with 2.53 104 healthy and IPF basal cells for 24 hours. Fibronectin content in the fibroblast culture supernatant was
assayed with ELISA. Results are shown as means6SD (Ctrl n=8, healthy n=7, IPF n=7; **P, 0.01, ***P, 0.001, and ****P, 0.0001).
Ctrl = control; DMEM=dulbecco’s modified eagle medium; ELISA=enzyme-linked immunosorbent assay; EPCAM=epithelial cell adhesion
molecule; FACS= fluorescence-activated cell sorting; FN= fibronectin; IRES= internal ribosomal entry site; ns=not significant; SABM=small
airway epithelial cell growth basal medium.
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can be captured by cocultured fibroblasts
(Figure 1C), indicating that basal cells may
participate in the fibrotic niche by releasing
secretory proteins.

Basal Cells Activate Fibroblasts
We reasoned that basal cells may activate
fibroblasts to release ECM. To test this
hypothesis, we treated fibroblasts with
conditioned media from starved basal cells
(Figure 1D). Our results indicated that
conditioned media from both healthy and
IPF basal cells activated fibroblasts to release
fibronectin, whereas fibroblasts treated with
conditioned medium from IPF basal cells
secreted greater concentrations of fibronectin
compared with that of fibroblasts treated
with the conditioned media from healthy
basal cells (Figure 1E). In addition,
fibroblasts were also activated by being
directly cocultured with basal cells
(Figures 1F and 1G). We observed the
same results with immortalized fibroblasts
and primary fibroblasts (Figures 1E and
1G). These results indicated that basal cells
activate fibroblasts through either cell–cell
contact or in a paracrine fashion.

WNT7A Is Highly and Specifically
Expressed by IPF Basal Cells
Next, we searched for potential basal cell-
specific secretory proteins that may play a
role in activating fibroblasts. We found that
the genes encoding IL1A, IL1RN, IL23A,
IL32, IL36G, DKK3,WNT7A, and TGFB1
were specifically expressed in basal cells
through scRNA-seq data analysis (Figure E2).
Among them,WNT7A was highly expressed
in basal cells (Figure 2A), which is
particularly interesting because WNT
signaling has been implicated in fibrosis
(28–30). We further analyzed the expression
ofWNT ligands in all epithelial cell types
and confirmed thatWNT7A is one of the
WNT ligands highly expressed in basal cells,
and its expression was further upregulated
in IPF basal cells (Figures 2B and 2C).
We confirmed this finding with scRNA-seq
data sets published recently (20–22, 27)
(Figures E3A–E3D).

With flow cytometry, we showed that
both healthy and IPF basal cells expressed
WNT7A abundantly, and IPF basal cells
had higherWNT7A expression relative to
healthy basal cells (Figure 2D). Basal cells
isolated from IPF lungs produced increased
amounts ofWNT7A in the culture medium
compared with that of healthy basal cells
(Figure 2E). Next, we performed

immunofluorescence staining with human
lung sections and showed increased KRT5
andWNT7A costained cells in lungs with
IPF (Figure 2F). IncreasedWNT7A protein
expression in IPF basal cells was further
confirmed withWestern blot (Figures 2G
and 2H).

WNT7A Activates Fibroblasts
Next, we investigated the role ofWNT7A
and other basal cell-secreted proteins in
fibroblast activation by using recombinant
proteins and measuring ECM production.
Among the basal cell-specific secretory
proteins, we discovered that theWNT7A
protein significantly induced fibroblasts to
produce fibronectin (Figures 3A and 3B),
whereas other proteins such as IL1A, IL1RN,
IL32, and IL36G had only minor effects on
fibroblast activation (Figures 3A and 3B).
In addition, the effects of all WNT ligands
highly expressed by human basal cells on
fibroblast activation were tested. Results
showed that onlyWNT5A,WNT5B, and
WNT7A could activate fibroblasts, and
WNT7A has the highest activation capability
(Figures 3C and 3D). Moreover, WNT7A
induced fibronectin production in a dose-
dependent manner (Figures 3E and 3F).
WNT7A also activated fibroblasts to produce
collagen I a 1 (Figure 3G) and hyaluronan
(Figure 3H). WNT7A treatment did not
affect the apoptosis of fibroblasts (Figure 3I).
Furthermore, no crosstalk between DKK3
andWNT7A was found on fibroblast
activation (Figures E4A and E4B). These
results confirmed that WNT7A is an
important fibroblast activator in IPF.
Thus, we decided to further explore the
roles of WNT7A in fibrogenesis.

Basal Cell–derived WNT7A Activates
Fibroblasts
To further confirm the role ofWNT7A in
fibroblast activation, WNT7A-neutralizing
antibodies were added to the culture system.
Neutralizing antibodies against WNT7A
blockedWNT7A-induced fibroblast
activation in a dose-dependent manner
(Figure 4A). WNT7A antibody treatment
showed no effect on the apoptosis of
fibroblasts (Figure 3I). Then, WNT7A-
neutralizing antibodies were added to
fibroblast cultures with basal cell-conditioned
medium treatment. Results showed that
WNT7A-neutralizing antibodies significantly
blocked basal cell-conditioned media-
induced fibroblast activation (Figure 4B),
indicating that WNT7A in the basal

cell-conditioned media is the main stimulus
for fibroblast activation. Next, we tested
whether addingWNT7A-neutralizing
antibodies in the basal cell–fibroblast coculture
system would affect fibroblast activation.
In the presence of WNT7A-neutralizing
antibodies, fibroblast activation was
significantly blocked (Figure 4C). These results
suggested that basal cell–derivedWNT7A is
responsible for fibroblast activation.

Our previous data showed that basal
cells could be distinguished into three
subpopulations with scRNA-seq, and
the secretory-primed population could
be isolated with CD66 (23). We looked
at WNT7A expression in basal cell
subpopulations and did not observe a
significant difference inWNT7A expression
between CD661 and CD662 basal cells
(Figures E5A and E5B). Both conditioned
media from CD661 and CD662 basal cells
activated fibroblasts and induced the
secretion of similar amounts of fibronectin
(Figures E5C and E5D). These results
suggested that all basal cells produce
WNT7A, and there is no specificWNT7A-
secreting population of basal cells in IPF.

Basal Cell–derived WNT7A Inhibits
AEC2 Renewal Capacity
As the critical cells for alveolar regeneration
in the lung, AEC2s are decreased in lungs
with IPF (10), whereas basal cells are
expanded in IPF (Figure E1). We wondered
whether basal cells participate in the fibrotic
niche affecting AEC2 renewal. With the sLP-
mCherry secretory niche labeling system, we
found that human AEC2s can take up
mCherry secreted by basal cells (Figure 5A),
indicating that basal cells may regulate
AEC2 function through paracrine secretion.
AsWNT7A is highly expressed in basal cells,
we tested the impact of basal cell–derived
WNT7A on AEC2 renewal in a three-
dimensional organoid culture system. To
eliminate the potential effect of WNT7A
on primary fibroblasts, we used irradiated
fibroblasts in the culture system (Figure 5B).
We confirmed that irradiated fibroblasts
were not activated by WNT7A treatment
(Figure E6). We showed that WNT7A
inhibited human AEC2 colony-forming
capacity in a dose-dependent manner
(Figure 5C). High concentrations of
WNT7A protein completely inhibited
colony formation of mouse AEC2s
(Figures 5D and 5E). These results indicate
that WNT7Amay participate in the fibrotic
niche by inhibiting AEC2 renewal capacity.
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To further elucidate the inhibitory
role of basal cells on AEC2 renewal, we
cocultured AEC2s with basal cells in a
modified three-dimensional organoid culture
system in which basal cells were plated and
cultured in the lower chamber (Figure 5F).
Coculture with IPF basal cells significantly
decreased AEC2 colony-forming efficiency
(Figure 5G), indicating an inhibitory effect
of basal cells on AEC2 regeneration.
Furthermore, blocking ofWNT7Awith a

neutralizing antibody partially rescued the
inhibitory effects of basal cells on AEC2
colony formation (Figure 5G), further
confirming that basal cells inhibit AEC2
renewal throughWNT7A.

Blocking WNT7A–Frizzled Signaling
Attenuated Lung Fibrosis In Vivo
Although single-dose bleomycin injury has
been widely used as a mouse model to study
lung fibrosis, the injury does not induce basal

cell accumulation in mice. Several groups
have developed repetitive bleomycin
(repBleo) models or used them in
combination with other injuries (6, 31–33).
Recent studies using repBleo showed that
Krt51 pods could be detected (31, 32). We
adapted and modified this model (Figure 6A)
and found that basal cells gradually
increased in the lungs with the increasing
number of bleomycin treatments (Figures 6B
and 6C). Importantly, WNT7A protein

Figure 3. (Continued ). (**P,0.01, ***P,0.001, and ****P,0.0001). (G and H) Human lung fibroblasts were treated with 10 ng/ml TGFB1
and 500 ng/ml WNT7A for 24 hours. (G) Collagen I a 1 and (H) hyaluronan in the supernatant were analyzed with ELISA. Results are shown as
means6SD (n=8; **P,0.01 and ****P, 0.001). (I) Human lung fibroblasts were treated with 10 ng/ml TGFB1, 500 ng/ml WNT7A, and indicated
concentrations of WNT7A-neutralizing antibody for 24 hours; apoptotic cells were assayed with Calcein AM. Results are shown as
means6SD.
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concentrations in BAL increased with
multiple doses of bleomycin treatment
(Figure 6D). Immunofluorescence
staining showed increased KRT51 cells
accumulated in the mouse lungs treated
with six doses of bleomycin (Figure 6E).
Around 80% of basal cells from six doses of
bleomycin-treated mouse lungs expressed
WNT7A shown by flow cytometry
(Figures 6F and E7A).

To demonstrate the functional role of
basal cell–derivedWNT7A in lung fibrosis
in vivo, we assessed the effect of WNT7A
blockage on lung fibrosis with a neutralizing
antibody. Three doses of neutralizing
antibodies againstWNT7A and isotype
control IgG were administered to the mice
treated with six doses of bleomycin
(Figure 6A). We showed thatWNT7A-
neutralizing antibodies attenuated lung
fibrosis with reduced trichrome staining
(Figure 6G), Ashcroft score (Figure 6H),
and hydroxyproline concentrations
(Figure 6I). WNT7A-neutralizing antibody
treatment also induced AEC2 cell recovery
from repetitive bleomycin-treated mouse
lungs (Figure 6J) compared with

IgG-treated mice. Basal cell percentage was
not changed after WNT7A-neutralizing
antibody treatment (Figure E7B).

Next, we tested the effect of inhibiting
WNT signaling on fibroblast activation and
lung fibrosis. We first addedWNT
inhibitors, including niclosamide (34),
IWR-1 (35), and ICG-001 (28) against
Frizzled receptors and cAMP-responsive
element binding (CREB)-binding protein
(CBP), respectively, into fibroblast cultures
in the presence ofWNT7A (Figures 6K
and 6L). All inhibitors blockedWNT7A-
mediated fibroblast activation (Figure 6L).
Reports have shown that niclosamide
inhibitsWnt/Frizzled1 signaling (36). We
found that FZD1 was highly expressed on
fibroblasts (Figure E7C). Next, we tested
niclosamide treatment on lung fibrosis with
the repetitive bleomycin model in vivo
(Figure 6M). Our results showed that
blocking Frizzled signaling with niclosamide
attenuated lung fibrosis with reduced
trichrome staining (Figure 6N), Ashcroft
score (Figure 6O), and hydroxyproline
concentrations (Figure 6P) compared with
the mice treated with repBleo and control

vehicle. In addition, niclosamide treatment
also showed a trend of increase in AEC2
recovery from bleomycin-injured mouse
lungs, even though the difference between
the vehicle and niclosamide treatment
groups did not reach statistical significance
(Figure E7D). We did not observe any
changes in basal cell percentage with
niclosamide treatment (Figure E7E).

In summary, our results suggest that
basal cell–derivedWNT7A promotes
fibrogenesis at the fibrotic niche in IPF
(Figure 6Q). BlockingWNT7A–Frizzled
signaling by neutralizing antibody or
WNT signaling inhibition suppressed the
profibrotic effect of basal cell–derived
WNT7A and attenuated lung fibrosis.
WNT7A signaling can be a potential
therapeutic target for lung fibrosis.

Discussion

Although the accumulation of basal cells has
been reported in IPF, the functional role of
basal cells in IPF is unknown. In this study,
we sought to determine the pathogenic role
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of basal cells in fibrogenesis with the
following objectives: to determine if
accumulated basal cells participate in the
fibrotic niche, to uncover the role and the
underlying mechanisms of basal cell–derived
fibrogenic factors such asWNT7A, and to
ascertain the role ofWNT7A in fibrosis

in vivo. With a niche labeling system, we
demonstrated that basal cells participate in
the fibrotic niche through soluble protein
secretion.With coculture experiments and
antibody-blocking experiments, we showed
that basal cell–derivedWNT7A activates
lung fibroblasts to produce matrix and limits

AEC2 renewal. The profibrotic role of
WNT7A-mediatedWNT-FZD signaling was
demonstrated by inhibitor and antibody
blockage experiments in vitro and in vivo.

In the airway, basal cells function as
stem cells to replenish the airway epithelial
layer andmaintain airway homeostasis (13).
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With scRNA-seq, we showed here that basal
cells were dramatically expanded in lungs
with IPF, consistent with recent studies
(20–22, 27). We recently showed that basal
cells in the bronchiolarization region share
secretory primed basal cell features (23).
The accumulating basal cells were associated
with the fibrotic foci in IPF (18), and BAL
from patients with IPF shows a basal cell
signature associated with IPFmortality (18).
In addition, basal cells emerge in the alveolar
region in the lung and form cyst-like
structures in the influenza-infected mice
model (37, 38), which is similar to IPF
bronchiolarization. We reasoned that
prolonged accumulation of basal cells in IPF
participates in the fibrotic niche to promote
fibrogenesis. Nevertheless, the current
investigation cannot confirm whether airway
basal cells and basal cells accumulated in
IPF tissues are the same in gene expression
and function. Further studies are needed to
address these questions. In this study, we
isolated basal cells from distal lung tissue,
which should contain very few airway basal
cells. With the secretory sLP-mCherry niche
labeling system (26), we showed that proteins
secreted by basal cells could be captured by
both fibroblasts and AEC2, indicating a
paracrine regulation of basal cells on the
surrounding cells. This niche labeling system
can detect the soluble fraction of conditioned
media of sLP-mCherry lentivirus-infected
basal cells, not the fraction containing
extracellular vesicles (26). It is interesting that
WNT5A-containing extracellular vesicles
secreted from IPF fibroblasts contribute to
fibrogenesis (39).We recently showed that
fibroblast-derived growth hormone receptor
RNA can be transported to AEC2s via
extracellular vesicles tomediate AEC2 renewal
(40).We cannot exclude the possibility that
basal cells can activate fibroblasts through
extracellular vesicles. Further investigation in
this area is needed.

During our analysis, we discovered that
WNT7A is highly and specifically expressed
in basal cells and activates fibroblasts to a
comparable degree as TGFB1, demonstrating
an unrecognized profibrotic role ofWNT7A
in IPF. WNT7A belongs to theWNT family,
signals through the canonical pathway, and
is expressed in the lung (41, 42). TheWNT
signaling participates in the AEC2 niche
and is required for the development and
regeneration of the lung (43, 44). WNT
signaling has been implicated in IPF and

bleomycin-induced lung fibrosis (29, 45),
but the role of WNT7A was not previously
demonstrated in IPF. We provide evidence
that IPF basal cell–derived WNT7A
regulates fibroblast activation as well as
AEC2 renewal. These data clearly
demonstrate a profibrotic role for basal
cell–derivedWNT7A in lung fibrosis.
With inhibitor and neutralizing antibody-
blocking experiments, we showed that
WNT7A regulates matrix production from
fibroblasts as well as AEC2 renewal,
suggesting that WNT7A–Frizzled signaling
can be a therapeutic target for lung fibrosis.

An aberrant nature of basal cells in IPF
is apparent. In addition to secreting a large
quantity ofWNT7A, IPF basal cells also
highly express TGFB1mRNA as well as
release TGF-b1 protein. The discovery of
TGF-b1 secretion by basal cells indicates
an important source of profibrotic cytokines
of basal cells in IPF, and basal cells can serve
as an intervention target for IPF treatment.
Previous studies have shown that TGF-b1
is highly expressed in lungs with IPF (46),
is considered to be the principal profibrotic
factor in fibrosis (47, 48), and serves as a
biomarker of IPF. It is known that TGF-b1
activatesWNT signaling in fibroblasts (49).
We, therefore, would anticipate that the
exaggerated expression of TGF-b1 may
further fuel the dysregulation of many
signaling pathways, includingWNT–Frizzled
in IPF basal cells.

With recombinantWNT7A protein
treatment, we observed that WNT7A
activates fibroblasts. In addition, a
neutralizing antibody againstWNT7A was
able to block basal cell-conditioned media
and basal cell-mediated fibroblast ECM
production, suggesting that accumulated
basal cells releaseWNT7A to activate
fibroblasts in IPF. Interestingly, low
concentrations ofWNT7A were neither able
to activate fibroblasts nor inhibit AEC2
colony formation; only high concentrations
ofWNT7A were able to affect fibroblast
activation and AEC2 renewal. Previous
studies have shown thatWNT signaling
has a dose-dependent effect on cell function
(50, 51). Thus, the concentration-dependent
effects of WNT7A on fibroblast activation
and AEC2 renewal indicate that WNT7A
may have distinct functions on fibroblasts
and AEC2 at different concentrations. It is
quite possible that the physiologicWNT7A-
mediated signaling is essential for

maintaining the AEC2 niche, whereas a large
and prolonged expansion of basal cells in the
alveolar region in patients with IPF generates
pathologic concentrations ofWNT7A and
other profibrotic factors (such as TGF-b1),
leading to defective AEC2 renewal and
fibroblast activation.

In addition to lungs with IPF, the pods
of Krt51 basal-like cells are expanded in the
alveolar region after acute injury in mice,
such as influenza (37, 38) and coronavirus
disease (COVID-19) infection (52).
However, no basal expansion has been
observed after a single dose of bleomycin,
making it difficult to study basal cell
function in mice in vivo. With the
repetitive injury model, Krt51 basal-like
cells were observed in the alveolar region
(31, 32). We observe the expansion of
Krt51 basal-like cells in the alveolar region
after six doses of bleomycin treatment.
These Krt51 basal-like cells produce
WNT7A.With this model, we confirmed the
fibrogenic role of WNT7A in mice in vivo.
We showed that blockingWNT7A–Frizzled
signaling with a neutralizing antibody or the
small molecule inhibitor niclosamide
significantly attenuated lung fibrosis.

Conclusions
Taken together, we showed that basal
cell–derivedWNT7A promotes fibrogenesis
at the fibrotic niche by regulating fibroblast
activation as well as limiting AEC2 renewal.
Importantly, the profibrotic role ofWNT7A-
mediated WNT-FZD signaling was
demonstrated by both inhibitor and
antibody-blocking experiments in vitro
and in mice in vivo. These studies further
support the emerging role of aberrant basal
cells and the basal cell–derived secretome
in the pathogenesis of IPF and offer a novel
therapeutic strategy.�
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