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Abstract
Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome
after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid
(bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim
of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-
specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples
collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3–8) using microcapillary-based west-
ern analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B
and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker
changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms
of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total
immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illus-
trates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial
sampling for biofluid analysis after severe TBI.
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Introduction
Cerebrospinal fluid (CSF) is uniquely qualified for pro-
tein biomarker analysis after traumatic brain Injury
(TBI) because of its proximity to the brain (for reviews,
see previous works1–3). Cerebral microdialysis (cMD)4

has greatly contributed to the better understanding of
changes in intracranial metabolism after TBI by enab-
ling continuous sampling and analysis of brain extra-
cellular fluid (bECF) for changes in lactate, pyruvate,
and glucose levels.5–9,10 The bECF proteome can
closely reflect cerebral tissue-level changes—at least at
the sampling site11—and elevated lactate-to-pyruvate
ratio was found to be associated with a specific bECF
proteome consisting of cytoarchitectural and mitochon-
drial proteins as well as a unique peptide with a mass/
charge 4733.5, a candidate protein marker of metabolic
crisis in TBI patients.12 Additional analyses have iden-
tified changes in the bECF proteome after both exper-
imental and clinical TBI.13 Studies have shown that
high initial Tau levels are indicative of poor outcome,14

and that elevated total Tau and beta-amyloid levels cor-
relate with injury severity in focal and/or mixed types
of TBI14,15 and identified the inflammatory response
after TBI.16 However, cMD is not widely performed
and the qualitative, quantitative, and temporal relation-
ships between protein biomarker levels in the CSF ver-
sus bECF thus are currently poorly understood.1,2

The protein biomarkers S100 calcium-binding pro-
tein B (S100B), neuron-specific enolase (NSE), Tau, and
phosphorylated Tau (p-Tau) have been extensively
studied in TBI,17,18 and their elevated serum and CSF
levels have been shown to indicate the extent of neuro-
nal, glial, and axonal damage as well as correlate with
injury severity and outcome.19–24 In this pilot study,
we used microcapillary electrophoresis-coupled west-
ern analysis (WES) to determine the qualitative, quan-
titative, and temporal relationships between CSF and
bECF levels of S100B, NSE, Tau, and p-Tau. WES is
a highly sensitive proteomic platform that requires
very low sample volume (microliters), and, like tradi-
tional westerns, it can separate immunoreactive pro-
teins by molecular weight.

Methods
Patients and clinical parameters
Patients in our study were a subset of a larger popula-
tion from a prospective observational study performed
at the North Carolina Central University at Karolinska
University Hospital (Stockholm, Sweden) under ethi-
cal approval #2009/1112-31/3 by Stockholm County

branch of the Central Ethical Review Board, now called
the Swedish Ethical Review Authority (Table 1). Study
details, including inclusion and exclusion criteria, pati-
ent management, and sample acquisition, are as des-
cribed in detail earlier.25 For this study, we selected
patients who had matching CSF and bECF samples at
three acute post-injury time points (days 1, 3, and 5
as detailed in Table 2).

Biosamples
Cerebrospinal fluid. CSF was collected using a cath-
eter (conventional ventricular drain) placed in the
ventricle and connected to a pump (Liquoguard�) col-
lecting CSF at a rate of 2 mL/h, as long as intracranial
pressure was >2 mm Hg. CSF was collected every 6 h,
centrifuged, and the supernatant was transferred into
collection tubes and stored in a �70�C freezer.

Brain extracellular fluid. cMD was performed as part
of the clinical routine at the Neurointensive Care
Unit of the Department of Neurosurgery at the Karo-
linska Hospital to monitor brain metabolism.7–9,26–28

A 0.6-mm-wide microdialysis catheter with a 10-mm

Table 1. Patient Demographics of the Study Cohort

Patient ID 6 7 10 17 11 13 14

Sex M M M M M M M
Age, years 22 23 25 36 42 59 62
GCS 7 8 8 7 3 7 3
ISS 29 16 25 26 38 25 25
AIS 4 4 5 4 5 5 5
Pupil responsiveness 1 0 0 0 1 1 0
Outcome (GOS)a 3 4 5 4 3 3 1

aOutcome was determined 6 months after the injury by a neuroreha-
bilitation board-certified physician (P.H.G.); GOS categories: 1) dead, 2)
persistent vegetative state, 3) severe disability, 4) moderate disability,
and 5) low disability.

M, male; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; AIS,
Abbreviated Injury Scale; GOS, Glasgow Outcome Scale.

Table 2. An Overview of Samples Analyzed by WES

Time points Day 1 Day 3 Day 5

Original collection time
points (h) to be combined

6, 12,
18, 24 h

54, 60,
66, 72 h

102, 108,
114, 120 h

Patient nos.
6 CSF; bECF CSF; bECF CSF; bECF
7 CSF; bECF CSF; bECF CSF; bECF
10 CSF; bECF CSF; X CSF; X
11 CSF; bECF CSF; bECF CSF; bECF
13 CSF; bECF X; X CSF; bECF
14 CSF; bECF CSF; bECF X; X
17 CSF; bECF CSF; bECF CSF; bECF

Note: ‘‘X’’ refers to missing samples.
WES, western analysis; CSF, cerebrospinal fluid; bECF, brain extracel-

lular fluid.

Lin et al.; Neurotrauma Reports 2023, 4.1
http://online.liebertpub.com/doi/10.1089/neur.2022.0076

108



dialysis membrane at its tip (100-kDa cutoff) was sur-
gically introduced into the brain tissue of interest
(in the border zone close to the injury). A pump per-
fused the interior of the catheter with a perfusion
fluid, which equilibrated with the interstitial tissue sur-
rounding the catheter. Equilibration occurred by diffu-
sion of chemicals over the dialysis membrane. Using a
perfusion flow of 0.3 lL/min, the recovery of glucose,
lactate, pyruvate, and glutamate in the dialysate was
*70% of the concentration in the interstitial fluid.29

Samples were continuously collected into microvials
analyzed at bedside by a CMA 600 microdialysis ana-
lyzer every hour for changes in glucose, pyruvate,
lactate, glycerol, and glutamate. In the same area, a sim-
ilar catheter with a 100-kDa cutoff was introduced to
collect proteins. The perfusion fluid was the same as
for the 20-kDa catheter, but samples were collected
every sixth hour and frozen at �70�C. The final col-
lection tubes contained a protease and phosphatase
inhibitor cocktail.30,31

Because of the low protein concentrations of bECF
samples, we needed to combine four consecutive col-
lections (e.g., 6, 12, 18, and 24 h) to be able to assay
them using WES (see Table 2). To match the bECF
samples, we also pooled equal volumes of CSF samples
collected at time points matching the bECF collections.
The final, combined bECF and CSF samples represent
three post-injury time points: days 1, 3, and 5 (Table 2).

Protein analysis
CSF and bECF samples were analyzed by using WES
(Simple Western microcapillary-based Western; Pro-
teinSimple, Santa Clara, CA). Samples were diluted
with 5X Fluorescent Master Mix (400 mM of dithio-
threitol and 5X Sample Buffer; Prod # SM-W004; Pro-
teinSimple), making 0.48 mg/mL as the final protein
concentration for CSF. Samples and standard ladders
were denatured at 70�C for 20 min, then set on ice
for 10 min. Primary antibody dilutions were optimized
for CSF and bECF samples using antigen-antibody
binding titration before the assay (Supplementary
Table S1).

The WES performs protein separation, blocking,
incubation with the primary and horseradish peroxi-
dase (HRP)-conjugated secondary antibodies, washing
steps, and signal detection automatically.32 Samples,
along with the diluted primary antibodies, HRP-
conjugated secondary antibody, detection reagents,
and wash buffers, were loaded onto the Simple Western
assay plates according to the company’s protocol.

Plates were centrifuged at 2500 rpm for 5 min at
room temperature, then the 25-slot microcapillary
cartridge and plates were placed in the WES platform
for size selection to be completed (3 h). Immunodetec-
tion was performed using the WES’s default setting
for the 12- to 230-kDA size-based assay. Chemilumi-
nescent signal intensities were acquired by using the
company’s Compass software. Intensities were normal-
ized to a signal-to-noise ratio >10. Relative abun-
dance of each protein was then calculated as the
area under the curve (AUC) for each of the detected
peaks .

Results
In addition to the expected *10-kDa S100B immuno-
reactivity, we detected a second S100B peak at *60 kDa
in every CSF and bECF sample, but the contribution
of the two immunoreactivities differed between CSF
and bECF samples (Fig. 1 and Table 3), with most pati-
ents showing CSF: 60 kDa >10 kDa vs. bECF 10 kDa
>60 kDa. A few bECF samples contained a third, very
small S100B immunoreactive peak at *20 kDa. Simi-
larly, for NSE, in addition to the expected *50-kDa
immunoreactive peak, there was a second immuno-
reactive peak at *60 kDa detected in all CSF samples,
but it was barely detectable in bECF samples. Again,
the ratio between the different immunoreactive forms
varied from patient to patient (Fig 1 and Table 3).
We detected the expected *55-kDa Tau and p-Tau
immunoreactivities in CSF as well as in bECF sam-
ples, but in bECF samples there was a second Tau
and p-Tau peak at >200 kDa, likely representing large
Tau and p-Tau proteins likely aggregated in vitro.

Semiquantitative analysis of immunoreactivities
(area under the peak) showed substantial variabil-
ity in biomarker levels between patients, biomarkers
and their immunoreactive forms, and time points
(Fig. 2A–G). But, the overall pattern of time-dependent
changes showed similar trends in matching CSF and
bECF samples, such that the relative concentrations
of S100B and NSE immunoreactivities in both biofluids
decreased over time. Highest relative concentrations of
both proteins were detected at the earliest time point
(T1 or day 1) and were substantially lower at T5. It
should be noted that contributions of the different
S100B and NSE immunoreactive forms to total immu-
noreactivity varied from patient to patient, time point
to time point, and compartment to compartment.
Tau and p-Tau levels showed similar trends, but in
some patients their levels remained elevated at T5.
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Discussion
The goal of this prospective longitudinal pilot study
was to understand the relationship between protein
biomarker levels measured in matching CSF and
bECF samples collected from severe TBI patients dur-
ing the acute stage of injury. TBI-induced changes in
CSF levels of protein biomarkers have been extensively
studied, although most studies have used single and
varying post-injury time points (for reviews, see past
works3,33). Therefore, this is the first study that has
coanalyzed matching, serially collected CSF and bECF
samples.

Consistent with the earlier report that analyzed some
of the same CSF samples using a different analytical
platform,25 we found that CSF levels of S100B and

NSE decreased over time. We also detected a similar
temporal pattern in matching bECF samples. S100B
is one of the best-characterized protein markers in
TBI (for review, see past works18,34), and its very
short half-life (*0.5 h)35 makes it ideal as a marker
of de novo release. Serum S100B levels have been estab-
lished as part of the Scandinavian TBI management
guidelines.36–38

The two biofluids CSF and bECF represent distinct
intracranial environments that can differently allow
and/or promote multimerization of S100B and/or sec-
ondary modifications to NSE. We detected both mono-
meric and multimeric (hexamer) forms of S100B
protein in both CSF and bECF samples, but the ratio
between the monomeric and multimeric forms varied

Table 3. Percentage Distribution of Different Immunoreactive Forms of S100B and NSE in Different Biofluid Compartments

Marker S100B NSE

Biofluid CSF bECF CSF bECF

MW (kDa) 10 kDa 60 kDa 10 kDa 60 kDa 50 kDa 60 kDa 50 kDa 60 kDa

Patients
PT 6 32.6 67.3 N/A 100 68.6 31.3 100 N/A
PT 7 56.3 43.6 76.1 23.8 66.9 33.01 86.7 13.2
PT 10 46.3 53.6 N/A N/A 38.2 61.7 N/A N/A
PT 11 12.6 87.32 63.8 36.1 21.3 78.6 55.9 44.08
PT 13 23.3 76.6 100 N/A 49.6 50.3 100 N/A
PT 14 17.1 82.8 89.6 10.3 13.2 86.7 78.8 21.1
PT 17 N/A 100 89.4 10.5 69.6 30.3 90.3 9.6

S100B, S100 calcium-binding protein B; NSE, neuron-specific enolase; CSF, cerebrospinal fluid; bECF, brain extracellular fluid; MW, molecular weight;
N/A, not applicable.

FIG. 1. Distribution of immunoreactivities of S100B, NSE, Tau, and p-Tau in CSF and bECF samples. Blue
arrows point to the immunoreactive peaks that were quantified. bECF, brain extracellular fluid; CSF,
cerebrospinal fluid; NSE, neuron-specific enolase; p-Tau, phosphorylated Tau; S100B, S100 calcium-binding
protein B.
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FIG. 2. Time-dependent changes in the protein biomarker values of matching CSF and bECF samples in
the individual patients (A, patient 6; B, patient 7, C, patient 10; D, patient 11; E, patient 13; F, patient 14; G,
patient 17). Pay attention to the scales. The scales reflect the relative abundance of proteins and vary
substantially between proteins and biosamples. AUC, area under the curve; bECF, brain extracellular fluid;
CSF, cerebrospinal fluid; LLOD, lower limit of detection.
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Fig. 2. Continued.
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Fig. 2. Continued.
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between patients and post-injury time points. Mono-
meric S100B is a *10-kDa protein, but it forms mul-
timers, dimers, hexamers, and even amyloids in metal
ion-dependent manner.39,40 Extracellular S100B pro-
teins are related to the group of proteins alarmins,
also called damage-associated molecular patterns, that
coordinate adaptive cellular stress response to tissue
damage.39,40 Multimeric S100B, including hexamers,
can bind to receptor for advanced glycation end prod-
uct (RAGE) and Toll-like receptor-4 and activate
the inflammatory response to central nervous system
injury.41–50

Since its invention, cMD has identified changes in
brain metabolism post-TBI.4,5,9,12,14,15,51,52 Studies
have also reported injury-induced changes in the
bECF proteome,53–57 but there have not been any
studies (to our knowledge) that directly compared
matching bECF and CSF samples for injury-induced
changes in protein biomarker levels. It should be
noted that cMD technology has known issues that
can affect the outcome of protein analysis of bECF
samples, such as the non-specific binding of proteins
to the catheter.52,58–60

There are important technical issues that can be
responsible for the detected S100B and NSE immuno-

reactive forms. The main issue, as in all antibody-based
analysis, is the specificity of the antibodies. We have
tested the antibodies for specificity before using them
in WES, but cross-reactivity can still occur.32,61–64

Though all samples were treated identically after col-
lection, protease inhibitors could not be added to the
microdialysis vials during collection, which could have
affected direct comparisons between compartments.
However, CSF and bECF samples were continuously
collected, prepared, and assayed under identical condi-
tions by trained professionals; therefore, intersample
variability should be negligible.

Elevated CSF levels of Tau proteins have been found
in CSF65 as well as in bECF15 (for review, see a previous
work66). We also found elevated Tau and p-Tau levels
in both CSF and bECF samples. Tau and p-Tau lev-
els in both biofluids showed a similar temporal pattern
to S100B and NSE, but the rate of decrease over time
appeared to be slower in the CSF. These changes can
be interpreted in several ways, including a potenti-
ally long half-life of these axoskeletal proteins in the
extracellular environment. The exact half-life of these
protein biomarkers that are released from the intracel-
lular environment is still not well known.67 Further, the
extracellular environment can be altered by the severity

Fig. 2. Continued.
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and type of injury that can selectively activate extra-
cellular proteases as part of the secondary injury
process.68–70 In addition, Tau is an intrinsically dis-
ordered protein with a high propensity for self-
aggregation,71 as also indicated by the presence of
>200-kDa aggregates in our study.

Limitations
This is a pilot study with limited numbers of patients
who were all males. Technical issues include the use
of standard CSF perfusion fluid that was used to per-
fuse the catheters, which may be suboptimal for pro-
tein recovery.72 Because of various issues, including
patient safety, we were unable to collect sufficient quan-
tities of bECF samples at all time points that would
have enabled higher (e.g., daily or even higher) tempo-
ral resolution.

Conclusion
Our pilot study focused on the acute stage of TBI in
a clinically heterogeneous population. However, we
found that the temporal pattern of changes in the
CSF and bECF levels of four well-established neural
injury markers were generally similar, suggesting that
CSF levels of protein biomarkers can reflect intrapar-
enchymal changes after TBI. The apparent multimeric
S100B form detected in CSF and bECF samples may
indicate other functions for S100B in the intracranial
environment of the injured brain, for example, invol-
vement in the inflammatory response after TBI upon
binding to receptor RAGE.42,43,73 Given the biological
significance of RAGE signaling in injury repair,43

these analyses need to be repeated on a larger scale
using different analytical platforms. Our study is
small, but it illustrates the value of both quantitative
and qualitative analysis of protein biomarkers in seri-
ally sampled biofluids, especially CSF after TBI. It
also demonstrates some of the challenges protein bio-
marker studies face vis-à-vis a complex, dynamically
changing condition such as severe TBI.
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Abbreviations Used
AIS ¼ Abbreviated Injury Scale

AUC ¼ area under the curve
bECF ¼ brain extracellular fluid
cMD ¼ cerebral microdialysis
CSF ¼ cerebrospinal fluid
GCS ¼ Glasgow Coma Scale
HRP ¼ horseradish peroxidase

ISS ¼ Injury Severity Score
NSE ¼ neuron-specific enolase

p-Tau ¼ phosphorylated Tau
RAGE ¼ receptor for advanced glycation end product

S100B ¼ S100 calcium-binding protein B
TBI ¼ traumatic brain injury

WES ¼ western analysis
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